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Learning Objectives

You will have a better understanding, and
will continue learning how to frame, the
typical Primary Aims in a SMART

You will learn about key statistical

considerations in Primary Aim analyses in a
SMART

You will learn how to interpret the output for
the different Primary Aim Analyses in a
SMART




Outline

lllustrative Example: ADHD SMART Study (PI:
Pelham)

Prepare (again) for a third primary aim analysis
by

(d): Estimate and compare the mean outcome
under two of the embedded Als using weighted
least squares

Use a single weighted-and-replicated least
squares regression approach capable of address
any/all three primary aims in a SMART
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Outline

lllustrative Example: ADHD SMART Study (PI:
Pelham)




SMART Example ADHD Study PI: Pelham

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions

rr—— G

[ o O
=R ez

rr—— D

=N
=Z R ez ©

BEGINNING OF SCHOOL YEAR WEEK 8 END SCHOOL YEAR

X o oO—O aPc

BMOD




SMART Example 4 Embedded Adaptive Interventions PI: Pelham

Adaptive Intervention 1 Adaptive Intervention 2

At the beginning of the school year Stage 1 = {MED}; At the beginning of the school year Stage 1 = {BMOD};
then, every month, starting week 8 then, every month, starting week 8

if response status = {NR}, if response status = {NR},

then, Stage 2 = {AUGMENT}; then, Stage 2 = {AUGMENT};

else if response status = {R}, else if response status = {R},

then, Continue Stage 1 then, Continue Stage 1

Adaptive Intervention 3 Adaptive Intervention 4

At the beginning of the school year Stage 1 = {MED}; At the beginning of the school year Stage 1 = {BMOD};
then, every month, starting week 8 then, every month, starting week 8

if response status = {NR}, if response status = {NR},

then, Stage 2 = {INTENSIFY}; then, Stage 2 = {INTENSIFY};

else if response status = {R}, else if response status = {R},

then, Continue Stage 1 then, Continue Stage 1



Recall Primary Aim3 Compare 2 Embedded Als PI: Pelham

Adaptive Intervention 1 Adaptive Intervention 2

At the beginning of the school year At the beginning of the school year
Stage 1 = {MED}; Stage 1 = {BMOD};

then, every month, starting week 8 then, every month, starting week 8
if response status = {NR}, if response status = {NR},

then, Stage 2 = {AUGMENT}; then, Stage 2 = {AUGMENT};

else if response status = {R}, else if response status = {R},

then, Continue Stage 1 then, Continue Stage 1




This Aim is a Comparison of the Mean Outcome under Al#1 vs.
the Mean Outcome of Al#2

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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We Know How to Account for Imbalance in Non-Responders Following
Al#1

responters g coninie Q€

A==
SRR ammmm-

 Assign W = weight = 2 to responders to MED - 2* 1, = 1
» Assign W = weight = 4 to non-responders to MED - 4* 4 =1

» Then we take W-weighted mean of sample who ended up in circles A+B.



A Similar Approach (and SAS Code) Can be Used to Obtain Mean Under
Al #2

Responders - conirwe ___JMC)

» Assign W = weight = 2 to responders to BMOD = 2* %, =1
» Assign W = weight = 4 to non-responders to BMOD - 4* % =1

» Then we take W-weighted mean of sample who ended up in circles D+E.
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Results for Estimated Mean Outcome had All
Participants Followed Al#2 (BMOD, AUGMENT)

Analysis Of GEE Parameter Estimates

Parameter Estimate Standard Error Pr > |Z]
Intercept 3.149 0.1477 <.0001
Z1 0.6836 0.1477 0.0001

Results are from simulated data.

Contrast Estimate Results

Mean 95% Confidence Limits Standard
Label Estimate Lower Upper Error Pr > ChiSq
Mean Y under Al #2 3.833 3.363 4.303 0.24 <.0001

(BMOD, AUGMENT)

Interpretation: The estimated mean school performance score for
11 children consistent with Al #2 is ~3.83 (95% CI: (3.36, 4.30)).




