Primary Aim Analyses in a SMART Part II

Learning Objectives

You will have a better understanding, and will continue learning how to frame, the typical Primary Aims in a SMART

You will learn about key statistical considerations in Primary Aim analyses in a SMART

You will learn how to interpret the output for the different Primary Aim Analyses in a SMART

Outline

Illustrative Example: ADHD SMART Study (PI: Pelham)

Prepare (again) for a third primary aim analysis by
(d): Estimate and compare the mean outcome under two of the embedded Als using weighted least squares

Use a single weighted-and-replicated least squares regression approach capable of address any/all three primary aims in a SMART

Outline

Illustrative Example: ADHD SMART Study (PI: Pelham)

Prepare (again) for a third primary aim analysis by
(d): Estimate and compare the mean outcome under two of the embedded Als using weighted least squares

Use a single weighted-and-replicated least squares regression approach capable of address any/all three primary aims in a SMART

Adaptive Intervention 1

At the beginning of the school year Stage $1=\{$ MED $\}$; then, every month, starting week 8
if response status $=\{N R\}$, then, Stage 2 = \{AUGMENT\};
else if response status $=\{R\}$,
then, Continue Stage 1

Adaptive Intervention 3

At the beginning of the school year Stage $1=\{$ MED $\}$;
then, every month, starting week 8
if response status $=\{N R\}$,
then, Stage 2 = \{INTENSIFY\};
else if response status $=\{R\}$,
then, Continue Stage 1

Adaptive Intervention 2

At the beginning of the school year Stage $1=\{B M O D\}$; then, every month, starting week 8
if response status $=\{N R\}$, then, Stage $2=\{$ AUGMENT $\} ;$ else if response status $=\{R\}$, then, Continue Stage 1

Adaptive Intervention 4

At the beginning of the school year Stage $1=\{B M O D\} ;$
then, every month, starting week 8
if response status $=\{N R\}$,
then, Stage 2 = \{INTENSIFY\};
else if response status $=\{R\}$,
then, Continue Stage 1

Adaptive Intervention 1
At the beginning of the school year Stage 1 = \{MED\};
then, every month, starting week 8
if response status $=\{N R\}$, then, Stage 2 = $\{$ AUGMENT\}; else if response status $=\{R\}$, then, Continue Stage 1

Adaptive Intervention 2
At the beginning of the school year
Stage 1 = \{BMOD\};
then, every month, starting week 8
if response status $=\{N R\}$, then, Stage 2 = $\{$ AUGMENT\}; else if response status $=\{R\}$, then, Continue Stage 1

This Aim is a Comparison of the Mean Outcome under AI\#1 vs. the Mean Outcome of Al\#2

We Know How to Account for Imbalance in Non-Responders Following

Al\#1

- Assign $\mathrm{W}=$ weight $=2$ to responders to $\mathrm{MED} \rightarrow 2 \star 1 / 2=1$
- Assign $\mathrm{W}=$ weight $=4$ to non-responders to $\mathrm{MED} \rightarrow 4 \star 1 / 4=1$
- Then we take W-weighted mean of sample who ended up in circles $A+B$.

A Similar Approach (and SAS Code) Can be Used to Obtain Mean Under Al \#2

- Assign $\mathrm{W}=$ weight $=2$ to responders to $\mathrm{BMOD} \rightarrow 2 * 1 / 2=1$
- Assign W = weight = 4 to non-responders to BMOD \rightarrow 4* ¼ =1
- Then we take W-weighted mean of sample who ended up in circles D+E.

Results for Estimated Mean Outcome had All

Participants Followed AI\#2 (BMOD, AUGMENT)

Analysis Of GEE Parameter Estimates

Parameter	Estimate	Standard Error	Pr $>\mid \mathbf{Z \|}$
Intercept	3.149	0.1477	$<.0001$
Z1	0.6836	0.1477	0.0001

Contrast Estimate Results

	Mean	95% Confidence Limits		Standard	
Label		Lower	Upper	Error	Pr $>$ ChiSq
Mean Y under AI \#2	3.833	3.363	4.303	0.24	$<.0001$
(BMOD, AUGMENT)					

Outline

Illustrative Example: ADHD SMART Study (PI: Pelham)

Prepare (again) for a third primary aim analysis by
(d): Estimate and compare the mean outcome under two of the embedded Als using weighted least squares

