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Learn about one of the most innovative 
Secondary Aims of a SMART

• Constructing a proposal for a “more 
deeply-tailored” adaptive intervention.

Learn a new analysis method to use 
data from a SMART to propose a more 
deeply-tailored AI

• The method is familiar and easy-to-use

Learning Goals
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What is a more deeply-tailored adaptive 
intervention?

SMART secondary aims about more deeply-
tailored adaptive interventions

How can moderators analyses help 
construct a more deeply-tailored adaptive 
intervention?

Q-Learning: An extension of moderators 
analysis for data from a SMART 

Outline
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What is a more deeply tailored AI?

• A more deeply tailored AI is an adaptive intervention 
that 
• includes additional tailoring variables or decision rules
• and leads to better outcomes

• For example,  an AI that tailors second-stage treatment 
based on response status and other known variables

4



Recall the 4 embedded AIs in the ADHD SMART
Using if-then statements
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AI #2:
Start with BMOD; 
if non-responder AUGMENT, 
else CONTINUE

AI #1:
Start with MED; 
if non-responder AUGMENT, 
else CONTINUE

AI #3:
Start with MED; 
if non-responder INTENSIFY, 
else CONTINUE

AI #4:
Start with BMOD; 
if non-responder INTENSIFY, 
else CONTINUE



Let’s focus on embedded AI#2
Using if-then statements
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AI #2:
Start with BMOD; 
if non-responder AUGMENT, 
else CONTINUE



7

BMOD  
Augment  

Continue  Responders

Non-Responders

Let’s focus on AI#2
Using a schematic
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Non-Responders

Let’s focus on AI#2
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An AI that is more 
deeply tailored than AI#2
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No
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Continue  Responders
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Let’s focus on AI#2
Using a schematic

An AI that is even more 
deeply tailored than AI#2
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An embedded AI 
Using if-then statements

At the beginning of the school year:
IF medication in the prior year = {NO}

THEN stage 1 = {BMOD}.
ELSE IF medication in the prior year = {YES}

THEN stage 1 = {MED}.
Then, every month, beginning at week 8:

IF response status to stage 1 = {NR}
IF adherence to stage 1 = {NO},

THEN stage 2 = {AUGMENT}
ELSE stage 2 = {AUGMENT} or {INTENSIFY}.

ELSE continue with stage 1.
10

stage 1 = {BMOD}

THEN stage 2 = {AUGMENT}



A more deeply-tailored AI 
Using if-then statements

At the beginning of the school year:
IF medication in the prior year = {YES}

THEN stage 1 = {MED}.
ELSE IF medication in the prior year = {NO}

THEN stage 1 = {BMOD}.
Then, every month, beginning at week 8:

IF response status to stage 1 = {NR},
THEN IF adherence to stage 1 = {NO},

THEN stage 2 = {AUGMENT}
ELSE stage 2 = {AUGMENT} or {INTENSIFY}.

ELSE continue with stage 1.
11



What is a more deeply-tailored adaptive 
intervention?

SMART secondary aims about more deeply-
tailored adaptive interventions

How can moderators analyses help 
construct a more deeply-tailored adaptive 
intervention?

Q-Learning: An extension of moderators 
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Measures collected in a SMART
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Monthly, 
Beginning Week 8

X A1 S1 / R status A2 Y



Measures collected in a SMART
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Monthly, 
Beginning Week 8

X
Baseline covariates
• Demographics
• MED before stage 1
• Baseline ADHD scores
• Baseline school 

performance
• ODD
• etc.

X A1 S1 / R status A2 Y



Measures collected in a SMART
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Monthly, 
Beginning Week 8

X
Baseline covariates
• Demographics
• MED before stage 1
• Baseline ADHD scores
• Baseline school 

performance
• ODD
• etc.

