Theoriq: The AI Agent Base Layer

Theoriq Team

Abstract

Al agents are autonomous software systems that leverage modern generative Al
models to plan, access data, use tools, make decisions, and interact with the
real world to perform specific functions. As individual Al agents become more
powerful, a growing community of researchers and practitioners believe the true
potential of Al agents will be realized through collaboration and cooperation [[10]
in a concept we define as Agent Collectives. Inspired by humanity’s success as a
collectively intelligent species, we posit that collective Al — systems of Al agents
that can effectively collaborate on complex tasks — will open new frontiers of utility
for AL In a significant step towards realizing this potential, we introduce Theoriq
— a decentralized protocol that provides critical interoperability, composability
mechanisms, and governance for Al agents. The protocol enables users and agents
to dynamically discover, compose, and optimize Agent Collectives — teams of
specialized Al agents that collaborate on complex tasks. Theoriq is built on three
foundational pillars: Interoperable Agentic Primitives, Composable Collective
Formation, and a Decentralized Innovation Ecosystem. These pillars support a
competitive evaluation system, underpinned by Proof of Contribution and Proof
of Collaboration mechanisms, ensuring transparent assessment and fostering
a meritocratic ecosystem where the most effective agents can be identified and
employed. This approach enables continuous improvement and adaptation to
evolving community values, system objectives, and Al capabilities. Leveraging a
market-driven approach with a native token, Theoriq aligns incentives and fosters
an ecosystem where the most effective Al solutions can thrive and evolve rapidly.
This groundbreaking protocol catalyzes a new era of collective Al and a new
standard in Al agent governance — where the power of managed collaboration
enables the true potential of Al agents to solve increasingly complex tasks.

1 Introduction

Al is not just advancing — it is reshaping the very fabric of our world at an unprecedented pace. As this
transformation unfolds, it is becoming increasingly clear that those who control the most powerful Al
systems wield immense power over the future of society. The prospect of a few billionaires dominating
through Al undermines the principles of freedom and self-determination that have underpinned much
of human progress. The future of Al is to be determined by all. The challenge lies in maintaining core
societal values and robust governance while embracing the transformative potential of a powerful
technology.

At the forefront of this Al revolution are Al agents: autonomous software systems powered by one or
more Al models, with access to real-time data and tools, and designed to perform a particular function.
These functions include code generation and execution in sandboxed environments, database queries,
search engine access, API connections to external systems, and invoking smart contracts to automate
actions. While a basic agent might leverage a Large Language Model (LLM) to read and summarize
documents, more complex agents combine multiple AI models and tools to perform sophisticated
tasks, such as advanced data analytics or software engineering.

Agents are rapidly emerging as the focal point of Al innovation [6, 9] with tech giants like
Google/DeepMind, OpenAl, and Meta racing to provide tools for Al agent creation, recogniz-
ing the vast potential of these autonomous systems. However, at Theoriq, we note that the true
potential is not in individual agents, but in collectives of collaborating agents [4}, 8], just as human
civilization has flourished through specialization and collaboration. Through our own experience,
and in prevailing literature, we have concluded that Al agent collectives are more effective at tackling
complex problems than individual agents, and with greater efficiency and creativity [11]].

While frameworks for building agent collectives are beginning to emerge, there is currently no
viable framework or protocol that broadly enables effective agent interoperability in collectives,
manages community incentives, and enables responsible agent governance. Consequently, the current
landscape of collective Al suffers from hype-induced productivity apnea, duplication of efforts, and
isolation, with developers continually paralyzed by new and shiny developments in Al, reinventing
the wheel by creating and recreating similar agents, and building agents and collectives in silos.

This suboptimal situation underscores the need for a foundational Al agent protocol that provides a
flexible and extensible base layer for managed agent interoperability and composition. In the Theoriq
protocol, these three fundamental concepts — interoperability, composability, and agent governance —
are the key to unlocking the full potential of collective Al

Interoperability reflects the need for agents to communicate effectively, regardless of their underlying
implementations (including AI models) and deployment environments. It requires the establishment
of flexible, adaptable communication standards and interfaces for agent-to-agent interaction, mecha-
nisms for agents to establish trust and verify the authenticity and reputation of other agents, and the
facilitation of seamless payments between and among agents and users.

Composability builds on the foundation of interoperability, adding the following requirements: agents
must be effectively discoverable and must be effectively combined into useful collectives where
possible. To compose a group of high-quality agents that form a collective requires finding those
agents in the first place. And so, effective composability requires mechanisms for discovering the
right agents in the right place, at the right time, and where applicable, at the right price.

These requirements can be addressed directly with maturing blockchain and Web3 technologies.
Indeed, blockchains can be used very naturally to establish agent identities, handle payments, and
provide a framework for transparent, verifiable reputation systems. Blockchain is a decentralized
ledger technology that securely records transactions across multiple computers. As such, we argue
that blockchain and digital currency technologies are the ideal foundation on which to build a protocol
for Al agents. In one word, Theoriq is the convergence of Al and Web3.

1.1 Theoriq

In this paper, we introduce Theoriq, a decentralized protocol for governing multi-agent systems with
blockchain technology. Theoriq supports a vibrant ecosystem of Al Agent Collectives using smart
contracts to ensure transparency, security, and accountability. It is a flexible, modular protocol and
marketplace designed to evolve with Al progress and community needs, built upon three core pillars:

1. Interoperable Agentic Primitives: Empowering developers with flexible, modular, and
permissionlessly extensible abstractions to create Al agents that can seamlessly communicate
and collaborate across diverse frameworks and models.

2. Composable Collective Formation: Providing mechanisms for dynamic discovery, evalua-
tion, and composition of agents into powerful collectives, supported by reputation systems
and optimization algorithms.

3. Decentralized Innovation Ecosystem: Fostering a community-driven marketplace where
developers, users, and agents interact, incentivized by token economics to continuously
improve and expand the capabilities of the network.

These pillars, made accessible via no-code builder interfaces, form the foundation for widespread
adoption, ensuring Theoriq’s capabilities will evolve alongside the entire Al ecosystem. Through
deep integration of transparent evaluation and optimization, Theoriq aims to create a true meritocracy
of Al agents, where collectives are assembled based on a spectrum of criteria including objective
metrics and subjective human preferences.

Example 1.1 - Web3 Market Analysis Collectives

Overview

To illustrate the power of interoperability and composability, consider the following scenario. Suppose that you want to analyze on-chain
data for a new decentralized finance (DeFi) project, perform advanced analytics, interact with smart contracts to trade, and generate
dynamic reports. Instead of seeking a single, complex Agent or building one from scratch, you can instead create a Collective — a team
of specialized Agents that seamlessly collaborate on complex tasks — by leveraging a number of existing Agents in the network. The
following gives an overview of a “Web3 Reporter’ Collective:

Web3 Reporter Data Analyst
Socials Data
Specialist Interpreter
News k| Planner Python
Analyst " Specialist
Data Database
Analyst N Specialist
Web3 Reporter Components: Data Analyst Components:
* Router (Aggregator): Delegates tasks to member Agents ¢ Planner (Aggregator): Creates flexible plans that break up
* Socials Specialist: Analyzes social media data from various complex tasks
sources * Data Interpreter: Interprets and summarizes data
* News Analyst: Gathers and summarizes relevant news * Python Specialist: Writes and executes Python code
* Data Analyst: A nested Collective for data analysis » Database Specialist: Writes and executes database queries

Example Interaction

An example interaction with these Collectives might proceed as follows:

1. User asks: "Have there been any unusual fluctuations in major DeFi token prices lately?"
2. Web3 Reporter’s Router delegates the task to Data Analyst.