Use a single weighted-and-replicated least
squares regression approach capable of address any/all three primary aims in a SMART

An Intuitive [Yet Less Efficient] Approach to Comparing Al\#1 vs. Al\#2

An Intuitive [Yet Less Efficient] Approach to Comparing Al\#1 vs. Al\#2

```
data dat7; set dat1;
    Z1=-1;
            if A1*R=-1 then Z1=1;
                            if (1-A1)*(1-R)*A2=-2 then Z1=1;
Z2=-1;
            if A1*R=1 then Z2=1;
            if (1+A1)*(1-R)*A2=-2 then Z2=1;
W=2*R + 4*(1-R);
run;
data dat8;
set dat7; if Z1=1 or Z2=1;
run;
```


An Intuitive [Yet Less Efficient] Approach to Comparing Al\#1 vs. Al\#2

```
data dat7; set dat1;
    Z1=-1;
    if A1*R=-1 then Z1=1;
    Z2=-1; < if (1-A1)*(1-R)*A2=-2 then Z1=1; }\quad\begin{array}{ll}{\mathrm{ Create Z2 }->\mathrm{ indicator for }}\\{\mathrm{ whether or not the person }}\\{\mathrm{ if A1*R=1 then Z2=1; }}&{\begin{array}{l}{\mathrm{ is consistent with Al#2 }}\end{array}}\\{\hline}
    W=2*R + 4*(1-R);
run;
```

data dat8;
set dat7; if $\mathrm{Z1}=1$ or $\mathrm{Z2}=1$;
run;

An Intuitive [Yet Less Efficient] Approach to Comparing AI\#1 vs. AI\#2

data dat7; set dat1;
Z1=-1;

> if $A 1 * R=-1$ then $Z 1=1$;
> if $(1-A 1)^{*}(1-R)^{*} A 2=-2$ then $Z 1=1$;

Z2=-1;
if $A 1 * R=1$ then $Z 2=1$;
if $(1+A 1)^{*}(1-R)^{*} A 2=-2$ then $Z 2=1$;
$W=2 * R+4 *(1-R) ;$
Assigned Weights
run;
data dat8;
set dat7; if $\mathrm{Z1}=1$ or $\mathrm{Z2}=1$;
run;

An Intuitive [Yet Less Efficient] Approach to Comparing Al\#1 vs. Al\#2

```
data dat7; set dat1;
    Z1=-1;
    if A1*R=-1 then Z1=1;
    if (1-A1)*(1-R)*A2=-2 then Z1=1;
    Z2=-1;
    if A1*R=1 then Z2=1;
    if (1+A1)*(1-R)*A2=-2 then Z2=1;
    W=2*R + 4*(1-R);
run;
```

data dat8;
set dat7; if Z1=1 or $\mathrm{Z2}=1$;
run;

An Intuitive [Yet Less Efficient] Approach to Comparing Al\#1 vs. Al\#2

The Regression and Contrast Coding Logic:
Recall:
Z_{1} is now an indicator for whether the person is consistent with AI\#1 or with AI\#2:
$\rightarrow Z_{1}=1=\mathrm{Al} \mathrm{\# 1}$
$\rightarrow \mathrm{Z}_{1}=-1=\mathrm{Al} \mathrm{\# 2}$

To compare the 2 Als, we can fit the Model:

$$
Y=\beta_{0}+\beta_{1} Z_{1}+e
$$

Overall Mean Y under Al\#1 $=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}} \times \mathbf{1}$
Overall Mean Y under Al\#2 $=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}} \times-1$
Diff Between Als $=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{1}-\left(\boldsymbol{\beta}_{\mathbf{0}}-\boldsymbol{\beta}_{1}\right)=2 \boldsymbol{\beta}_{1}$

An Intuitive [Yet Less Efficient] Approach to Comparing Al\#1 vs. Al\#2

```
proc genmod data = dat8;
    class id;
    model Y = Z1;
    scwgt W;
    repeated subject = id / type = ind;
    estimate 'Mean Y Al#1(MED, Add BMOD)' intercept 1 Z1 1;
    estimate 'Mean Y Al#2(BMOD, Add MED)' intercept 1 Z1-1;
    estimate 'Diff: Al#1 - Al#2'' Z1 2;
run;
```

