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You will have a better understanding, and 
will continue learning how to frame, the 
typical Primary Aims in a SMART

You will learn about key statistical 
considerations in Primary Aim analyses in a 
SMART

You will learn how to interpret the output for 
the different Primary Aim Analyses in a 
SMART

Learning Objectives
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Illustrative Example: ADHD SMART Study (PI: 
Pelham)

Prepare (again) for a third primary aim analysis 
by
(d): Estimate and compare the mean outcome 
under two of the embedded AIs using weighted 
least squares

Use a single weighted-and-replicated least 
squares regression approach capable of address 
any/all three primary aims in a SMART

Outline
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SMART Example ADHD Study PI: Pelham
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Adaptive Intervention 1

At the beginning of the school year Stage 1 = {MED};
then, every month, starting week 8
if response status = {NR}, 
then, Stage 2 = {AUGMENT};
else if response status = {R},
then, Continue Stage 1

SMART Example 4 Embedded Adaptive Interventions PI: Pelham

Adaptive Intervention 2

At the beginning of the school year Stage 1 = {BMOD};
then, every month, starting week 8
if response status = {NR}, 
then, Stage 2 = {AUGMENT};
else if response status = {R},
then, Continue Stage 1

Adaptive Intervention 3

At the beginning of the school year Stage 1 = {MED};
then, every month, starting week 8
if response status = {NR}, 
then, Stage 2 = {INTENSIFY};
else if response status = {R},
then, Continue Stage 1

Adaptive Intervention 4

At the beginning of the school year Stage 1 = {BMOD};
then, every month, starting week 8
if response status = {NR}, 
then, Stage 2 = {INTENSIFY};
else if response status = {R},
then, Continue Stage 1
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Recall Primary Aim 3 Compare 2 Embedded AIs PI: Pelham

Adaptive Intervention 1

At the beginning of the school year
Stage 1 = {MED};
then, every month, starting week 8
if response status = {NR}, 
then, Stage 2 = {AUGMENT};
else if response status = {R},
then, Continue Stage 1

Adaptive Intervention 2

At the beginning of the school year
Stage 1 = {BMOD};
then, every month, starting week 8
if response status = {NR}, 
then, Stage 2 = {AUGMENT};
else if response status = {R},
then, Continue Stage 1

VS
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This Aim is a Comparison of the Mean Outcome under AI#1 vs. 
the Mean Outcome of AI#2
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We Know How to Account for Imbalance in Non-Responders Following 
AI#1

• Assign W = weight = 2 to responders to MED à 2* ½ = 1
• Assign W = weight = 4 to non-responders to MED à 4* ¼ =1

• Then we take W-weighted mean of sample who ended up in circles A+B.
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A Similar Approach (and SAS Code) Can be Used to Obtain Mean Under 
AI #2

• Assign W = weight = 2 to responders to BMOD à 2* ½ = 1
• Assign W = weight = 4 to non-responders to BMOD à 4* ¼ =1

• Then we take W-weighted mean of sample who ended up in circles D+E.
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Results for Estimated Mean Outcome had All 
Participants Followed AI#2 (BMOD, AUGMENT)

Analysis Of GEE Parameter Estimates
Parameter Estimate Standard Error Pr > |Z|
Intercept 3.149 0.1477 <.0001

Z1 0.6836 0.1477 0.0001

Contrast Estimate Results

Label
Mean 

Estimate
95% Confidence Limits Standard

Error Pr > ChiSqLower Upper
Mean Y under AI #2 
(BMOD, AUGMENT)

3.833 3.363 4.303 0.24 <.0001

Interpretation: The estimated mean school performance score for 
children consistent with AI #2 is ~3.83 (95% CI: (3.36, 4.30)). 