3. Data Analyst’s Planner creates an initial plan:

¢ "Database Specialist, please retrieve last 6 months of prices for AAVE, DAI, UNI, and LDO."
» "Python Specialist, please conduct an anomaly analysis focusing on recent price fluctuations compared to typical patterns."
¢ "Data Interpreter, please summarize the findings."

4. Planner oversees work until it is completed, then returns results to User via Web3 Reporter.

Key Aspects of Hierarchical Structure

1. Each Collective has an Aggregator, a designated Agent responsible for orchestrating workflows and interacting with users or other
Collectives.

2. Web3 Reporter uses a Router as its Aggregator, which delegates tasks to member Agents.

3. Data Analyst, being a Collective itself, uses a more sophisticated Planner as its Aggregator, developing flexible strategies that
leverage multiple member Agents.

4. This hierarchical composition allows Collectives to contain other Collectives as member Agents, enabling the creation of increasingly
complex and capable Al systems through the composition of specialized components.

This example demonstrates how Theoriq’s approach mirrors the way human organizations tackle complex projects by combining diverse
expertise at various levels. By allowing for hierarchical composition of capabilities, Theoriq enables users to create powerful, flexible
Al systems that can address multifaceted tasks in the Web3 domain without the need to build complex solutions from scratch.

Our vision for Theoriq is ambitious and the progress so far is compelling. By providing a flexible,
extensible protocol that aligns developer incentives with user needs, Theoriq is catalyzing a new wave
of progress in agentic Al. As this ecosystem grows, we anticipate an explosion in innovation that
will redefine the boundaries of possibility in Al, leading to more powerful, efficient, and accessible
solutions for a myriad of complex real-world challenges.

In the following sections, we will explore the key technical concepts and components of the Theoriq
protocol and discuss how they combine to create a robust, adaptive ecosystem for agentic Al

2 Protocol Architecture: Key Components and Concepts

The Theoriq protocol provides a modular architecture designed to unlock the potential of collective
Al At its core, the protocol defines a set of fundamental abstractions and mechanisms that enable
the creation, interaction, and continuous evolution of Al agents and collectives. This architecture is
built to adapt and improve alongside advancements in Al technology and changing user needs, with a
focus on enhancing interoperability and composability throughout the ecosystem.

A key principle underlying Theoriq’s architecture is permissionless extensibility. Every component
and concept introduced in this section is designed to be accessible and extensible. This approach
fosters innovation, allows for organic growth, and ensures the protocol can adapt to emerging needs
and technological advancements without centralized control.

Table[T] provides a comprehensive overview of the protocol’s key components, while Figure [T] offers
a visual representation of their interrelationships. The following subsections provide an in-depth
discussion of each component, exploring how they combine to form the extensible foundation of the
Theoriq protocol. For clarity, this paper distinguishes protocol-specific components (e.g., Agent)
from general concepts (e.g., agent) through capitalization.

Component | Definition Functional Characteristics
] Formal interfaces specifying Agent capabili- Facilitate composablllgy and 1nter0peral?1hty
Behaviors ties among Agents; define input-output specifica-
’ tions
. Structured assemblages of Agents designed | Implement collaborative problem-solving
Collectives . . .
for complex task execution strategies; coordinated by Aggregators
Specialized Agents responsible for Collective | Implement collaboration logic; execute rout-
Aggregators . - L
workflow management ing or planning functions; handle budgets
Evaluators | Agents dedicated to providing quality signals Generate Proofs of Contribution; contribute
£ P & qualtty st information that informs Agent reputation
.. Agents specialized in Collective membership | Produce Proofs of Collaboration; produce op-
Optimizers . . A R .
or membership function optimization timization artifacts, e.g. leaderboards
Secure, decentralized critical information | Maintain Agent metadata, memory and expe-
Profiles o . . .
stores that enable accountability for agents riences, execution logs, and user-specific data
Enable authenticated interactions between
Channels Secure communication infrastructure Agents.and users; govern and support Agent-
Collective, Agent-Agent, and Agent-user com-
munications

Table 1: Definitions and functional characteristics of Theoriq’s key concepts.

2.1 Agents and Agent Collectives

In Theoriq, Agent is the highest-level abstraction. Agents are formally defined by the set of Behaviors
they implement, which in turn determine the Agent’s compositional properties within the protocol.
Behaviors encompass a range of functionalities, including but not limited to chat completion, routing,
code generation, and image generation. An Agent may implement multiple Behaviors concurrently,
enhancing its versatility. For instance, a ‘Data Analyst’ might communicate via natural language,
generate SQL from text, and produce visual representations such as charts, thereby signaling its
capacity for chat completion, code generation, and image generation.

Behaviors play a crucial role in enabling interoperability by providing standardized interfaces
that allow Agents to communicate and collaborate regardless of their underlying implementation.

Agent Behavior

* Model(s) + 1/0 Spec
+ Profile

* Tools

Collective Aggregator Evaluator Optimizer
» Aggregator + Collab Logic + Criteria « Evaluator
* Members + Tests + Algorithm

Figure 1: Theoriq’s Agent abstraction hierarchy: The Theoriq protocol enables flexible composition of
Agents, each defined by their Behaviors (input/output specifications). The protocol introduces specialized Agent
abstractions: Collective, Aggregator, Evaluator, and Optimizer. Collectives bring together member Agents,
coordinated by an Aggregator that implements collaboration logic. Collaboration logic determines how Agents
work together i.e., whether they use routing, planning, or another process. Evaluators, which can be Al-based or
human-driven, codify evaluation tasks for assessing Agent and Collective performance. Evaluators can range
from standard protocol-provided ones to ones that use custom, user-defined criteria. Optimizers use designated
Evaluators as objective functions to optimize Collective membership. This hierarchical structure enables the
creation of increasingly complex and capable Al systems through the composition of specialized components,
with built-in mechanisms for continuous evaluation and improvement.

This standardization is key to creating a truly composable ecosystem of Al agents, where diverse
capabilities can be seamlessly combined to tackle complex tasks.

When invoked, an Agent receives a budget. The Agent is responsible for autonomous budget
management, including allocation for its own services and task delegation to other Agents.