Outline

Prepare (again) for a third primary aim analysis
by

(d): Estimate and compare the mean outcome
under two of the embedded Als using weighted
least squares

12



An Intuitive [Yet Less Efficient] Approach to Comparing Al#1 vs. Al#2

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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An Intuitive [Yet Less Efficient] Approach to Comparing Al#1 vs. Al#2

data dat7; set datl; Create Z1 —> indicator for
/1=-1; whether or not the person
if A1*R=-1 then Z1=1; is consistent with Al#1

if (1-A1)*(1-R)*A2=-2 then Z1=1;
[2=-1;
if A1*R=1 then Z2=1;
if (1+A1)*(1-R)*A2=-2 then Z2=1;
W=2*R + 4*(1-R);
run;

data dat8;
set dat7; if Z1=1 or Z2=1;
run;

aad
14 This analysis is with simulated data. C



An Intuitive [Yet Less Efficient] Approach to Comparing Al#1 vs. Al#2

data dat7; set datl;
/1=-1;
if A1*R=-1 then Z1=1;
it (1-A1)*(1-R)*A2=-2 then Z1=1; Create Z2 —> indicator for
£2=-1; whether or not the person

if A1*R=1 then Z2=1; is consistent with Al#2
if (1+A1)*(1-R)*A2=-2 then Z2=1;

W=2*R + 4*(1-R);
run;

data dat8;
set dat7; if Z1=1 or Z2=1;
run;

aad
15 This analysis is with simulated data. C



An Intuitive [Yet Less Efficient] Approach to Comparing Al#1 vs. Al#2

data dat7; set datl;
/1=-1;
if A1*R=-1 then Z1=1;
if (1-A1)*(1-R)*A2=-2 then Z1=1;
[2=-1;
if A1*R=1 then Z2=1;
if (1+A1)*(1-R)*A2=-2 then Z2=1;

W=2*R + 4*(1-R); Assigned Weights
un;

r

data dat8;
set dat7; if Z1=1 or Z2=1;
run;

aad
16 This analysis is with simulated data. C



An Intuitive [Yet Less Efficient] Approach to Comparing Al#1 vs. Al#2

data dat7; set datl;
/1=-1;
if A1*R=-1 then Z1=1;
if (1-A1)*(1-R)*A2=-2 then Z1=1;
[2=-1;
if A1*R=1 then Z2=1;
if (1+A1)*(1-R)*A2=-2 then Z2=1;

W=2*R + 4*(1-R);

run;
Delete data from participants not
t .
data da 8’. consistent with either Al#1 or Al#2
set dat7; if Z1=1 or Z2=1;
run;

aad
17 This analysis is with simulated data. C



An Intuitive [Yet Less Efficient] Approach to Comparing Al#1 vs. Al#2

The Regression and Contrast Coding Logic:

Recall:

Z11s now an indicator for whether the person is consistent with Al#1 or with Al#2:
2> Z1=1 = Al#1
2> Z1=-1=Al#2

To compare the 2 Als, we can fit the Model:
Y =0y+ [1Z; + €
Overall Mean Y under Al#1 =B, + f1X1
Overall Mean Y under Al#2 =By + f1X—1
Diff Between Als =y, + 1 — (Bo — B1) = 254

aad
18 This analysis is with simulated data. C




An Intuitive [Yet Less Efficient] Approach to Comparing Al#1 vs. Al#2

proc genmod data = dat8;
class id;
model Y =71;
scwgt W;
repeated subject = id / type = ind;
estimate 'Mean Y Al#1(MED, Add BMOD)' intercept 171 1;
estimate 'Mean Y Al#2(BMOD, Add MED)' intercept 171 -1;
estimate 'Diff: Al#1 - Al#2' /1 2;
run;