S1 Time-varying covariates
• Month of non-response
• Adherence to stage 1 

treatment
• Parent function during 

stage 1
X A1 S1 / R status A2 Y



Example SMART secondary aims related to 
constructing a more deeply-tailored AI
For example, in the ADHD SMART, an investigator might be 
interested in 
1) Whether stage 1 of the intervention should be tailored 

according to whether the child has received prior medication? 
2) Whether, among non-responders, stage 2 of the intervention 

should be tailored according to the child’s level of adherence?
to stage 1 treatment?

3) Whether stage 2 intervention should be tailored according to 
change in ADHD symptoms from baseline to end of stage 1?

4) And, if so, what symptom cut-off do we use to make the stage 
2 intervention decision?
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What is a more deeply-tailored adaptive 
intervention?

SMART secondary aims about more deeply-
tailored adaptive interventions

How can moderators analyses help 
construct a more deeply-tailored adaptive 
intervention?

Q-Learning: An extension of moderators 
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Review: What is a moderator variable?

20

- A moderator is a variable that influences the 
individual causal effects of an intervention on an 
outcome. 

- Moderators can be useful for informing how to 
tailor an intervention

- Moderators are easy to examine using standard 
regression analyses

𝑿 𝑨𝟏 𝒀



X not a moderator
X not useful for tailoring

Hypothetical results examining whether X moderates the effect of A on Y

This analysis is with simulated data.

Review: Not all moderator variables make 
good tailoring variables
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Hypothetical results examining whether X moderates the effect of A on Y

This analysis is with simulated data.

Review: Not all moderator variables make 
good tailoring variables
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Hypothetical results examining whether X moderates the effect of A on Y

This analysis is with simulated data.

Review: Not all moderator variables make 
good tailoring variables
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Hypothetical results examining whether X moderates the effect of A on Y

This analysis is with simulated data.

Review: Not all moderator variables make 
good tailoring variables
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Moderator analyses in a SMART requires 
extension because there are two stages

At the beginning of Stage 1: Does medication use in the 
prior year moderate the effect of starting with MED vs 
BMOD?

25

𝑿 𝑨𝟏 𝒀



Moderator analyses in a SMART requires 
extension because there are two stages

At the beginning of Stage 1: Does medication use in the 
prior year moderate the effect of starting with MED vs 
BMOD?

At the beginning of Stage 2: Does level of adherence to   
first-stage intervention moderate the effect of 
AUGMENT vs INTENSIFY among non-responders?
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𝑿 𝑨𝟏 𝒀

𝑺𝟏 𝑨𝟐 𝒀



Moderator analyses in a SMART requires 
extension because there are two stages

At the beginning of Stage 1: Does medication use in the 
prior year moderate the effect of starting with MED vs 
BMOD?

At the beginning of Stage 2: Does level of adherence to 
first-stage intervention moderate the effect of 
AUGMENT vs INTENSIFY among non-responders?
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𝑿 𝑨𝟏 𝒀

𝑺𝟏 𝑨𝟐 𝒀

Results from such moderator analyses in a SMART 
can be used to suggest a more deeply-tailored AI.



Examining baseline moderators of stage 1 
intervention in a SMART

• For the first question, we could use the following 
regression:

• This regression examines whether 𝑿 is a moderator of the 
effect of first-stage treatment

28

Covariate-by-treatment Interaction term

𝐸 𝑌 𝑿, 𝑨𝟏 = 𝛽" + 𝛽#𝑋 + 𝛽$𝐴# + 𝛽%𝑿𝑨𝟏

𝑿 𝑨𝟏 𝒀
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Examine baseline & time-varying moderators of 
stage 2 intervention in a SMART
• For the second question, we could use the following 

regression:

• This regression examines whether 𝑺𝟏 is a moderator of the 
effect of second-stage treatment, among non-responders

30

𝐸 𝑌 𝑋, 𝐴#, 𝑅 = 0, 𝑺𝟏, 𝑨𝟐 = 𝛽" + 𝛽#𝑋 + 𝛽$𝐴#
+ 𝛽%𝑆# + 𝛽'𝐴$ + 𝛽(𝑺𝟏𝑨𝟐 + 𝛽)𝐴#𝐴$

𝑺𝟏 𝑨𝟐 𝒀

Among non-responders

Covariate-by-treatment Interaction term
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Now, you may be wondering…