The internal architecture of an Agent may incorporate optional protocol-provided components,
including models and tools. Models facilitate access to various Al model providers — including
leading commercial model providers and open-source alternatives. Tools offer interfaces to commonly
utilized services such as search APIs, retrieval augmented generation (RAG) solutions, database
connectors, and code execution environments. Additionally, tools may encapsulate interfaces enabling
Agents to interact directly with smart contracts, enabling a wide range of applications for automation
throughout the Web3 ecosystem.

Collectives, as introduced earlier, are structured assemblages of specialized Agents that collaborate on
tasks. Theoriq’s design is founded on the hypothesis that Agents that are specialized for well-defined
tasks, particularly when organized into Collectives, will demonstrate superior performance compared
to generalist Agents designed for broad task execution. Collectives embody the principle of compos-
ability, allowing for the dynamic combination of specialized Agents to create powerful, adaptable
Al systems capable of addressing a wide range of complex problems. The initial implementation of
Collectives incorporates a designated Aggregator to manage coordination and budget, which we will
explore in detail in Section For sufficiently intelligent and autonomous Agents, future protocol
iterations will enable Collectives to self-assemble and coordinate amongst themselves in Channels.

2.2 Profiles and Channels

To support the operation and interaction of Agents and Collectives, the Theoriq protocol introduces
two more key components: Profiles and Channels.

Profiles function as information stores for Agents, facilitating the storage of and controlled access
to diverse data types under varying levels of privacy. These repositories encompass critical Agent
metadata, including registration details, functional specifications, user-generated evaluative content,
and references to past evaluation results. Profiles play a crucial role in enabling persistent Agents
with individualized personas, memories, and experiences, allowing them to maintain context, learn,
and improve over time. Additionally, Profiles store encrypted execution logs, subject to auditing
under stringent conditions by authorized key holders, facilitating protocol security and governance.
Importantly, Profiles serve as the foundation for the reputation system within Theoriq, enabling
informed decisions about collaborations and Collective formations.

Channels constitute the primary communication infrastructure within the Theoriq protocol, enabling
secure and efficient interaction between Agents, Collectives, and users. The initial implementation of
Channels supports bilateral communication between a user and a single Agent, which may be either
an individual Agent or a Collective’s designated Aggregator, as is visualized in Example[I.1] This
allows for seamless interaction with complex Al systems, regardless of their underlying structure.
Future iterations of the protocol will expand Channel functionality to support self-organization among
Agents in Channels, mirroring the way that human teams collaborate using social tools like Telegram
or Slack. This evolution will enable more sophisticated and dynamic Collective behaviors, where
Agents can autonomously form and reform Collectives based on task requirements and changing
contexts.

2.3 Aggregators

Aggregators are a specialized class of Agents within the Theoriq protocol, designed to orchestrate
the collaborative efforts of multiple Agents within a Collective. As introduced in Example [I.T}
Aggregators are responsible for initial message handling on behalf of their Collectives and serve as
the primary interface between Collectives and users or other Agents.

Aggregators implement ‘Collaboration Logic’ — code that determines how to leverage the Collective’s
member Agents for task execution. This logic can range from simple routing over a static set
of Collective members to more sophisticated Al-powered dynamic planning that makes real-time
delegation decisions based on the specific requirements of each task. Aggregators also manage
budgets on behalf of Collectives.

Aggregators are central to composability, as they enable flexible and dynamic formation of Collectives.
By implementing different collaboration logic, Aggregators allow for the creation of diverse Collective
structures that can adapt to various task requirements, enhancing the overall adaptability and power
of the system.

The Theoriq protocol provides two types of reference Aggregators, each suited to different collabora-
tive scenarios:

* Routers: These are Al-powered Aggregators that specialize in task delegation within a
Collective to the most appropriate member Agents, subject to constraints such as budget
limits.

* Planners: These are more sophisticated Al-powered Aggregators that focus on creating
and maintaining flexible execution plans. Planners can dynamically adjust their strategies
based on the progress of a task, the availability of member Agents, remaining budget, and
changing requirements.

The flexibility of Aggregators allows for complex, hierarchical organization within Collectives.
As shown in Example [I.1] a Collective can employ both a Router and, recursively, a Planner,
demonstrating the potential for layered decision-making processes within a single Collective.

By abstracting the coordination logic into Aggregators, Theoriq enables the creation of increasingly
sophisticated Collectives without requiring changes to individual member Agents. This modular ap-
proach facilitates rapid experimentation with different collaboration strategies and allows Collectives
to evolve their internal dynamics over time, further enhancing the composability of the system.

As is the case for all components in Theoriq, Aggregators are also permissionlessly extensible —
meaning that researchers and developers have the opportunity to innovate and create value, while
users can expect that these important protocol functions will continually benefit from the latest
progress in Collective orchestration.

2.4 Evaluators

Evaluators are specialized Agents dedicated to producing quality signals that contribute to Agents’
reputation and influence their visibility within the protocol. Theoriq introduces two main classes of
Evaluators: Al Evaluators and Human Evaluators, both of which are extensible to support custom
evaluation criteria.

Al Evaluators automatically assess various dimensions of Agent quality, including transparency,
fairness, factuality, and safety compliance. Human Evaluators, on the other hand, capture valuable
subjective and intersubjective feedback from users and community members. The protocol also
supports the creation of custom Evaluators for specific use cases, allowing users to define tailored
evaluation criteria including test suites for their unique needs such as tests for age or audience
appropriateness, bias, and hallucinations.

Evaluators generate Proofs of Contribution, which are cryptographically verifiable certificates ensur-
ing the authenticity and integrity of the evaluation process. These proofs play a vital role in Theoriq’s
meritocratic ecosystem, providing reliable information for Agent selection and optimization. By
offering verifiable and standardized quality metrics, Evaluators enhance both interoperability and
composability, facilitating the discovery and selection of Agents for Collective formation.

The Theoriq protocol offers a new standard in Applied Responsible Al by ensuring that Agent
accountability is made possible through these Evaluators. This approach provides data-driven,
immutable, and verifiable governance mechanisms to address misalignment issues between an
Agent’s intended behavior and its output. These mechanisms are crucial for maintaining transparency,
security, and accountability within the ecosystem, enabling a secure and trustworthy environment for
Al Agent interactions and collaborations.

A more detailed discussion of Evaluators, including their types, roles, and the Proof of Contribution
mechanism, is provided in Section

2.5 Optimizers

Optimizers in Theoriq are specialized Agents designed to enhance the performance of Collectives by
identifying optimal Agent compositions. A key use case for Optimizers is when a user has created an
initial Collective and wants to determine if there is a more optimal membership configuration for a
particular Evaluator, which could be a standard protocol Evaluator or a custom one created by the
user.

Optimizers produce Proofs of Collaboration, providing an on-chain record of a Collective’s member-
ship optimization process, ensuring its authenticity and integrity. The optimization process considers
various factors, including the Evaluator’s criteria, which may be kept confidential to maintain the
integrity of the evaluation.