Mean Y under Al\#1	$=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}} \times \mathbf{1}$
Mean Y under Al\#2	$=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}} \times-\mathbf{1}$
Diff Between Als	$=2 \boldsymbol{\beta}_{\mathbf{1}}$

An Intuitive [Yet Less Efficient] Approach to Comparing Al\#1 vs. Al\#2

Analysis Of GEE Parameter Estimates

	Standard Parameter		
Estimate	Error	$\operatorname{Pr}>\|\mathbf{Z}\|$	
Intercept	3.25	0.1613	$<.0001$
Z1	-0.583	0.1613	0.0003

Contrast Estimate Results					
Label	Mean Estimate	95\% Confidence Limits		Standard Error	Pr > ChiSq
		Lower	Upper		
Mean Y under AI \#1 (MED, AUGMENT)	2.666	2.242	3.0892	0.216	<. 0001
Mean Y under AI \#2 (BMOD, AUGMENT)	3.833	3.363	4.3028	0.240	<. 0001
Diff: Al\#1 - Al\#2	-1.167	-1.799	-0.5347	0.323	0.0003

Notice SE

An Intuitive Approach to Comparing Al\#1 vs. Al\#2

```
proc genmod data = dat8;
    class id;
    model Y = Z1 YOc oddc;
    scwgt w;
    repeated subject = id / type = ind;
    estimate 'Mean Y AI#1(MED, AUGMENT)' intercept 1 Z1 1;
    estimate 'Mean Y Al#2(BMOD,AUGMENT)' intercept 1 Z1-1;
    estimate 'Diff: Al#1 - Al#2' Z1 2;
run;
```


An Intuitive Approach to Comparing Al\#1 vs. Al\#2

Analysis Of GEE Parameter Estimates

Parameter	Estimate	Standard Error	Pr $>\|Z\|$
Intercept	3.26	0.1148	$<.0001$
Z1	-0.45	0.1160	$<.0001$
Y0	2.13	0.2464	$<.0001$
oddc	0.09	0.2511	0.715

Contrast Estimate Results					
Label	Mean Estimate	95\% Confidence Limits		Standard Error	Pr > ChiSq
		Lower	Upper		
Mean Y under Al \#1	2.806	2.5198	3.0927	0.146	<. 0001
Mean Y under Al \#2	3.713	3.3491	4.0787	0.186	<. 0001
Diff: Al\#1-Al\#2	-0.907	-1.3776	-0.4376	0.240	0.0001
1					
This analysis is with simulated data.		Notice SE: Slightly smaller compared to the analysis without control covariates			

Outline

Illustrative Example: ADHD SMART Study (PI: Pelham)

Prepare (again) for a third primary aim analysis by
(d): Estimate and compare the mean outcome under two of the embedded Als using weighted least squares

Use a single weighted-and-replicated least squares regression approach capable of address any/all three primary aims in a SMART

What about a regression to compare Al\#1 (MED, add BMOD) vs...

...AI \#2 (BMOD, Add MED) vs...

...AI \#3 (MED, INTENSIFY) vs...

...AI\#4 (BMOD, INTENSIFY), all in one swoop!

Notice that AI\#1 and AI\#3 (start MED) share responders (box A)

Notice that AI\#1 and AI\#3 (start MED) share responders (box A)

Similarly: Notice that Al\#2 and AI\#4 (start BMOD) share responders (box D)

Similarly: Notice that Al\#2 and AI\#4 (start BMOD) share responders (box D)

So, what's going on?

In the ADHD SMART, all responders are consistent with two Als

- Responders to MED are part of AI\#1 and AI\#3
- Responders to BMOD are part of AI\#2 and AI\#4

If our goal is to estimate the mean outcome under all Als simultaneously, we must share responders somehow.

- But how?

What do we do?

- We "trick" the software into using the responders twice
- We do this by replicating responders:
- Create 2 observations for each responder
- We assign $1 / 2$ of them $\mathrm{A} 2=1$, the other $1 / 2 \mathrm{~A} 2=-1$
- W=2 to responders and W=4 to non-responders
- Robust standard errors account for weighting and the fact that responders are "re-used". No cheating here!