Mean Y under Al#1 =, + B X1
Mean Y under Al#2 =B, + 1 X—1

Diff Between Als =204 dd 3
19 This analysis is with simulated data. C




An Intuitive [Yet Less Efficient] Approach to Comparing Al#1 vs. Al#2

Analysis Of GEE Parameter Estimates

Standard
Parameter Estimate Error Pr > |Z]
Intercept 3.25 0.1613 <.0001
Z1 -0.583 0.1613 0.0003

Contrast Estimate Results

95% Confidence Limits Standard

Mean
Label Estimate Lower Upper Error Pr > ChiSq
Mean Y under Al #1 2.666 2.242 3.0892 0.216 <.0001
(MED, AUGMENT)
Mean Y under Al #2 3.833 3.363 4.3028 0.240 <.0001

(BMOD, AUGMENT)

Diff: A1 — A2 4167 1799 -0.5347 0.0003
This analysis is with simulated data. m
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An Intuitive Approach to Comparing Al#1 vs. Al#2

proc genmod data = dat8;
class id: Adding baseline control

del Y = 71 [Y0c odd / covariates (mean centered)
model Y = c oddc;

SCWEt w;

repeated subject = id / type = ind;
estimate 'Mean Y Al#1(MED, AUGMENT)' intercept 171 1;
estimate '‘Mean Y Al#2(BMOD,AUGMENT)' intercept 1 71 -1;
estimate 'Diff: Al#1 - Al#2’ /1 2;

run;

, gdc



An Intuitive Approach to Comparing Al#1 vs. Al#2

Analysis Of GEE Parameter Estimates

Parameter Estimate  Standard Error Pr > |Z]
Intercept 3.26 0.1148 <.0001
Z1 -0.45 0.1160 <.0001
YO 2.13 0.2464 <.0001
oddc 0.09 0.2511 0.715

Contrast Estimate Results

95% Confidence Limits

Mean Standard
Label Estimate Lower Upper Error Pr > ChiSqg
Mean Y under Al#1  2.806 2.5198 3.0927 0.146 <.0001
Mean Y under Al#2  3.713 3.3491 4.0787 0.186 <.0001

Diff: Al#1 — Al#2 -0.907  -1.3776 0.4376 0.0001

analysis without control covariates




Outline

Use a single weighted-and-replicated least
squares regression approach capable of address
any/all three primary aims in a SMART
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What about a regression to compare Al#1 (MED, add BMOD) vs...

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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..Al #2 (BMOD, Add MED) vs...

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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..Al #3 (MED, INTENSIFY) vs...

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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..Al#4 (BMOD, INTENSIFY), all in one swoop!

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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Notice that Al#1 and Al#3 (start MED) share responders (box A)

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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Notice that Al#1 and Al#3 (start MED) share responders (box A)

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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Similarly: Notice that Al#2 and Al#4 (start BMOD) share responders (box D)

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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Similarly: Notice that Al#2 and Al#4 (start BMOD) share responders (box D)

First-stage Intervention Embedded tailoring variable Second-stage Intervention Exp. Conditions
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So, what's going on?

In the ADHD SMART, all responders are consistent with two Als
* Responders to MED are part of Al#1 and Al#3
* Responders to BMOD are part of Al#2 and Al#4

If our goal is to estimate the mean outcome under all Als
simultaneously, we must share responders somehow.

 But how?

; gdc



What do we do?

« We “trick” the software into using the responders twice

* We do this by replicating responders:

* Create 2 observations for each responder
* We assign % of them A2 =1, the other 2 A2 = -1

« W=2to responders and W=4 to non-responders

* Robust standard errors account for weighting and the fact that
responders are “re-used”. No cheating here!

) gdc



Weighting and Replicating Serve Different Purposes

Weighting
« Accounts for over/underrepresentation of responders or non-responders
 Because of the randomization scheme

Replicating
 Allows us to use standard software to do simultaneous estimation and comparison
» Because participants are consistent with more than one Al

) gdc



SAS code for Replication-and-Weighting to Compare
Means Under All Four Als

data dat9; set datl;

if R=1 then do;
ob =1; A2 =-1; weight = 2; output;
ob =2; A2 =1; weight = 2; output;
end;

else if R=0 then do:;

ob = 1; weight = 4; output;
end;

run;

: gdc



Replicated Data

36

Obs | ID| A1 | R| A2 |Y ollc
—0.35333

ol2c
—2.73889

ol3c
—0.31333

ol4c
0.19333

—0.35333

Responders are
replicated!