…what if, instead of these two separate regressions, we used a 
single regression model to answer both questions simultaneously?
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𝐸 𝑌 𝑿, 𝑨𝟏 = 𝛽" + 𝛽#𝑋 + 𝛽$𝐴# + 𝛽%𝑿𝑨𝟏

𝐸 𝑌 𝑋, 𝐴#, 𝑅 = 0, 𝑺𝟏, 𝑨𝟐 = 𝛽" + 𝛽#𝑋 + 𝛽$𝐴#
+ 𝛽%𝑆# + 𝛽'𝐴$ + 𝛽(𝑺𝟏𝑨𝟐 + 𝛽)𝐴#𝐴$

𝑺𝟏 𝑨𝟐 𝒀

𝑿 𝑨𝟏 𝒀



• For example:
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𝐸 𝑌 𝑿, 𝑨𝟏, 𝑅, 𝑺𝟏, 𝑨𝟐 = 𝛽" + 𝛽#𝑋 + 𝛽$𝐴# + 𝛽%𝑿𝑨𝟏
+𝜂𝑅 + 𝛽' 𝑆# + 1 − 𝑅 { 𝛽(𝐴$ + 𝛽)𝑺𝟏𝑨𝟐 + 𝛽*𝐴#𝐴$}

What if we did a single regression? 



• For example:

• But there are two causal problems with this approach!
• Both result from the possibility that 𝑆% can be impacted by 𝐴%
• Both cause bias in 𝛽& and 𝛽'
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𝐸 𝑌 𝑿, 𝑨𝟏, 𝑅, 𝑺𝟏, 𝑨𝟐 = 𝛽" + 𝛽#𝑋 + 𝛽$𝐴# + 𝛽%𝑿𝑨𝟏
+𝜂𝑅 + 𝛽' 𝑆# + 1 − 𝑅 { 𝛽(𝐴$ + 𝛽)𝑺𝟏𝑨𝟐 + 𝛽*𝐴#𝐴$}

What if we did a single regression? 
Causes bias



What if we did a single regression? 
• For example:

• Problem 1: Wrong moderating effect of A1 on Y
• We may have unintentionally cut off the effect of 𝐴% on Y via 𝑆%.
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𝑋 𝐴% 𝑆% 𝐴& 𝑌

𝐸 𝑌 𝑿, 𝑨𝟏, 𝑅, 𝑺𝟏, 𝑨𝟐 = 𝛽" + 𝛽#𝑋 + 𝛽$𝐴# + 𝛽%𝑿𝑨𝟏
+𝜂𝑅 + 𝛽' 𝑆# + 1 − 𝑅 { 𝛽(𝐴$ + 𝛽)𝑺𝟏𝑨𝟐 + 𝛽*𝐴#𝐴$}



What if we did a single regression? 
• For example:

• Problem 1: Wrong causal effect of A1 on Y
• We unintentionally cut off any effect of 𝐴% on Y that is mediated by 𝑆%.
• This is not the moderator effect we want.
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𝑋 𝐴% 𝑆% 𝐴& 𝑌
Ò

𝐸 𝑌 𝑿, 𝑨𝟏, 𝑅, 𝑺𝟏, 𝑨𝟐 = 𝛽" + 𝛽#𝑋 + 𝛽$𝐴# + 𝛽%𝑿𝑨𝟏
+𝜂𝑅 + 𝛽' 𝑆# + 1 − 𝑅 { 𝛽(𝐴$ + 𝛽)𝑺𝟏𝑨𝟐 + 𝛽*𝐴#𝐴$}



What if we did a single regression? 
• For example:

• Problem 2: Collider Bias (a.k.a Causal Bias)
• We may get unintended spurious effects due to known or unknown 

common causes of 𝑆% and Y
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𝑋 𝐴% 𝑆% 𝐴& 𝑌

𝑼

𝐸 𝑌 𝑿, 𝑨𝟏, 𝑅, 𝑺𝟏, 𝑨𝟐 = 𝛽" + 𝛽#𝑋 + 𝛽$𝐴# + 𝛽%𝑿𝑨𝟏
+𝜂𝑅 + 𝛽' 𝑆# + 1 − 𝑅 { 𝛽(𝐴$ + 𝛽)𝑺𝟏𝑨𝟐 + 𝛽*𝐴#𝐴$}
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Outline
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What is Q-Learning? Why is it useful?

• Uses the two regression models presented earlier which are easy 
to use and interpret

• Bypasses the two problems associated with the single regression 
approach

• Leads to a better proposal for a more deeply-tailored AI
• Appropriately accounts for the optimal second-stage intervention when 

determining the optimal first-stage intervention
39

Q = quality of the adaptive intervention



Q-learning: Three simple steps
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Step 1
• Stage 2 regression  à Obtain optimal stage 2 decision

Step 2

• Calculate '𝒀𝒊
𝒐𝒑𝒕

• For non-responders: +𝒀𝒊
𝒐𝒑𝒕 is the estimated predicted outcome (based on step 1) had 

non-responder i been offered the best stage 2 intervention given X, A1, and S1

• For responders: we use +𝒀𝒊
𝒐𝒑𝒕 = 𝑌%

Step 3
• Stage 1 regression   à Obtain optimal stage 1 decision

𝐸 𝑌! 𝑋, 𝑨𝟏, 𝑺𝟏, 𝑨𝟐, 𝑅 = 0 = 𝛽$ + 𝛽%𝑋 + 𝛽&𝐴% + 𝛽' 𝑆% + 𝛽(𝑨𝟐 + 𝛽)𝑺𝟏𝑨𝟐 + 𝛽*𝑨𝟏𝑨𝟐

𝐸 .𝒀𝒊
𝒐𝒑𝒕 𝑿, 𝑨𝟏 = 𝛽$ + 𝛽%𝑋 + 𝛽&𝑨𝟏 + 𝛽'𝑿𝑨𝟏



Recall the ADHD SMART

41 X A1 S1 / R status A2 Y



Step 1: second-stage tailoring
Let’s write this moderators analysis in terms of the ADHD 
SMART:

This model will help us to…
a) Determine if the best second-stage tactic depends on adherence; and
b) Identify the best second-stage tactic for each level of adherence 

and first-stage treatment
42

𝐸 𝑌 𝑋, 𝑨𝟏, 𝑺𝟏, 𝑨𝟐, 𝑅 = 0 = 𝛽. +⋯+ 𝛽&𝐴% + 𝛽'𝒂𝒅𝒉𝒆𝒓𝒆𝒏𝒄𝒆
+𝛽/𝑨𝟐 + 𝛽0 𝑨𝟐×𝑨𝟏 + 𝛽1(𝑨𝟐×𝒂𝒅𝒉𝒆𝒓𝒆𝒏𝒄𝒆)

A1 = Stage 1 options: -1=MED; 1=BMOD
S11 = Adherence to stage 1: 1=yes; 0=no
A2 = Stage 2 options: -1=AUGMENT; 1=INTENSIFY
Y   = End of year school performance
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This analysis is with simulated data.

Step 1: second-stage tailoring
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Step 1: second-stage tailoring
Question: Among those who 
do not respond but do adhere 

to first-stage treatment of 
MED, what is the best second 

stage treatment?

This analysis is with simulated data.
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Among non-responding 
adherers to MED, better to 

INTENSIFY

Step 1: second-stage tailoring
This analysis is with simulated data.
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Step 1: second-stage tailoring
Question: Among those who 
are non-responders and non-

adherers to first-stage 
treatment, what is the best 
second stage treatment?