Results are from simulated data.
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An Intuitive [Yet Less Efficient] Approach to Comparing AI#1 vs. AI#2
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An Intuitive [Yet Less Efficient] Approach to Comparing AI#1 vs. AI#2

data dat7; set dat1;
Z1=-1; 

if A1*R=-1 then Z1=1; 
if (1-A1)*(1-R)*A2=-2 then Z1=1;  

Z2=-1; 
if A1*R= 1 then Z2=1; 
if (1+A1)*(1-R)*A2=-2 then Z2=1;

W=2*R + 4*(1-R); 
run;

data dat8; 
set dat7; if Z1=1 or Z2=1; 

run;

Create Z1 –> indicator for 
whether or not the person 
is consistent with AI#1 

This analysis is with simulated data.
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An Intuitive [Yet Less Efficient] Approach to Comparing AI#1 vs. AI#2

data dat7; set dat1;
Z1=-1; 

if A1*R=-1 then Z1=1; 
if (1-A1)*(1-R)*A2=-2 then Z1=1;  

Z2=-1; 
if A1*R= 1 then Z2=1; 
if (1+A1)*(1-R)*A2=-2 then Z2=1;

W=2*R + 4*(1-R); 
run;

data dat8; 
set dat7; if Z1=1 or Z2=1; 

run;

Create Z2 –> indicator for 
whether or not the person 
is consistent with AI#2 

This analysis is with simulated data.
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An Intuitive [Yet Less Efficient] Approach to Comparing AI#1 vs. AI#2

data dat7; set dat1;
Z1=-1; 

if A1*R=-1 then Z1=1; 
if (1-A1)*(1-R)*A2=-2 then Z1=1;  

Z2=-1; 
if A1*R= 1 then Z2=1; 
if (1+A1)*(1-R)*A2=-2 then Z2=1;

W=2*R + 4*(1-R); 
run;

data dat8; 
set dat7; if Z1=1 or Z2=1; 

run;

Assigned Weights

This analysis is with simulated data.
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An Intuitive [Yet Less Efficient] Approach to Comparing AI#1 vs. AI#2

data dat7; set dat1;
Z1=-1; 

if A1*R=-1 then Z1=1; 
if (1-A1)*(1-R)*A2=-2 then Z1=1;  

Z2=-1; 
if A1*R= 1 then Z2=1; 
if (1+A1)*(1-R)*A2=-2 then Z2=1;

W=2*R + 4*(1-R); 
run;

data dat8; 
set dat7; if Z1=1 or Z2=1; 

run;

Delete data from participants not 
consistent with either AI#1 or AI#2

This analysis is with simulated data.
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An Intuitive [Yet Less Efficient] Approach to Comparing AI#1 vs. AI#2

The Regression and Contrast Coding Logic:

Recall:  
Z1 is now an indicator for whether the person is consistent with AI#1 or with AI#2: 
à Z1 = 1  =  AI#1
à Z1 = -1 = AI#2

To compare the 2 AIs, we can fit the Model:    
𝑌 = 𝛽! + 𝛽"𝑍" + 𝑒

Overall Mean Y under AI#1   = 𝜷𝟎 + 𝜷𝟏×𝟏
Overall Mean Y under AI#2   = 𝜷𝟎 + 𝜷𝟏×−𝟏
Diff Between AIs = 𝜷𝟎 + 𝜷𝟏 − 𝜷𝟎 − 𝜷𝟏 = 𝟐𝜷𝟏

This analysis is with simulated data.
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An Intuitive [Yet Less Efficient] Approach to Comparing AI#1 vs. AI#2

proc genmod data = dat8;
class id; 
model Y = Z1; 
scwgt W;
repeated subject = id / type = ind;
estimate 'Mean Y AI#1(MED, Add BMOD)' intercept 1 Z1  1;
estimate 'Mean Y AI#2(BMOD, Add MED)' intercept 1 Z1 -1;
estimate 'Diff: AI#1 - AI#2' Z1  2;

run;

Mean Y under AI#1   = 𝜷𝟎 + 𝜷𝟏×𝟏
Mean Y under AI#2   = 𝜷𝟎 + 𝜷𝟏×−𝟏
Diff Between AIs        = 𝟐𝜷𝟏

This analysis is with simulated data.
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An Intuitive [Yet Less Efficient] Approach to Comparing AI#1 vs. AI#2