53/ 38| 1] 0] 1] 3]|-035333 ]| 014034 | 068667 | 080667 | 1] 4

—2.73389

Non-Responders

aren’t!

—0.31333

0.19333




After Replication-and-Weighting, the SAS code for the
weighted regression

The Regression and Contrast Coding Logic:

Recall:

- Our goal is to compare all 4 embedded Als
- We have 2 indicators: A1, A2
A= 1 -> BMOD
Ar=-1 -> MED
A2= 1 -> INTENSIFY
A2 =-1 -=> AUGMENT

To compare all 4 Als, we can fit the following Model:

Y =By + 141 + 24, + 34,4, + e dd BC

37



After Replication-and-Weighting, the SAS code for the
weighted regression

The Regression and Contrast Coding Logic:

Y = [o + (141 + 242 + 3414, t e

Mean Y under Al#1
Mean Y under Al#2
Mean Y under Al#3
Mean Y under Al#4

MED, AUGMENT) =, + B1(—1) + By(—1) + B3(—1)(—1)
BMOD, AUGMENT) = B, + B1(1) + B5(—1) + B3(1)(—1)
MED, INTENSIFY) =B, + B1(—1) + B,(1) + B3(—1)(1)
BMOD, INTENSIFY) = 8, + (1) + B, (1) + B(1)(1)

AN N N N

Ar= 1 -> BMOD

Ar=-1 -> MED

A= 1 -> INTENSIFY dda
38 Az=-1 -> AUGMENT C



After Replication-and-Weighting, the SAS code for the

weighted regression

The Regression and Contrast Coding Logic:

Y = [o + (141 + 242 + 3414, t e

Mean Y under Al#1 (-1, -1) =By + B1(—1) + Bo(—1) + B3(—1)(—1)

Mean Y under Al#2 (1, -1) =By + B1(1) + B,(—1) + B3(1)(—1)

Mean Y under Al#3 ( 1, 1) — ﬁo + Bl( 1) + ﬁz(l) + ﬁg( 1)(1)
Mean Y under A4 (1. 1) = B + (1) + B, (1) + Ba(1)(1)

39
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After Replication-and-Weighting, the SAS code for the
weighted regression

The Regression and Contrast Coding Logic:

Y = [o + (141 + 242 + 3414, t e

Mean Y under Al#1 (-1, -1) = By + f1(—1) + B2(—1) + B3(—1)(—1)
Mean Y under Al#2 (1, -1) = By + f1(1) + B,(—1) + B3(1)(—1)
Mean Y under Al#3 (-1, 1) =By + B1(—1) + B,(1) + B3(—1)(1)
Mean Y under Al#4 (1, 1)=F, + (1) + (1) + B5(1)(1)

Diff Al#1 — Al#2 = (Bo —B1 — B2+ B3) — (Bo + B1— B2 — B3) = —2p1 + 23

; gdc



After Replication-and-Weighting, the SAS code for the
weighted regression

proc genmod data = dat9;

class id;

model Y = A1 A2 A1*A2;

scwgt weight;

repeated subject = id / type = ind;

. gdc



After Replication-and-Weighting, the SAS code for the
weighted regression

42

proc genmod data = dat9;

class id;

model Y = A1 A2 A1*A2;

scwegt weight;

Diff Al#1 — AI#2 = —28, + 28,

repeated subject = id / type = ind;

estimate ‘MeanY:A
estimate ‘MeanY:A
estimate ‘MeanY:A

~n ‘NMoar

estimate * Diff: A
estimate * Diff: A
estimate ‘ Diff: A
run;