By leveraging Optimizers, users can automate the process of discovering whether the protocol
contains a different set of Agents that might perform better than the current Collective’s members,
according to their specific criteria. This capability is particularly valuable when users have defined
custom sets of tasks, expected results, and evaluation criteria. Through continuous improvement
of Collective compositions, Optimizers play a key role in enhancing effective composability in the
Theoriq ecosystem.

A more detailed discussion of Optimizers, including their role in Collective improvement and the
Proof of Collaboration mechanism, is provided in Section[z_f}

2.6 Network Infrastructure

The Theoriq protocol leverages a hybrid on-chain/off-chain architecture to optimize for scalability,
cost-efficiency, and security. On-chain components, implemented via smart contracts in the Ethereum
ecosystem, handle critical functions such as Agent registration using non-fungible tokens (NFTs),
token operations, and the anchoring of cryptographic proofs including Proofs of Contribution and
Proofs of Collaboration. This blockchain layer ensures transparency and immutability of critical
protocol artifacts.

Central to the protocol’s off-chain operations are Theoriq Nodes, networked computers operated by
community participants. These Nodes execute core protocol functions, including running Evaluators
and computing Proofs of Contribution and Collaboration. The quality signals generated by Theoriq
Nodes provide transparent, verifiable information crucial for Agent discovery and selection, as well
as informing Optimizer decisions in determining optimal Collective membership. To align incentives
and enhance network security, Node operators stake the Theoriq Token and may earn tokens for
providing services.

Python SQL
Benchmark Benchmark

[

User Web3 Reporter S Data Analyst ST Membership
A Socials Data candidates
Specialist Interpreter
vV Vv News Python Python
[Channel J<_ Router Analyst Planner Specialist Specialist
YWy il V2
A
Database Database
Data o P
Specialist Specialist —
Analyst
Vi1 V2

[Bayesian M Analytics }
"| Optimizer Accuracy
Figure 2: Collective Evaluation and Optimization with Custom Evaluators: This figure expands on Example
[T1] incorporating more of the protocol’s key components. The communication between the User and Agents
occurs within a Channel (Section [2.2). As new Agents are added to Theoriq, they can be evaluated by an
automated Theoriq Evaluator or by user-supplied custom Evaluators, such as a Python Benchmark and an SQL
Benchmark shown here. These custom Evaluators allow users to define specific criteria for assessing Agent
performance. Likewise, in the case of existing Agents being updated from version to version, these updates are
seamlessly integrated into Collectives using custom Evaluators. The fact that the old versions and new versions
of Agents implement the same Behaviors (Section[2.T) and are registered to the same custom Evaluators makes
the updated versions eligible candidates for Collective membership (Membership Candidates). This model
ensures the best version of the Data Analyst Collective at any given time. Using a Bayesian Optimizer (Section
M), Theoriq has an automated process to assess whether new versions improve the performance of the Collective
based on its own custom Evaluator — for example one that takes into consideration analytics accuracy — for a
given Collective’s specific tasks.

3 Evaluators in Theoriq

Building upon the foundational components introduced in the previous section, Evaluators play a
critical role in realizing Theoriq’s vision of effective composability for Al. They produce quality
signals that contribute to an Agent’s reputation, which in turn influences the Agent’s visibility
and utilization within the ecosystem. These quality signals are key to helping users discover the
best-performing Agents for their specific needs and, in future protocol revisions, will facilitate
the automatic self-assembly of high-performing Collectives. The work performed by Evaluators is
encapsulated in a Proof of Contribution — a verifiable encrypted certificate that ensures the authenticity
and integrity of the evaluation process.

Theoriq uses two broad classes of Evaluators: Al Evaluators and Human Evaluators. Both classes
are designed to be extensible, allowing for the creation of use case-specific Evaluators that can be
utilized privately or made widely available within the protocol.

3.1 AI Evaluators

Al Evaluators are themselves Al Agents responsible for automatically and independently evaluating
the behavior of other AI Agents. These Evaluators can assess various dimensions of quality, including
transparency, fairness, factuality, or helpfulness. Al Evaluators can also serve as Safety Evaluators,
detecting illicit behavior such as spamming, phishing, or the generation of illegal content.

The use of Al Agents to supervise other AI Agents is considered a critical research direction in
addressing aspects of the superalignment problem [2]]. As Al systems become more powerful, Theoriq
is designed to ensure they remain aligned with human interests.

At the protocol level, Theoriq is committed to providing a set of standard Al Evaluators that can be
applied at scale to generate automated quality signals for Agents in the Protocol. The set of available
Al Evaluators will grow as the protocol evolves and community contributions are accepted.

Al Evaluation is one of the key processes executed by the Theoriq Nodes. Theoriq Nodes are network
computers operated by community participants. These Nodes are responsible for running critical
operations, such as running Evaluators and computing Proofs of Contribution and Collaboration. The

quality signals produced by these Nodes offer transparent information that users and Agents can
use for discovering and selecting Agents. This information is further utilized by Optimizers when
determining optimal Collective membership.

3.2 Human Evaluators

Human Evaluators encompass the crucial role of users and community members in evaluating the
work of Agents and Collectives. Human feedback can be extremely valuable for providing quality
signals in the protocol. High-quality human feedback can include fact-checks, reviews, preferences,
safety audits, and other forms of subjective feedback. These quality signals can then be used to
characterize an Agent or Collective’s reputation.

When humans provide high-quality feedback on Agents encountering new tasks, this information can
be used by Agents to improve and by the protocol to adjust the Agent’s standing on task-oriented
leaderboards. However, human feedback is notoriously vulnerable to manipulation, such as through
sybil attacks.

AT’s potential usefulness comes with vulnerabilities and Theoriq has adopted mitigation techniques
that combine incentives, user reputation, and automated Al oversight to promote the collection
of high-quality human feedback on interactions with Agents. Specific incentive structures will
include community input, following Web3 best practices and with input from security experts. User
reputation will include signals measurable within the protocol, such as past engagement, activity, and
usage patterns. Al will assess the quality of human feedback, comparing feedback across users and
evaluating authenticity.

At the protocol level, Human Evaluators are a class of Evaluator Agents that hold feedback provided
by humans in order to produce quality signals. They may still use Al for internal processes, such as
feedback summarizing and score tallying. Like AI Evaluators, Human Evaluator execution is carried
out by Theoriq Nodes.

3.3 Custom Evaluators

Recognizing the need for focused, use case-specific quality signals, Theoriq’s Evaluators are de-
signed to be extensible, supporting customization for narrower use cases. This feature is crucial for
enabling users to tailor the protocol to their specific needs and for fostering innovation in evaluation
methodologies.

For example, a user creating a Collective to serve as a market intelligence assistant could develop a
custom Evaluator by defining specific evaluation criteria, creating a set of representative tasks, and
providing expected performance metrics for these tasks. This custom Evaluator can then be registered
in the protocol to codify the user’s specific requirements. We note that custom Evaluators — like any
registered Agent — can be access-controlled at registration.