Weighting and Replicating Serve Different Purposes

Weighting

- Accounts for over/underrepresentation of responders or non-responders
- Because of the randomization scheme

Replicating

- Allows us to use standard software to do simultaneous estimation and comparison
- Because participants are consistent with more than one AI

SAS code for Replication-and-Weighting to Compare Means Under All Four Als

```
data dat9; set dat1;
if R=1 then do;
    ob = 1; A2 =-1; weight = 2; output;
    ob = 2; A2 = 1; weight = 2; output;
    end;
    else if R=0 then do;
    ob = 1; weight = 4; output;
    end;
run;
```


Replicated Data

Obs	ID	A1	R	A2	Y	o11c	o12c	o13c	o14c	ob	weight
45	32	1	1	-1	5	-0.35333	-2.73889	-0.31333	0.19333	1	2
46	32	1	1	1	5	-0.35333	-2.73889	-0.31333	0.19333	2	2
47	33	1	0			0.64667	-1.07820	0.68667	0.19333	1	4
48	34	1	0	1				-0.31333	0.19333	1	4
49	35	1	0	-1	5	Respo	ers are	-0.31333	0.19333	1	4
50	36	-1	0	1	1		-	-0.31333	0.19333	1	4
51	37	-1	1	-1	1	-0.35333	0.99556	-0.31333	0.19333	1	2
52	37	-1	1	1	1	-0.35333	0.99556	-0.31333	0.19333	2	2
53	38	-1	0	-1	3	-0.35333	0.14034	0.68667	-0.80667	1	4
54	39	-1			3	0.64667	1.64983	0.68667	0.19333	1	2
55	39	-1	1		3	0.64667	1.64983	0.68667	0.19333	2	2
Non-Responders aren't!											

After Replication-and-Weighting, the SAS code for the weighted regression

The Regression and Contrast Coding Logic:
Recall:

- Our goal is to compare all 4 embedded Als
- We have 2 indicators: $\mathrm{A}_{1}, \mathrm{~A}_{2}$

$$
\begin{array}{ll}
\mathrm{A}_{1}=1 & -> \\
\mathrm{A}_{1}=-1 & ->\text { MED } \\
\hline \mathrm{A}_{2}=1 & ->\text { INTENSIFY } \\
\mathrm{A}_{2}=-1 & ->\text { AUGMENT }
\end{array}
$$

To compare all 4 Als, we can fit the following Model:

$$
Y=\beta_{0}+\beta_{1} A_{1}+\beta_{2} A_{2}+\beta_{3} A_{1} A_{2}+e
$$

After Replication-and-Weighting, the SAS code for the weighted regression

The Regression and Contrast Coding Logic:

$$
Y=\beta_{0}+\beta_{1} A_{1}+\beta_{2} A_{2}+\beta_{3} A_{1} A_{2}+e
$$

$$
\begin{aligned}
& \mathrm{A}_{1}=1->\text { BMOD } \\
& \mathrm{A}_{1}=-1 \text {-> MED } \\
& \hline \mathrm{A}_{2}=1 \text {-> INTENSIFY } \\
& \mathrm{A}_{2}=-1 \text {-> AUGMENT }
\end{aligned}
$$

After Replication-and-Weighting, the SAS code for the weighted regression

The Regression and Contrast Coding Logic:

$$
Y=\beta_{0}+\beta_{1} A_{1}+\beta_{2} A_{2}+\beta_{3} A_{1} A_{2}+e
$$

$$
\begin{aligned}
& \mathrm{A}_{1}=1->\text { BMOD } \\
& \mathrm{A}_{1}=-1 \text {-> MED } \\
& \hline \mathrm{A}_{2}=1 \text {-> INTENSIFY } \\
& \mathrm{A}_{2}=-1 \text {-> AUGMENT }
\end{aligned}
$$

After Replication-and-Weighting, the SAS code for the weighted regression

The Regression and Contrast Coding Logic:

$$
Y=\beta_{0}+\beta_{1} A_{1}+\beta_{2} A_{2}+\beta_{3} A_{1} A_{2}+e
$$

$$
\begin{aligned}
& \text { Mean } Y \text { under Al\#1 }(-1,-1)=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}}(-\mathbf{1})+\boldsymbol{\beta}_{\mathbf{2}}(-\mathbf{1})+\boldsymbol{\beta}_{\mathbf{3}}(-\mathbf{1})(-\mathbf{1}) \\
& \text { Mean } Y \text { under Al\#2 }(1,-1)=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}}(\mathbf{1})+\boldsymbol{\beta}_{\mathbf{2}}(-\mathbf{1})+\boldsymbol{\beta}_{\mathbf{3}}(\mathbf{1})(-\mathbf{1}) \\
& \text { Mean } Y \text { under Al\#3 }(-1,1)=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{1}(-\mathbb{1})+\boldsymbol{\beta}_{2}(\mathbf{1})+\boldsymbol{\beta}_{3}(-\mathbf{1})(\mathbb{1}) \\
& \text { Mean } Y \text { under Al\#4 }(1,1)=\beta_{0}+\boldsymbol{\beta}_{1}(\mathbb{1})+\boldsymbol{\beta}_{2}(\mathbb{1})+\boldsymbol{\beta}_{3}(\mathbb{1})(\mathbb{1})
\end{aligned}
$$

$$
\text { Diff Al\#1 - Al\#2 }=\left(\boldsymbol{\beta}_{\mathbf{0}}-\boldsymbol{\beta}_{\mathbf{1}}-\boldsymbol{\beta}_{\mathbf{2}}+\boldsymbol{\beta}_{3}\right)-\left(\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}}-\boldsymbol{\beta}_{\mathbf{2}}-\boldsymbol{\beta}_{3}\right)=-2 \boldsymbol{\beta}_{1}+2 \boldsymbol{\beta}_{3}
$$

After Replication-and-Weighting, the SAS code for the weighted regression

```
proc genmod data = dat9;
class id;
model Y = A1 A2 A1*A2;
scwgt weight;
repeated subject = id / type = ind;
estimate 'MeanY:A|#1(MED,AUGMENT)' int 1 A1 -1 A2 -1 A1*A2 1;
estimate 'MeanY:Al#2(BMOD,AUGMENT)' int 1 A1 1 A2 -1 A1*A2 -1;
estimate 'MeanY:Al#3(MED,INTENSFY)' int 1 A1 -1 A2 1 A1*A2 -1;
estimate 'MeanY:Al#4(BMOD,INTNSFY)' int 1 A1 1 A2 1 A1*A2 1;
estimate' Diff: Al#1 - Al#2 ' int 0 A1 -2 A2 0 A1*A2 2;
estimate' Diff: Al#1 - Al#3 ' int 0 A1 0A2 -2 A1*A2 2;
estimate' Diff: Al#1 - Al#4 ' int 0 A1 -2 A2 -2 A1*A2 0; *etc...;
run;
```


After Replication-and-Weighting, the SAS code for the weighted regression

```
proc genmod data = dat9;
class id;
model Y = A1 A2 A1*A2;
scwgt weight;
repeated subject = id / type = ind;
estimate 'MeanY:A|#1(MED,AUGMENT)' int 1 A1 -1 A2 -1 A1*A2 1;
estimate 'MeanY:Al#2(BMOD,AUGMENT)' int 1 A1 1 A2 -1 A1*A2 -1;
estimate 'MeanY:Al#3(MED,INTENSFY)' int 1 A1 -1 A2 1 A1*A2 -1;
```



```
estimate' Diff: Al#1 - Al#2 'int 0 A1 -2 A2 0 A1*A2 2;
estimate ' Diff: Al#1 - Al#3 ' int 0 A1 0 A2 -2 A1*A2 2;
estimate' Diff: Al#1 - Al#4 ' int 0 A1 -2 A2 -2 A1*A2 0; *etc...;
run;
```


Comparing Mean Outcomes for All Als Simultaneously

Contrast Estimate Results				
Label	Mean Estimate	95\% Confidence Limits		Standard Error
		Lower	Upper	
Mean Y under Al \#1 (MED, AUGMENT)	2.643	2.5305	3.1992	0.1706
Mean Y under Al \#2 (BMOD, AUGMENT)	3.798	3.1643	3.8490	0.1747
Mean Y under Al \#3 (MED, INTENSIFY)	2.342	2.4644	3.1145	0.1658
Mean Y under Al \#4 (BMOD, INTENSIFY)	3.208	2.2515	3.0552	0.2050
Diff: Al\#1-Al\#2	-1.16	-1.799	-0.5347	0.323

[^0]This analysis is with simulated data.

But wait, there's more...

Weighted-and-replicated regression can improve statistical precision (power)!

