
Page of 1 10

GitOps is the next step in the evolution of
infrastructure automation, bringing version
control, collaboration, and developer best
practices to the management of
infrastructure.

- Kelsey Hightower

CONTENTS OF THIS PAPER

1. Introduction to GitOps

2. Benefits of GitOps for engineering teams

3. GitOps architecture and tools (with Bonus Case Study)

4. Adopting GitOps for your engineering team

5. Conclusion

Page of 2 10

Introduction to GitOps

GitOps is a modern software development practice that leverages Git as a single
source of truth for managing infrastructure and application deployment.

In GitOps, changes to infrastructure and application configurations are version-
controlled, auditable, and declarative, allowing engineering teams to apply the
time-tested principles of software development to managing cloud
infrastructure.

At its core, GitOps is a declarative, continuous delivery model that automates the
entire deployment process, from code changes to production deployments.
GitOps helps engineering leaders eliminate manual intervention and reduce the
likelihood of human error, resulting in faster, more reliable deployments.

THE ROAD TO GITOPS

In the early days of DevOps, engineering teams used tools like Puppet and Chef
to manage infrastructure as code. However, these tools were often complex and
required significant expertise to use effectively. As containerization and
microservices became more popular, teams began to adopt new tools like
Kubernetes, which offered greater scalability and flexibility.

At the same time, developers were increasingly using Git as a version control
system for managing code changes. This led to the idea of using Git as the single
source of truth for infrastructure changes as well. By defining infrastructure as
code and storing it in Git, teams could easily collaborate, track changes, and roll
back deployments if necessary.

Page of 3 10

1

Benefits of GitOps for engineering teams

The benefits of GitOps go beyond just faster and more reliable deployments.
GitOps also offers improved collaboration and better security for engineering
teams and leaders. By using Git to version control all configuration changes,
teams can easily track who made changes and when they were made, ensuring
that security policies are enforced.

1. Faster deployments: GitOps enables faster deployments by using
infrastructure as code, continuous integration and deployment pipelines,
faster rollbacks, and greater collaboration and transparency. By
automating infrastructure changes and tracking them in Git, teams can
deploy changes quickly and reliably, catching errors early and avoiding
lengthy downtimes.

2. Increased reliability: GitOps ensures that all deployments are consistent
and repeatable, reducing the likelihood of errors and increasing the
reliability of deployments. Since all configurations are version controlled in
Git, it's easy to roll back changes if something goes wrong.

3. Improved Collaboration: GitOps makes it easy for teams to collaborate
on infrastructure and application deployment. By using Git as a single
source of truth, all changes are tracked and audited, making it easy for
team members to collaborate and review changes.

4. Better Security: GitOps can enable better security through version
control, code review, automation, and role-based access control. By
providing greater visibility, control, and automation over infrastructure
changes, GitOps can reduce the risk of security threats and enable quick
responses to any incidents that may occur.

Page of 4 10

2

GitOps architecture and tools (+ CASE STUDY)

A typical GitOps architecture consists of a Git repository, a continuous
deployment tool, and an Infrastructure-as-Code (IaC) tool

The GIT Repository
The Git repository serves as the single source of truth for all infrastructure
and application configuration management. It contains all the configuration
files necessary to deploy and manage the infrastructure resources.
Any changes made to the configuration files are committed to the Git
repository and then deployed automatically to the target environment.

Engineering teams could use any GIT tools like GitHub, GitLab, Bitbucket, etc.

Continuous Deployment Tool
The continuous deployment tool is responsible for monitoring the Git
repository for changes and applying those changes to the target environment
automatically. It ensures that the deployment process is automated and
reliable.

One modern tool that can be used for continuous deployment in a GitOps
architecture is Argo CD. Argo CD is an open-source continuous delivery tool
that provides a web UI and a command-line interface (CLI) to manage and
deploy applications. It uses Git as a source of truth for the desired state of the
system and automatically deploys changes to the target environment.

Argo CD is designed to work with Kubernetes, a popular container
orchestration platform. It provides a declarative approach to deploying
applications to Kubernetes clusters, which makes it well-suited for GitOps.

Infrastructure-as-Code Tool
The Infrastructure-as-Code (IaC) tool is responsible for managing the
infrastructure resources in a cloud provider like AWS or GCP. It allows teams
to define their infrastructure as code, which means that the infrastructure can
be version controlled and managed in the same way as application code.

Page of 5 10

3

One modern tool that can be used for IaC in a GitOps architecture is
Terraform. Terraform is an open-source tool that allows teams to define their
infrastructure as code using a declarative language. It supports a wide range
of cloud providers, including AWS, GCP, and Azure.

Terraform uses the concept of "resources" to represent infrastructure
components like EC2 instances, load balancers, and security groups. These
resources are defined in Terraform configuration files and then deployed to
the target environment automatically.

BETAFLUX CASE STUDY: GITOPS <> KUBERNETES

Problem Statement
Managing a Kubernetes cluster was turning out to be complex and time-
consuming for one of our Fintech clients — requiring manual configuration
changes and frequent updates to infrastructure and application code.

Without proper version control and automation, it was difficult to ensure that
changes were made consistently and with a high level of quality, with an
increased risk of errors and security vulnerabilities. Additionally, without proper
access control, it was difficult for the team to manage who can make changes to
the infrastructure, adding to the security risks.