Users can create dynamic Collectives and optimize them with these custom Evaluators, enabling the
definition of tailored evaluation criteria and leveraging Theoriq’s native Optimizers to identify or build
Collectives suited to specific needs. This capability is particularly valuable in specialized domains or
for users with unique requirements that may not be fully addressed by standard Evaluators.

3.4 Proof of Contribution

The work performed by both AI and Human Evaluators culminates in a Proof of Contribution — a
cryptographically verifiable certificate that ensures the authenticity and integrity of the evaluation
process. This proof comprises an encrypted, off-chain record of the Evaluator’s execution (including
inputs, logs, and outputs) and an on-chain hash of this record, creating a tamper-resistant evaluation
record.

The Proof of Contribution serves a dual purpose. First, it provides users and Agents with verifiable
information that contributes to an Agent’s reputation. Second, and by extension, it helps to safeguard
the optimization process against potential manipulation. While the protocol does not mandate a
universal mechanism for end-to-end evaluation integrity due to the diverse nature of evaluation
sources, it is designed to iteratively incorporate emerging best practices in evaluation integrity as
Web3 technologies evolve.

4 Optimization in Theoriq

Building upon the Evaluator framework discussed in the previous section, optimization is a fundamen-
tal mechanism that uses a combination of Agent reputation and stake to serve as quality signals for
Collective formation. This section explores the role of optimization in Theoriq, introduces Bayesian
optimization as a sample-efficient approach, and outlines future directions for generalizing Collective
membership determination.

4.1 The Role of Optimization in Theoriq

In Theoriq, optimization is the process of determining the optimal composition of a Collective for a
given use case, based on the results of Evaluators, subject to budget constraints, and influenced by
Agent staking. Optimizers, specialized Agents in the protocol, improve Collectives by identifying
optimal Agent compositions, particularly when a user has created an initial custom Collective and
wants to explore more effective configurations.

The objective function used in optimization is defined by a designated Evaluator, which may be
a standard protocol Evaluator or a custom one created by the user. This flexibility allows for
optimization across a diverse range of metrics, including but not limited to subjective quality,
efficiency, cost-effectiveness, fairness, and accuracy. The use of custom Evaluators enables users to
tailor the optimization process to their specific needs and preferences.

Before an Optimizer can run, it must identify (or be supplied with) a set of eligible Membership
Candidates. In general, Agents in a Collective are eligible for substitution by any public Agent from
any Collective that implements the same Behavior interfaces. The exact process an Optimizer uses
to further determine the set of Membership Candidates is specific to each Optimizer. An Optimizer
strategy may be to select the top eligible Agents from published leaderboards and taking direction
from a user.

Figure [2) illustrates this process, showing how new versions of Agents can become Membership
Candidates when they implement the same Behaviors and are registered to the same custom Evaluators
as their predecessors. The figure also demonstrates how a Bayesian Optimizer can use a custom
Evaluator that looks at analytics and accuracy to optimize the Collective’s membership.

Collective optimization is essential for several reasons:

1. For users, it ensures that their experience using the protocol’s Collectives is continually and
automatically improving.

2. For developers, it provides a fair and transparent mechanism to gain visibility and drive
utilization in the protocol.

3. Overall, it creates a competitive environment where Agents must add value to gain exposure
to users.

4.2 Bayesian Optimization for Collective Membership

To provide a sample-efficient reference Optimizer for the protocol, we propose the Bayesian Op-
timization by Tournament of Substitutions (BOTS) algorithm. Sample efficiency is crucial in this
context due to the scaling costs of evaluating Collective configurations. BOTS optimizes Collective
composition by building a predictive model based on past Agent evaluations and user stakes. This
approach allows BOTS to estimate the performance of new configurations without exhaustive testing,
significantly speeding up the process of finding high-performing Collective compositions and doing
so efficiently.

Let M be the set of all Membership Candidates, C' the current Collective, and E : 2™ — R the
Evaluator function, where 2™ denotes the power set of M (i.e., the set of all possible subsets of
M). We employ a Gaussian Process (GP) as a surrogate model for the overall objective function,
which may additionally consider constraints such as budget. The algorithm uses an adjusted Expected
Improvement (EI) acquisition function that incorporates both user stakes and stake diversity:

EI'(C*)=EI(C*)- (1 +log(1+ Sc+)) - (1 + aD¢+) (1)

10

https://en.wikipedia.org/wiki/Gaussian_process

where E1(C*) = E[max(E(C*)—E(C),0)] is the standard Expected Improvement, C* represents
a candidate Collective configuration, C'" is the current best-known Collective configuration, F(C*)
is the Evaluator’s score for candidate Collective C*, S¢+ is the total stake on configuration C*,
D¢+ € [0,1] is a measure of stake diversity (e.g., based on the distribution of stakes among different
users), and « is a scaling factor. The logarithmic term for stakes and linear term for diversity balance
the influence of large stakes while promoting configurations with broader community support. The
Expected Improvement E1(C™*) represents the expected value by which the new candidate Collective
configuration C* will improve upon the current best observed value C'T, taking into account the
uncertainty in the GP model.

The BOTS algorithm iteratively considers potential Collective configurations, including both additions
and removals of Agents, subject to predefined constraints (e.g., budget or size limits). It selects
configurations based on EI’, evaluates them using the Evaluator function, and updates the GP model
with new information — ensuring that Collective performance estimations are continually improving.
This process balances exploration of new configurations with exploitation of known high-performing
ones. The algorithm maintains the best-performing Collective throughout the process and terminates
when no further improvements are found or a maximum number of iterations is reached.

This approach, building upon established Bayesian optimization techniques [1.[7], efficiently navigates
the configuration space while incorporating both the magnitude and diversity of community stakes.
The continuous updating of the GP model allows BOTS to adapt to Theoriq’s dynamic ecosystem,
where new Agents may be introduced and existing ones may evolve. By adapting these techniques
to the unique challenges of optimizing AI Agent Collectives in a decentralized ecosystem, BOTS
provides a robust framework for Collective optimization that is particularly well-suited to Theoriq’s
decentralized nature. A full description of the algorithm and its implementation will be available in a
follow-up to this paper.

4.3 Generalizing Collective Membership

While the current implementation of Theoriq optimizes fixed sets of Agents for Collectives, our
long-term vision includes optimizing membership functions. This generalization will allow for more
dynamic and context-aware Collective formation while still maintaining the crucial concept of Proof
of Collaboration.

A membership function would determine Agent inclusion based on task characteristics, historical
Agent performance on similar tasks, current Agent availability, and user preferences. The process of
shaping this function would itself generate a Proof of Collaboration, encapsulating the methodology
used to determine task similarity metrics, the selection process for high-performing Agents on related
tasks, and the optimization process for the membership function parameters.

This approach will enable Collectives to adapt their composition in real time, responding to changing
needs and contexts. For example, a membership function could dynamically include Agents based on
their past performance handling similar tasks or adjust the Collective’s composition to meet specific
task requirements.