Analysis Of GEE Parameter Estimates

Parameter Estimate
Standard 

Error Pr > |Z|
Intercept 3.25 0.1613 <.0001

Z1 -0.583 0.1613 0.0003

Contrast Estimate Results

Label
Mean 

Estimate
95% Confidence Limits Standard

Error Pr > ChiSqLower Upper
Mean Y under AI #1 
(MED, AUGMENT)

2.666 2.242 3.0892 0.216 <.0001

Mean Y under AI #2 
(BMOD, AUGMENT)

3.833 3.363 4.3028 0.240 <.0001

Diff: AI#1 – AI#2 -1.167 -1.799 -0.5347 0.323 0.0003

Notice SE
This analysis is with simulated data.
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An Intuitive Approach to Comparing AI#1 vs. AI#2

proc genmod data = dat8;
class id; 
model Y = Z1    Y0c oddc; 
scwgt w;
repeated subject = id / type = ind;
estimate 'Mean Y AI#1(MED, AUGMENT)' intercept 1 Z1  1;
estimate 'Mean Y AI#2(BMOD,AUGMENT)' intercept 1 Z1 -1;
estimate 'Diff: AI#1 - AI#2' Z1  2;

run;

Adding baseline control 
covariates (mean centered)
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An Intuitive Approach to Comparing AI#1 vs. AI#2

Notice SE: Slightly smaller compared to the 
analysis without control covariates

Analysis Of GEE Parameter Estimates

Parameter Estimate Standard Error Pr > |Z|
Intercept 3.26 0.1148 <.0001

Z1 -0.45 0.1160 <.0001

Y0 2.13 0.2464 <.0001

oddc 0.09 0.2511 0.715

Contrast Estimate Results

Label
Mean 

Estimate

95% Confidence Limits
Standard

Error Pr > ChiSqLower Upper
Mean Y under AI #1 2.806 2.5198 3.0927 0.146 <.0001
Mean Y under AI #2 3.713 3.3491 4.0787 0.186 <.0001
Diff: AI#1 – AI#2 -0.907 -1.3776 -0.4376 0.240 0.0001

This analysis is with simulated data.



Illustrative Example: ADHD SMART Study (PI: 
Pelham)

Prepare (again) for a third primary aim analysis 
by
(d): Estimate and compare the mean outcome 
under two of the embedded AIs using weighted 
least squares

Use a single weighted-and-replicated least 
squares regression approach capable of address 
any/all three primary aims in a SMART
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What about a regression to compare AI#1 (MED, add BMOD) vs…
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…AI #2 (BMOD, Add MED) vs…
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…AI #3 (MED, INTENSIFY) vs…
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…AI#4 (BMOD, INTENSIFY), all in one swoop!
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Notice that AI#1 and AI#3 (start MED) share responders (box A)
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Notice that AI#1 and AI#3 (start MED) share responders (box A)
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Similarly: Notice that AI#2 and AI#4 (start BMOD) share responders (box D)
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Similarly: Notice that AI#2 and AI#4 (start BMOD) share responders (box D)
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So, what’s going on?

In the ADHD SMART, all responders are consistent with two AIs

• Responders to MED are part of AI#1 and AI#3

• Responders to BMOD are part of AI#2 and AI#4

If our goal is to estimate the mean outcome under all AIs 
simultaneously, we must share responders somehow.

• But how?
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What do we do?

• We “trick” the software into using the responders twice

• We do this by replicating responders:

• W=2 to responders and W=4 to non-responders

• Robust standard errors account for weighting and the fact that 
responders are “re-used”. No cheating here!