This analysis is with simulated data.
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Among non-responding non-
adherers to either first-stage 
option, better to AUGMENT

Step 1: second-stage tailoring
This analysis is with simulated data.



Q-learning: Step 2

48

Step 1
• Stage 2 regression  à Obtain optimal stage 2 decision

Step 2

• Calculate '𝒀𝒊
𝒐𝒑𝒕

• For non-responders: +𝒀𝒊
𝒐𝒑𝒕 is the estimated predicted outcome (based on step 1) had 

non-responder i been offered the best stage 2 intervention given X, A1, and S1

• For responders: we use +𝒀𝒊
𝒐𝒑𝒕 = 𝑌%

Step 3
• Stage 1 regression   à Obtain optimal stage 1 decision

𝐸 𝑌! 𝑋, 𝑨𝟏, 𝑺𝟏, 𝑨𝟐, 𝑅 = 0 = 𝛽$ + 𝛽%𝑋 + 𝛽&𝐴% + 𝛽' 𝑆% + 𝛽(𝑨𝟐 + 𝛽)𝑺𝟏𝑨𝟐 + 𝛽*𝑨𝟏𝑨𝟐

𝐸 .𝒀𝒊
𝒐𝒑𝒕 𝑿, 𝑨𝟏 = 𝛽$ + 𝛽%𝑋 + 𝛽&𝑨𝟏 + 𝛽'𝑿𝑨𝟏



Step 2: predict the outcome under the best 
second-stage option
• Next, we use the regression from step 1 to estimate the 

outcome for each non-responder if they received the best 
second-stage tactic, given their observed values on the tailoring 
variables

• We assign each non-responder the value 4𝒀𝒊
𝒐𝒑𝒕

• '𝒀𝒊
𝒐𝒑𝒕 = the expected outcome if each non-responder received the best 

second-stage tactic given their initial treatment and adherence

• We assign each responder the value 4𝒀𝒊
𝒐𝒑𝒕 = 𝒀𝒊

49
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Step 2: predicted outcome under the best 
second-stage option

50

Non-responders who did not 
adhere will get the predicted 
outcome under AUGMENT

Non-responders who adhered 
will get the predicted outcome 

under INTENSIFY

This analysis is with simulated data.



Step 2: predicted outcome under the best second-stage option

51

• Suppose that:

• Suppose John was a non-responding, non-adhering (adherence = 0) participant who had mean 
values for all baseline variables and received MED (A1 = 1) at stage 1 and INT (A2 = -1) at stage 
2.

2𝑌 = 2.2 + 0.35 𝐴& + 0.47 𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒 − 1.0 𝑨𝟐 − 0.13 𝑨𝟐×𝐴& + 1.7 𝑨𝟐×𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒
2𝑌()*+,- = 2.2 + 0.35 1 + 0.47 0 − 1.0(1) − 0.13 1×1 + 1.7 1×0 = 3.1

2𝑌()*(./ = 2.2 + 0.35 1 + 0.47 0 − 1.0 −1 − 0.13 −1×1 + 1.7 −1×0 = 2.5

• Recall the model for our stage 2 moderators analysis:

• Predict John’s scores:

John’s score under INT
(which he received)

John’s score under AUG
(which he did not receive)

𝛽0 = 2.2, 𝛽)= 0.35, 𝛽1= 0.47, 𝛽2= −1.0, 𝛽3= −0.13, 𝛽4= 1.7

John’s Ŷi

𝑺𝟏 𝑨𝟐 𝒀
𝐸 𝑌 𝑋, 𝑨𝟏, 𝑺𝟏, 𝑨𝟐, 𝑅 = 0 = 𝛽. +⋯+ 𝛽&𝐴% + 𝛽'𝒂𝒅𝒉𝒆𝒓𝒆𝒏𝒄𝒆

+𝛽/𝑨𝟐 + 𝛽0 𝑨𝟐×𝑨𝟏 + 𝛽1(𝑨𝟐×𝒂𝒅𝒉𝒆𝒓𝒆𝒏𝒄𝒆)