* M\ ITT/

#1-A
#1 - A

#H2
3
4

#1(MED,AUGMENT)’ int 1 A1 -1 A2 -1 A1*A2 1;
#2(BMOD,AUGMENT) int 1 A1 1 A2 -1 A1*A2 -1;
#3(MED,INTENSFY) int 1 A1-1A2 1A1*A2-1;

RAND INTA 7 in A A A 1%k A

"int 0A1-2 A2 0 A1*A2 2;
"int 0 A1l 0A2 -2 A1*A2 2;
"int 0 A1-2 A2 -2 A1*A2 0; *etc...;

gdc



Comparing Mean Outcomes for All Als Simultaneously

43

Contrast Estimate Results

Mean 95% Confidence Limits Standard
Label Estimate Lower Upper Error
Mean Y under Al #1 (MED, AUGMENT)  2.643 2.5305 3.1992 0.1706
Mean Y under Al #2 (BMOD, AUGMENT) 3.798 3.1643 3.8490 0.1747
Mean Y under Al #3 (MED, INTENSIFY) 2.342 2.4644 3.1145 0.1658
Mean Y under Al #4 (BMOD, INTENSIFY) 3.208 2.2515 3.0552 0.2050

Diff: Al#1 — Al#2

NOTE: We get the exact same results as before when we
compared Al#1 vs Al#2, but now we can simultaneously
make inference for all the comparisons.

-1.799

This analysis is with simulated data.

-0.5347

0.323

gdc
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But wait, there's more...

Weighted-and-replicated regression can improve
statistical precision (power)!

gdc



Replicated-and-Weighted Regression is More
Efficient Statistically

Improve power: Adjusting for
baseline covariates that are

proc genmod data = dat9; associated with outcome leads
class id; to more efficient estimates
model Y = A1 A2 A1*A2 (lower standard error = more
scwgt weight; power = smaller p-value).

repeated subject = id / type = ind;

45
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Results for Weighted-and-Replicated Regression:
Comparing Mean Outcome for all Als Simultaneously

Improved efficiency: Adjusting for baseline covariates resulted

in lower standard error and tighter confidence intervals. Point
estimates remained about the same, as expected.

ContrastEstimate Results

Mean 95% Confidence Limits Standard
Label Estimate Lower Upper Error
Mean Y under Al #1 (MED, AUGMENT)  2.780 2.5865 3.1733 0.1496
Mean Y under Al #2 (BMOD, AUGMENT) 3.750 3.0689 3,7018 0.1614
Mean Y under Al #3 (MED, INTENSIFY)  2.311 2.5163 3.11 0.1524
Mean Y under Al #4 (BMOD, INTENSIFY) 3.212 2.3596 3.1081 0.1909
Diff: Al#1 — Al#2 -0.97 -0.9401 -0.0704 0.2219

SE in unadjusted model was 0.323 dd 2

46



Results for Weighted-and-Replicated Regression:
Comparing Mean Outcome for all Als Simultaneously

Improved efficiency: Adjusting for baseline covariates resulted

in lower standard error and tighter confidence intervals. Point
estimates remained about the same, as expected.

Contra timate Results

95% Confidence Limits

Mean Standard
Label Estimate Lower Upper Error

Mean Y under Al #1 (MED, AUGMENT)  2.8801 2.586° 3.1733 0.1496
Mean Y under Al #2 (BMOD, AUGMENT) 3.3854 3.0689 3,7018 0.1614
Mean Y under Al #3 (MED, INTENSIFY)  2.8149 2.5163 3.11 0.1524
Mean Y under Al #4 (BMOD, INTENSIFY) 2.7338 2.3596 3.1081 0 1909
Diff: Al#1 — Al#2 -0.5053 -0.9401 -0.0704 0.2219

- aWately N 417 01767

SE in unadjusted model was 0.2442

SE in adjusted model but including only data dd 3
47 from participants in Al#1 and Al#2 was 0.2244 This analysis is with simulated data. C
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