• Create 2 observations for each responder
• We assign ½ of them A2 = 1, the other ½ A2 = -1
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Weighting and Replicating Serve Different Purposes

Weighting 
• Accounts for over/underrepresentation of responders or non-responders
• Because of the randomization scheme

Replicating
• Allows us to use standard software to do simultaneous estimation and comparison
• Because participants are consistent with more than one AI
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SAS code for Replication-and-Weighting to Compare 
Means Under All Four AIs

data dat9; set dat1;
if R=1 then do;

ob = 1; A2 =-1; weight = 2; output; 
ob = 2; A2 = 1; weight = 2; output; 
end;

else if R=0 then do;
ob = 1; weight = 4; output;
end;

run;
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Replicated Data
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After Replication-and-Weighting, the SAS code for the 
weighted regression

The Regression and Contrast Coding Logic:

Recall:  
- Our goal is to compare all 4 embedded AIs
- We have 2 indicators: A1, A2

A1 =  1  ->  BMOD 
A1 = -1  ->  MED
A2 =  1  ->  INTENSIFY  
A2 = -1  ->  AUGMENT 

To compare all 4 AIs, we can fit the following Model:    
𝑌 = 𝛽! + 𝛽"𝐴" + 𝛽#𝐴# + 𝛽$𝐴"𝐴# + 𝑒
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After Replication-and-Weighting, the SAS code for the 
weighted regression

The Regression and Contrast Coding Logic:

𝑌 = 𝛽# + 𝛽$𝐴$ + 𝛽%𝐴% + 𝛽&𝐴$𝐴% + 𝑒

Mean Y under AI#1 (MED, AUGMENT)    = 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑 −𝟏 −𝟏
Mean Y under AI#2 (BMOD, AUGMENT) = 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑(𝟏)(−𝟏)
Mean Y under AI#3 (MED, INTENSIFY)   = 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑(−𝟏)(𝟏)
Mean Y under AI#4 (BMOD, INTENSIFY) = 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑(𝟏)(𝟏)

A1 =  1  ->  BMOD 
A1 = -1  ->  MED
A2 =  1  ->  INTENSIFY  
A2 = -1  ->  AUGMENT 
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After Replication-and-Weighting, the SAS code for the 
weighted regression

The Regression and Contrast Coding Logic:

𝑌 = 𝛽! + 𝛽"𝐴" + 𝛽#𝐴# + 𝛽$𝐴"𝐴# + 𝑒

Mean Y under AI#1 (-1, -1) = 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑 −𝟏 −𝟏
Mean Y under AI#2 (1, -1) = 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑(𝟏)(−𝟏)
Mean Y under AI#3 (-1, 1)  = 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑(−𝟏)(𝟏)
Mean Y under AI#4 (1, 1) = 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑(𝟏)(𝟏)

A1 =  1  ->  BMOD 
A1 = -1  ->  MED
A2 =  1  ->  INTENSIFY  
A2 = -1  ->  AUGMENT 
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After Replication-and-Weighting, the SAS code for the 
weighted regression

The Regression and Contrast Coding Logic:

𝑌 = 𝛽! + 𝛽"𝐴" + 𝛽#𝐴# + 𝛽$𝐴"𝐴# + 𝑒

Mean Y under AI#1 (-1, -1) = 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑 −𝟏 −𝟏
Mean Y under AI#2 (1, -1) = 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑(𝟏)(−𝟏)
Mean Y under AI#3 (-1, 1)  = 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑(−𝟏)(𝟏)
Mean Y under AI#4 (1, 1) = 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑(𝟏)(𝟏)

Diff AI#1 – AI#2 = 𝜷𝟎 − 𝜷𝟏 − 𝜷𝟐 + 𝜷𝟑 − 𝜷𝟎 + 𝜷𝟏 − 𝜷𝟐 − 𝜷𝟑 = −𝟐𝜷𝟏 + 𝟐𝜷𝟑
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After Replication-and-Weighting, the SAS code for the 
weighted regression
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After Replication-and-Weighting, the SAS code for the 
weighted regression
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Comparing Mean Outcomes for All AIs Simultaneously
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But wait, there’s more…

Weighted-and-replicated regression can improve 
statistical precision (power)!
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Replicated-and-Weighted Regression is More 
Efficient Statistically
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Results for Weighted-and-Replicated Regression:
Comparing Mean Outcome for all AIs Simultaneously
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Results for Weighted-and-Replicated Regression:
Comparing Mean Outcome for all AIs Simultaneously
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