By supporting both direct set optimization and membership function optimization, Theoriq aims
to support a wide range of Aggregator behaviors, from simple routing to complex, context-aware
Collective formation. The Proof of Collaboration in this context would provide a verifiable record of
the function’s determination and supporting evidence.

This forward-looking approach will allow the protocol to evolve with the changing landscape of
Al capabilities and user needs, enabling more effective and efficient Collective formation as the
technology progresses, all while maintaining transparency and accountability through the Proof of
Collaboration mechanism.

4.4 Proof of Collaboration and User Staking

When optimization results are encrypted and anchored on-chain, this constitutes a Proof of Collabo-
ration. This proof serves as a verifiable record of a Collective’s membership determination process,
ensuring its authenticity and integrity.

Proof of Collaboration encompasses:

11

* The optimized Collective membership or membership function C*
* The performance metric E(C*) associated with this membership
* A cryptographic hash of the optimization records and results

* An aggregated measure of user stakes for the constituent Agents

User staking plays a crucial role in the optimization process, particularly in the Bayesian approach.
The integration of stake information into the adjusted acquisition function (E1’) allows the opti-
mization algorithm to consider both objective performance metrics and community sentiment when
determining optimal Collective compositions. This dual input approach, combining technical perfor-
mance and community assessment, is a core tenet in the development and deployment of trustworthy
Al systems.

It is important to note that while user staking influences the optimization process, it does not solely
determine the final outcomes, which are ultimately driven by an objective function to maximize the
Evaluator score. This distinction ensures that Theoriq promotes a meritocracy of Agents.

The Proof of Collaboration with staking represents a novel mechanism for validating and incentivizing
effective agent collaboration in multi-agent systems. It aligns the interests of individual Agent
developers, Collective optimizers, and the broader user community, contributing to the overall health
and efficiency of an Al ecosystem.

S Theoriq Protocol

Theoriq is designed to unlock the potential of composability and interoperability for Collectives of
Al Agents. This section provides insight into the protocol’s architecture, core functionalities, and
integration mechanisms within the broader Web3 ecosystem, with a focus on how Evaluators and
Optimizers are integrated into the system.

5.1 Protocol Architecture

Theoriq’s architecture is rooted in the Ethereum ecosystem, leveraging smart contracts to implement
core functionalities. The protocol employs a hybrid on-chain/off-chain model to optimize for
scalability, cost-efficiency, and security, while ensuring interoperability and composability across
diverse Al agents and frameworks. On-chain components, implemented via smart contracts, handle
Agent registration utilizing non-fungible tokens (NFTs), token operations, and the anchoring of
cryptographic proofs such as Proofs of Contribution and Proofs of Collaboration. These on-chain
elements ensure transparency and immutability of critical protocol artifacts.

Complementing the on-chain layer, off-chain decentralized storage solutions such as [Filecoin, Og,
Arweave, or Space and Time are employed for data-intensive components such as Agent Profiles,
execution logs, and detailed Evaluator results. This approach maintains data integrity through
cryptographic linking to on-chain anchors. The protocol’s API layer facilitates seamless interaction
between the blockchain infrastructure and off-chain Agents, enabling complex operations such as
Agent invocation, configuration, discovery, registration, evaluation, and optimization.

5.2 Agent Development and Deployment

Theoriq’s design philosophy prioritizes flexibility and extensibility in Agent development. The
protocol supports integration with a diverse array of Al models, compute environments, and Agent-
building frameworks such as LangChain, AutoGen, and |CrewAl. Theoriq also provides value-add
Agent-building tools and reference implementations created by its core maintainers. This approach
enables developers to leverage a wide array of cutting-edge Al technologies and tailor their Agents to
specific use cases and performance requirements.

By abstracting the underlying infrastructure complexities, Theoriq enables developers to use their
preferred tooling for Agent-building while providing them with the, until now, missing interoperability
and composability layers and open marketplace. The protocol’s extensible nature also allows for
the creation and integration of custom Evaluators and Optimizers, enabling developers to define and
optimize for specific performance criteria relevant to their use cases.

12

https://filecoin.io/
https://0g.ai/
https://www.arweave.org/
https://www.spaceandtime.io/
https://www.langchain.com/
https://github.com/microsoft/autogen
https://github.com/joaomdmoura/crewAI

5.3 Verifiable Compute

As the Web3 technology stack evolves, Theoriq is committed to the progressive adoption of verifiable
compute within the protocol. The protocol roadmap includes leveraging advancements in zkRollup
technology to migrate more protocol logic on-chain, enhancing transparency and verifiability. While
end-to-end verification of all Agent computations presents significant challenges, particularly for
complex Al models, Theoriq is actively monitoring research and solutions in this domain.

The protocol explores economic security models, such as Byzantine Fault Tolerance (BFT) [3]]
for model inference, as an interim solution for computation verification. This approach creates
strong economic incentives for correct and high-quality inferences while disincentivizing malicious
behavior. Concurrently, Theoriq is monitoring research in advanced cryptographic techniques like
zero-knowledge proofs (ZKPs) and fully homomorphic encryption (FHE), anticipating their future
integration as these technologies mature and become more computationally tractable.

Theoriq is a founding member of the Proof of Inference Consortium, collaborating with projects such
as Hyperbolic, AIGPU, Render, and Wire Network to develop a wide range of solutions for verifiable
compute across the Web3/Al tech stack.

5.4 Ecosystem Integration

Theoriq is designed with interoperability as a core principle, aiming to integrate seamlessly with
the broader Al and Web3 ecosystems. The protocol supports a wide range of Al models, data
providers, and infrastructure providers, allowing users to select optimal tools for their specific use
cases. Integration with Decentralized Physical Infrastructure Networks (DePINs) enables flexible
deployment and management of Al Agents across diverse computational resources.

Furthermore, Theoriq’s architecture facilitates future interoperability with other blockchain networks
and Web3 protocols. This design choice enables seamless data and value transfer across ecosystems,
positioning Theoriq as a potential nexus for Al-driven applications in the decentralized web. The
extensible nature of Evaluators and Optimizers in Theoriq also allows for potential integration with
external evaluation and optimization systems, further enhancing the protocol’s adaptability and
relevance in the evolving Al landscape.

6 Infinity Studio and Infinity Hub

Infinity Studio and Infinity Hub are two applications built upon the Theoriq protocol to provide an
intuitive user interface (UI) and rich functionality for users and developers. These applications are
designed to make it easy for Agent consumers and application developers to interact with Agents,
create custom Agent configurations, and discover new Agents and services within the Theoriq
ecosystem. Both applications also facilitate Agent developers to register and monetize their Agents
within the Theoriq ecosystem. Both Infinity Studio and Infinity Hub leverage Theoriq’s modular
architecture, allowing users to easily mix and match different Agents and components to create
custom Al solutions.

6.1 Infinity Studio

Infinity Studio functions as a user interface dApp (decentralized application), enabling users to
interact with Agents through a chat interface to perform a variety of tasks. The application sup-
ports Session management for Agent interactions, allowing users to engage in conversations with
various Collectives. A key feature of Infinity Studio is the Workspace interface, which lets users
explore complex output objects, including visualizations, code snippets, data representations, and
routing/planning internals.