Replicated-and-Weighted Regression is More Efficient Statistically

```
proc genmod data = dat9;
class id;
model Y = A1 A2 A1*A2
scwgt weight;
repeated subject = id / type = ind;
```

```
estimate 'MeanY:Al#1(MED,AUGMENT)' int 1 A1-1 A2 -1 A1*A2 1;
```

estimate 'MeanY:Al\#1(MED,AUGMENT)' int 1 A1-1 A2 -1 A1*A2 1;
estimate 'MeanY:Al\#2(BMOD,AUGMENT)' int 1 A1 1 A2 -1 A1*A2 -1;
estimate 'MeanY:Al\#2(BMOD,AUGMENT)' int 1 A1 1 A2 -1 A1*A2 -1;
estimate 'MeanY:Al\#3(MED,INTENSFY)' int 1 A1 -1 A2 1 A1*A2 -1;
estimate 'MeanY:Al\#3(MED,INTENSFY)' int 1 A1 -1 A2 1 A1*A2 -1;
estimate 'MeanY:Al\#4(BMOD,INTNSFY)' int 1 A1 1 A2 1A1*A2 1;
estimate 'MeanY:Al\#4(BMOD,INTNSFY)' int 1 A1 1 A2 1A1*A2 1;
estimate' Diff: Al\#1 - Al\#2 'int 0 A1-2 A2 0 A1*A2 2;
estimate' Diff: Al\#1 - Al\#2 'int 0 A1-2 A2 0 A1*A2 2;
estimate' Diff: Al\#1 - Al\#3 ' int 0 A1 0 A2 -2 A1*A2 2;
estimate' Diff: Al\#1 - Al\#3 ' int 0 A1 0 A2 -2 A1*A2 2;
estimate' Diff: Al\#1 - Al\#4 ' int OA1-2 A2 -2 A1*A2 0; *etc...;
estimate' Diff: Al\#1 - Al\#4 ' int OA1-2 A2 -2 A1*A2 0; *etc...;
run;

```

Improve power: Adjusting for baseline covariates that are associated with outcome leads to more efficient estimates (lower standard error = more power = smaller p-value).

\section*{Results for Weighted-and-Replicated Regression: Comparing Mean Outcome for all Als Simultaneously}

> \begin{tabular}{l}  Improved efficiency: Adjusting for baseline covariates resulted \\ in lower standard error and tighter confidence intervals. Point \\ estimates remained about the same, as expected. \\ \hline \end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Contrast Fstimate Results} \\
\hline \multirow[b]{2}{*}{Label} & \multirow[t]{2}{*}{\begin{tabular}{l}
Mean \\
Estimate
\end{tabular}} & \multicolumn{2}{|l|}{95\% Confidence Limits} & \multirow[t]{2}{*}{Standard Error} \\
\hline & & Lower & Upper & \\
\hline Mean Y under Al \#1 (MED, AUGMENT) & 2.780 & 2.58 & 3.1733 & 0.1496 \\
\hline Mean Y under Al \#2 (BMOD, AUGMENT) & 3.750 & 3.0689 & 7018 & 0.1614 \\
\hline Mean Y under AI \#3 (MED, INTENSIFY) & 2.311 & 2.5163 & & 0.1524 \\
\hline Mean Y under Al \#4 (BMOD, INTENSIFY) & 3.212 & 2.3596 & 3.1081 & . 1909 \\
\hline Diff: Al\#1-Al\#2 & -0.97 & -0.9401 & -0.0704 & 0.2219 \\
\hline
\end{tabular}

SE in unadjusted model was 0.323

\section*{Results for Weighted-and-Replicated Regression: Comparing Mean Outcome for all Als Simultaneously}

\section*{Improved efficiency: Adjusting for baseline covariates resulted in lower standard error and tighter confidence intervals. Point estimates remained about the same, as expected.}


\section*{Citations}
- Murphy, S. A. (2005). An experimental design for the development of adaptive intervention. Statistics in Medicine, 24, 455-1481.
- Nahum-Shani, I., Qian, M., Almirall, D., Pelham, W. E., Gnagy, B., Fabiano, G. A., ... \& Murphy, S. A. (2012). Experimental design and primary data analysis methods for comparing adaptive interventions. Psychological methods, 17(4), 457.

Q\&A```


[^0]:    NOTE: We get the exact same results as before when we compared Al\#1 vs Al\#2, but now we can simultaneously make inference for all the comparisons.