Enter GitOps
GitOps now allows this engineering team to easily manage and deploy changes
to a Kubernetes cluster using code and automation. By leveraging Git as a
version control system and automating the deployment process, they can ensure
that changes are made quickly and effectively, while also maintaining security
and compliance requirements.

Infrastructure as Code: The infrastructure for the Kubernetes cluster is
defined in code using a tool like Terraform or CloudFormation. The code is
stored in a Git repository that serves as the single source of truth for the
infrastructure.

CI & CD: Changes to the infrastructure code are automatically built, tested,
and deployed using a CI/CD pipeline. The pipeline is triggered whenever a

Page of 6 10

change is pushed to the Git repository, ensuring that changes are deployed
quickly and with a high level of quality.

Kubernetes Configuration Management: The Kubernetes configuration is
defined in code using YAML files, which are stored in the same Git repository
as the infrastructure code. The configuration is automatically deployed to the
Kubernetes cluster using a GitOps tool like Flux or Argo CD.

Version Control: All changes to the infrastructure and configuration code are
tracked in Git, providing a complete history of changes over time. This allows
teams to easily identify and respond to security threats and other issues.

Role-based Access Control (RBAC): Access to the Git repository and
Kubernetes cluster is controlled using RBAC, ensuring that only authorised
users can make changes.

CONCLUSION

By using GitOs to manage their Kubernetes cluster, the team was able to
streamline their deployment process and reduce the time and effort required to
make changes to their infrastructure and application code.

They were able to achieve greater consistency and reliability in their
deployments, reducing the risk of errors and security vulnerabilities.

With the ability to track all changes in Git and use automation to deploy changes
quickly and consistently, the team was able to respond quickly to new
requirements and ensure that their infrastructure was always up-to-date and
secure.

Additionally, by using RBAC to control access to the Git repository and
Kubernetes cluster, the team was able to maintain a high level of security and
ensure that only authorised users could make changes.

Overall, the use of GitOps allowed the team to improve the quality, security and
reliability of their Kubernetes Custer, while also increasing their efficiency and
agility.

Page of 7 10

Adopting GitOps for your engineering team

Adopting a new process like GitOps can be a significant shift for teams that are
used to making small, manual changes to infrastructure. Here are some steps
that can help ease the transition —

1. Start small: Begin by identifying a small project or service to pilot the
GitOps process. This will help the team to become familiar with the
workflow and identify any issues or challenges that need to be addressed.

2. Define all infrastructure as config files: Ensure all the infrastructure
you want to manage via GitOps for this project is described in IaC config
files. Ideally, these files should be written in declarative code. This means
you describe the end state of what you want rather than instructions on
how to get there.
If you’re already using IaC and you want to automate it with GitOps, start
by adding your infrastructure code to the Git repository you plan to use
for GitOps.

3. Document what you can’t automate: In case you have some legacy
environments that need manual attention. Document these instances so
that they’re accounted for.

4. Outline a code review and merge request process: It’s important to
familiarise GitOps teams with Git and code reviews. Some teams already
use a Git repository as a place to store config code, but don’t use
features like merge requests. For teams new to GitOps, another option is
to set up “optional reviews" rather than set up "required blocking
reviews".

5. Consider multiple environments: It’s good practice to have multiple
environments. One example you might follow is the DTAP environments:
Development, Test, Acceptance, and Production. Code can be rolled out
to the Development or Test environment, after which you can test

Page of 8 10

4

whether the services are still available and working as expected.
If they are, you can further roll out your changes to the next environments

After you have rolled out your code into your environments, it’s important
to keep your code in sync with your running services. Once you know
there’s a difference between your system and your configuration, you can
fix either one. A solution to this problem is to use immutable images, such
as containers so that it’s less likely to have differences.

6. Make CI/CD the access point to resources: One practice that
encourages a GitOps workflow, and reduces manual changes to cloud
infrastructure, is to make your CI/CD tooling the access point for cloud
resources. Of course, having this access during initial development can
help teams write their code and you may need incidental access for
various reasons. However, switching your mindset from "access unless”
to "access because" can help in adopting and following the GitOps
process.

CONCLUSION

In summary, GitOps is a powerful methodology for managing and deploying
cloud infrastructure and applications efficiently and securely. However, it can be
a complex process that requires expertise and resources.

Betaflux can guide you through the process of implementing GitOps to help you
achieve faster delivery times, improved collaboration, reduced risks, and
increased compliance in your cloud environment.

If you're interested in exploring how our cloud consulting services can help you
leverage GitOps and accelerate your cloud transformation journey, please reach
out to us via the link to schedule a free discovery call to understand how we can
help.

Page of 9 10

5

https://betaflux.co/contact-us

Page of 10 10

	GitOps is the next step in the evolution of infrastructure automation, bringing version control, collaboration, and developer best practices to the management of infrastructure.
	CONTENTS OF THIS PAPER
	Introduction to GitOps
	THE ROAD TO GITOPS
	Benefits of GitOps for engineering teams
	GitOps architecture and tools (+ CASE STUDY)
	BETAFLUX CASE STUDY: GITOPS <> KUBERNETES
	Adopting GitOps for your engineering team
	CONCLUSION