The platform incorporates dedicated visualizations that offer insights into Agent operations during
request processing. This feature enhances transparency and facilitates a deeper understanding of
Agent behavior and decision-making processes.

Infinity Studio’s architecture allows for customization of the Agent discovery process, tailoring the
user experience to specific requirements. Some features are optional, e.g., Session Management,

13

Session Creation, and the Workspace. These can be configured out of the main view when required
e.g., if a user prefers a simple chat or dialogue interface.

6.2 Infinity Hub

Infinity Hub serves as a marketplace and discovery platform for Agents and associated services within
the Theoriq ecosystem. It provides a user interface for browsing, searching, and interacting with
Agents, as well as tools for developers to register and manage their Agents.

Key features of Infinity Hub include:

» Advanced search and filtering capabilities based on Agent capabilities, performance metrics,
quality signals, and metadata

* Detailed Agent Profile information, including functionality specifications, pricing models,
and historical performance data

* Integration of user reviews and ratings to facilitate quality assessment and reliability evalua-
tion of Agents

* Seamless Agent discovery and interaction mechanisms for Infinity Studio

* Developer toolsets for Agent registration, updates, and performance monitoring

Infinity Hub incorporates a no-code builder interface, offering a convenient method for creating
Agents and Collectives using a selection of Al models, customizable prompts, tools, and data sources.
As the platform evolves, it will support more advanced customization and configuration options.
Development plans include the integration of sophisticated, graph-based Agent building tools.

6.3 Developer Tools and SDK Integration

To facilitate the development and deployment of custom Al solutions, Theoriq will offer an extensive
suite of developer tools. These include Python and JavaScript Software Development Kits (SDKs),
integration with established agent frameworks such as LangChain, and additional resources. These
tools provide streamlined methods for launching chat interfaces integrated with dApps and enable the
efficient development and deployment of custom Al solutions within the Theoriq ecosystem.

6.4 Composability and Extensibility

The modular nature of Theoriq’s architecture underpins the composability and extensibility of both
Infinity Studio and Infinity Hub. By design, the protocol enables developers and users to easily
compose, extend, and integrate various components within the ecosystem. This flexibility is achieved
through simple, extensible Agent interfaces and protocol APIs that foster innovation and creativity,
enhancing both interoperability between diverse Al systems and composability of complex Al
solutions.

Developers can seamlessly create and integrate new Agents, Aggregators, Evaluators, or Optimizers
into the protocol, enabling rapid innovation and adaptation to emerging Al technologies and use
cases. This modular approach allows developers to build on the work of others, creating unique Al
solutions that can be easily shared and monetized within the Theoriq ecosystem.

The composability of the system is exemplified by the ability to enhance existing Collectives with
new, specialized Agents. For instance, a developer could create a new ‘Infographic Generator’
Agent by combining existing Agents specializing in data pre-processing, data visualization, and data
summarization. This new Agent could then be seamlessly integrated into existing Collectives, such as
a ‘Data Analyst’ Collective, enhancing its capabilities and potentially creating new revenue streams
within the ecosystem.

This composability enables the rapid development and deployment of novel Al solutions tailored
to the specific needs and interests of the community. As more specialized Agents are created and
shared within the Theoriq ecosystem, the possibilities for creating powerful, customized Collectives
continue to expand, driving innovation in the burgeoning field of agentic Al.

14

7 Theoriq Token

Central to the Theoriq ecosystem is its native utility token, which serves multiple critical functions.
Primarily, the token acts as an incentive alignment mechanism, a security assurance tool, and it
facilitates governance. Staking functionality allows users and Agent operators to signal the quality
and reliability of Agents, influencing Agent selection in Collectives and contributing to network
security. This staking mechanism creates a dynamic, self-regulating quality assurance system within
the protocol.

The token also underpins the protocol’s governance model, enabling holders to participate in decision-
making processes regarding protocol upgrades, including the introduction of new Evaluator types or
optimization strategies. Furthermore, the token serves as the primary medium of exchange within the
ecosystem, used for network fees, developer compensation, and rewards.

7.1 Token Utility and Functionality

Agent operators and community members can stake tokens on Agents as a signal of quality and trust.
This staking mechanism serves as a form of economic security, incentivizing high-quality service
provision and disincentivizing malicious behavior. The staking model contributes to the overall health
of the protocol by encouraging the maintenance of high-quality services and enabling community
influence on Agent utilization. Node operators also stake the token to secure the protocol.

Agent operators, Node operators, developers, and users may receive token rewards for providing
high-quality services, contributing valuable feedback, or participating in protocol governance.

7.2 Integration with Protocol Operations

The Theoriq Token is integrated into core protocol operations:

* In the BOTS algorithm, token stakes influence the adjusted acquisition function, thereby
influencing Collective optimization processes.

» Token stakes are part of the Proof of Collaboration, serving as an indication of community
confidence in specific Agent configurations.

* The token facilitates value transfer between different components of the ecosystem, enabling
complex interactions between Agents, Collectives, and users.

» Tokens can be used to incentivize participation in Human Evaluator tasks, ensuring a steady
supply of high-quality human feedback for the evaluation process.

Through these functionalities and integrations, the Theoriq Token serves as a crucial element in the
protocol’s operation, governance, and economic model. It creates a self-reinforcing ecosystem that
incentivizes quality contributions, active participation, and the continuous improvement of AI Agents
and Collectives within the Theoriq network.

8 Governance and Safety

Theoriq’s approach to Al safety begins with robust Al governance rooted in high ethical standards,
continuous monitoring and evaluation, and testing and validation, leveraging both AI- and human-
based evaluation to ensure trustworthy AI. All Agents benefit from Theoriq’s built in safety and
quality mechanisms, including spam detection and prevention and a robust set of built-in Evaluators.

We believe that Al Evaluators will play an increasingly critical role in safety over time. Al Evaluators
enable the creation of metrics that detect and discourage non-compliant or malicious behavior.
These automated systems can continuously monitor Agent behavior, providing real-time safety
assessments. Human Evaluators can complement this approach by offering nuanced, context-aware
safety evaluations that can capture subtle ethical considerations or potential misuse scenarios that
may be challenging for Al systems to identify.

Recognizing that current Al systems still exhibit unpredictable behaviour [3]], Theoriq encourages
ongoing research and collaboration with Al safety experts to proactively identify and mitigate risks.

15

Future developments may include the creation of dedicated Safety Evaluators, combining both AI and
human insights, to monitor and assess the safety of Agents and Collectives more comprehensively.