Q-learning: Step 3
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Step 1
• Stage 2 regression  à Obtain optimal stage 2 decision

Step 2

• Calculate '𝒀𝒊
𝒐𝒑𝒕

• For non-responders: +𝒀𝒊
𝒐𝒑𝒕 is the estimated predicted outcome (based on step 1) had 

non-responder i been offered the best stage 2 intervention given X, A1, and S1

• For responders: we use +𝒀𝒊
𝒐𝒑𝒕 = 𝑌%

Step 3
• Stage 1 regression   à Obtain optimal stage 1 decision

𝐸 𝑌! 𝑋, 𝑨𝟏, 𝑺𝟏, 𝑨𝟐, 𝑅 = 0 = 𝛽$ + 𝛽%𝑋 + 𝛽&𝐴% + 𝛽' 𝑆% + 𝛽(𝑨𝟐 + 𝛽)𝑺𝟏𝑨𝟐 + 𝛽*𝑨𝟏𝑨𝟐

𝐸 .𝒀𝒊
𝒐𝒑𝒕 𝑿, 𝑨𝟏 = 𝛽$ + 𝛽%𝑋 + 𝛽&𝑨𝟏 + 𝛽'𝑿𝑨𝟏



Step 3: move backwards to the first-stage tailoring
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• Fit the following regression model:
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This model will help us to…
a) Determine whether the best first-stage option depends on medication 

in prior year; and 
b) Identify the best first-stage option for children who received 

med in prior year vs. those that did not.

Step 3: move backwards to the first-stage tailoring

𝐸 '𝒀𝒊
𝒐𝒑𝒕 𝑋, 𝐴% = 𝛽. + 𝛽%priorMed + 𝛽&𝑨𝟏 + 𝛽' priorMed×𝑨𝟏

Estimated outcome, which controls for 
optimal stage 2 intervention, was 

calculated for all individuals in step 2

priorMed: 1 = yes; 0 = no
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Step 3: move backwards to the first-stage tailoring
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Step 3: move backwards to the first-stage tailoring

For kids on Prior Med, 
what is the best first stage 

treatment?
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Among kids on Prior Med, it’s better 
to start with MED

Step 3: move backwards to the first-stage tailoring
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Step 3: move backwards to the first-stage tailoring

Should we assign MED to kids not
on Prior Med?
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Among kids not on Prior Med, it is 
better to start with BMOD

Step 3: move backwards to the first-stage tailoring



The estimated more-deeply tailored AI is
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MED  

MED in 
prior year?  

BMOD  
No

Yes

Continue

Adherent?

Augment

Augment or Intensify

Responders

Non-Responders Yes

No

Continue

Adherent?

Augment

Intensify

Responders

Non-Responders Yes

No



The estimated more-deeply tailored AI is
At the beginning of the school year:

IF medication in the prior year = {YES}
THEN stage 1 = {MED}.

ELSE IF medication in the prior year = {NO}
THEN stage 1 = {BMOD}.

Then, every month, beginning at week 8…
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The estimated more-deeply tailored AI is
Then, every month, beginning at week 8…

IF response status to stage 1 = {NR}
THEN

IF adherence to MED or BMOD = {NO},
THEN stage 2 = {AUGMENT}.

ELSE IF adherence to MED = {YES},
THEN stage 2 = {INTENSIFY}.

ELSE IF adherence to BMOD = {YES},
THEN stage 2 = {AUGMENT} or {INTENSIFY}.

ELSE IF response status to stage 1 = {R}
THEN continue stage 1
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Estimated mean of more deeply tailored AI
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Deeply tailor AI



Implementation
• Q-Learning software on d3c’s website
• R package qlaci
• SAS procedure PROC GENMOD

• This software incorporates statistical adjustments that are 
necessary for obtaining the correct confidence intervals

• During vModule 3, I am going to show you how to use the qlaci
package in R
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