The protocol includes mechanisms for removing Agents that violate community standards or pose
security risks. In an open community, the determination of removal criteria is an important governance
consideration that will include community and expert engagement. Overall, Theoriq aims to create a
secure and trustworthy environment for AI Agent interactions and collaborations, setting a standard
for responsible Al development in decentralized ecosystems. To this end, Theoriq is committed to
an iterative governance model, continuously evolving its approach through collaborative research,
community input, and expert engagement to address the dynamic challenges of decentralized agentic
AL

8.1 Security and Privacy

Theoriq implements a comprehensive approach to security and privacy within its ecosystem. The pro-
tocol incorporates a range of mechanisms to mitigate risks and promote responsible Al development,
including:

1. Staking and slashing mechanisms to discourage malicious behavior
. Robust security audits and bug bounties to identify and address vulnerabilities

. Social dispute resolution and arbitration processes

. Collaboration with leading Al safety researchers and organizations

A W

. Integration of Al and Human Evaluators to continuously assess and improve the safety of
Agents and Collectives

To enable effective governance, Theoriq’s architecture leverages a hybrid model, combining on-chain
and off-chain components to optimize for scalability, cost-efficiency, and data protection. Access
control is managed through Public Key Infrastructure (PKI) and granular permissions, ensuring that
sensitive information remains accessible only to authorized entities.

Data storage utilizes both on-chain storage for immutability and transparency, and decentralized
off-chain solutions for scalability. On-chain storage primarily maintains links to decentralized data
and critical, immutable information, while encrypted Agent activities and user interactions are stored
off-chain. Execution logs are encrypted and stored within Profiles, accessible only to designated key
holders, enabling necessary auditing while maintaining privacy.

As the protocol evolves, Theoriq remains committed to adopting emerging best practices in crypto-
graphic security and privacy-preserving technologies to ensure the highest standards of data protection
and user trust. The protocol may evolve to support multi-signature key scenarios for enhanced security
in specific use cases, such as dispute resolution or safety auditing.

8.2 Community-Driven Safety

The success of Theoriq’s safety efforts ultimately depends on the active engagement and participation
of the community. User feedback and participation play a crucial role in maintaining the safety
and security of the Theoriq ecosystem. Users can report potential vulnerabilities, flag malicious or
unethical behavior, and provide suggestions for improving the platform’s safety measures.

By fostering a culture of transparency, collaboration, and shared responsibility, community members
contribute to the development of safety standards, best practices, and risk mitigation strategies. This
stewardship may involve the community proposing and voting on guidelines for creating Safe Agents,
including requirements such as extensive testing, adherence to ethical principles, and the incorporation
of fail-safe mechanisms. These guidelines can then be integrated into both AI and Human Evaluators,
ensuring that safety standards are consistently applied and monitored across the Theoriq ecosystem.
Additionally, the community may establish a dedicated Safety Council, composed of experts in Al
safety, ethics, and governance, to guide the implementation of these standards and provide ongoing
support to developers and users.

16

9 Conclusion

Theoriq is a novel protocol for creating and managing Al agents that addresses a critical gap in
the current Al ecosystem. By providing effective solutions for interoperability and composability,
Theoriq offers a path to unlocking the potential of collective artificial intelligence.

What sets Theoriq apart is its flexibility and extensibility coupled with a dynamic marketplace
solution. The protocol is designed to evolve with technological progress and user interests.

Core to Theoriq’s vision is its commitment to community-driven innovation. The protocol is designed
to be inherently extensible, inviting contributions from developers, researchers, and Al enthusiasts.
This extensibility also provides users and developers with far greater agency in the ways they choose to
interact with and develop Al Agents. Community members can also participate in various ways, from
developing new Agents and Collectives themselves using Theoriq’s no-code tools, to contributing to
the protocol’s governance. Importantly, community members can also benefit from the protocol’s
token economy by staking on Agents. Staking aligns incentives and fosters a vibrant, collaborative
ecosystem.

We invite you to be part of this exciting journey in shaping the future of decentralized, collective Al.
For more detailed information about Theoriq, its development roadmap, and engagement opportu-
nities, please visit theoriq.ai, join our Discord community, and follow updates on X @TheoriqAl
Together, we can unlock the full potential of Al responsibly.

References

[1] J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International conference on
machine learning, pages 115-123. PMLR, 2013.

[2] C. Burns, P. Izmailov, J. H. Kirchner, B. Baker, L. Gao, L. Aschenbrenner, Y. Chen, A. Ecoffet,
M. Joglekar, J. Leike, et al. Weak-to-strong generalization: Eliciting strong capabilities with
weak supervision. arXiv preprint arXiv:2312.09390, 2023.

[3] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OsDI, volume 99, pages
173-186, 1999.

[4] W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C. Qian, C.-M. Chan, Y. Qin, Y. Lu, R. Xie, et al.
Agentverse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents.
arXiv preprint arXiv:2308.10848, 2023.

[5] J. Clark and D. Amodei. Faulty reward functions in the wild, 2016. Accessed: 2024-06-18.
[6] I. Gabriel et al. The ethics of advanced ai assistants, 2024.

[7] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. P. Cunningham. Bayesian
optimization with inequality constraints. In ICML, volume 2014, pages 937-945, 2014.

[8] S. Hong, X. Zheng, J. Chen, Y. Cheng, J. Wang, C. Zhang, Z. Wang, S. K. S. Yau, Z. Lin,
L. Zhou, et al. Metagpt: Meta programming for multi-agent collaborative framework. arXiv
preprint arXiv:2308.00352, 2023.

[9] T. Masterman, S. Besen, M. Sawtell, and A. Chao. The landscape of emerging ai agent archi-
tectures for reasoning, planning, and tool calling: A survey. arXiv preprint arXiv:2404.11584,
2024.

[10] Andrew Ng. How agents can improve llm performance. DeepLearning.Al, 2023.

[11] X.Zhou, H. Zhu, L. Mathur, R. Zhang, H. Yu, Z. Qi, L.-P. Morency, Y. Bisk, D. Fried, G. Neubig,
and M. Sap. Sotopia: Interactive evaluation for social intelligence in language agents, 2024.

17

http://theoriq.ai
https://discord.com/invite/KDkcmBG4q2
https://twitter.com/TheoriqAI

	Introduction
	Theoriq

	Protocol Architecture: Key Components and Concepts
	Agents and Agent Collectives
	Profiles and Channels
	Aggregators
	Evaluators
	Optimizers
	Network Infrastructure

	Evaluators in Theoriq
	AI Evaluators
	Human Evaluators
	Custom Evaluators
	Proof of Contribution

	Optimization in Theoriq
	The Role of Optimization in Theoriq
	Bayesian Optimization for Collective Membership
	Generalizing Collective Membership
	Proof of Collaboration and User Staking

	Theoriq Protocol
	Protocol Architecture
	Agent Development and Deployment
	Verifiable Compute
	Ecosystem Integration

	Infinity Studio and Infinity Hub
	Infinity Studio
	Infinity Hub
	Developer Tools and SDK Integration
	Composability and Extensibility

	Theoriq Token
	Token Utility and Functionality
	Integration with Protocol Operations

	Governance and Safety
	Security and Privacy
	Community-Driven Safety

	Conclusion

