

TSAR TOPOLOGICAL SOLITONS IN ANTIFERROICS

Document title Document type Dissemination level	D1.2 Production of strain engineered BiFeO3 samples with disordered chiral AFM Report Public	AUTHOR Due date Ref.	Vincent Garcia 30/04/2022 D1.2
Deliverable description	Initial		

Project	TSAR	Grant number	964931
Call identifier Work Package	FETOPEN 2018-2019-2020-01 Topological AntiferroMagnetic textures		
WP N°	WP1	WP leader	CNRS
Coordinator	Michel Viret		
Project manager	Marie-Astrid Cavrois-Desmier		
Project start date	01/05/2021		
Project duration	48 months		

Distribution List

Partner n°	Organization name (Short name)	Name	Country
	European Commission (EU)- Project Officer	Adelina Nicolaie	Belgium
1	Commissariat à l'Energie Atomique (CEA)	Michel Viret	France
2	CNRS node (CNRS)	Manuel Bibes	France
3	University College London (UCL)	Pavlo Zubko	England
4	Centrale-Supelec (CS)	Brahim Dkhil	France
5	ICN2 Barcelona (ICN2)	Gustau Catalan	Spain
6	Université de Liège (ULIEGE)	Philippe Ghosez	Belgium
7	IP-ACSR Prague (IP-ACSR)	Jiří Hlinka	Czech Republic
8	THALES (THALES)	Romain Lebrun	France

BiFeO₃ thin films were grown by pulsed laser deposition on various substrates using a KrF excimer laser (248 nm) with a fluence of 1 J cm⁻². Prior to film growth, the scandate substrates (DyScO₃, TbScO₃, GdScO₃, SmScO₃) were ex-situ annealed for 3 hours at 1000°C under oxygen flow. The SrTiO₃ substrate was chemically etched with a buffered HF solution before following the same annealing procedure. For all the samples, a SrRuO₃ bottom electrode (3-5 nm) was first grown at 660°C under 0.2 mbar of oxygen pressure with a laser repetition rate of 5 Hz. The BiFeO₃ thin film (30-60 nm) was subsequently grown at the same temperature under 0.36 mbar of oxygen pressure and a repetition rate of 2 Hz. Following the growth of the bilayer, the samples were cooled down to room temperature under an oxygen pressure of 300 mbar. X-ray diffraction shows the high epitaxial quality of the films with Laue fringes attesting for their coherent growth. All films display smooth surfaces with atomic steps, characteristic of a layer-by-layer growth. The (001) BiFeO₃ peak evolves from the left to the right of the substrate (001) peak upon increase of the inplane pseudo cubic lattice parameter of the substrate, as observed in the 2θ - ω scans. Reciprocal space maps indicate that the films are fully strained with only two elastic variants of the BiFeO₃ monoclinic phase. Their peak positions enable us to determine a strain value for each film ranging from -1.35% compressive strain to +0.50% tensile strain. The out-of-plane and in-plane variants of polarisation were identified in each sample using piezoresponse force microscopy. For all the samples, the as-grown out-ofplane polarisation is pointing downward, i.e. towards the bottom electrode. The films display similar striped-domain structures with two in-plane ferroelectric variants corresponding to the elastic ones observed in reciprocal space maps.

Combining high-quality strain-engineered epitaxial thin films with highly-sensitive scanning NV magnetometry, the magnetic vs. strain phase diagram has been investigated and demonstrated to be richer than previously depicted [1]. Indeed, using DyScO₃(110) or TbScO₃(110) substrates, imposing low compressive strain, favors the bulk-like (type I) cycloid with $[\bar{1}10]$ propagation vectors restricted to the film plane of BiFeO₃. For large compressive strain (on SrTiO₃(001)) or small tensile strain (on GdScO₃(110)), the exotic type II cycloid is stabilized with propagation vectors along the $[\bar{2}11]$ and $[1\bar{2}1]$ directions, i.e., as close as possible to the film plane of BiFeO₃. Finally, large tensile strain (on SmScO₃(110)) seems to destroy the cycloid and favor pseudo-collinear canted antiferromagnetic domains. More recently, highly-ordered BiFeO₃ thin films were grown on SmScO₃(110) in a new pulsed laser deposition chamber and scanning NV magnetometry revealed a type II cycloid in the as-grown state with a diverging period [2]. Hence, the combination of strain-engineering and scanning probe microscopy allows us to identify critical strains that correspond to magnetic phase boundaries (Figure 1) [2,3].

In addition, resorting to anisotropic in-plane strain in epitaxial (111) thin films of BiFeO₃ grown on DyScO₃(011) orthorhombic substrates, a single domain ferroelectric domain is stabilized all over the sample with a purely vertical polarization. Interestingly, this in-plane distortion favors a single spin cycloid with a propagation vector contained in the (111) plane of BiFeO₃ and parallel to the a-axis of the orthorhombic substrate. The epitaxial thin films of BiFeO₃ were grown on DyScO₃(011) and TbScO₃(011) orthorhombic substrates by pulsed laser deposition using a KrF excimer laser. The scandate substrates were preliminary annealed under constant oxygen flow at 1000°C for 3 hours. Ultrathin bottom electrodes of SrRuO₃ were first grown under 0.2 mbar of oxygen at 660°C. The BiFeO₃ thin films were grown under 0.36 mbar of oxygen at a temperature of 670°C. The whole heterostructure was elaborated with a laser repetition rate of 5 Hz. X-ray reflectivity experiments were performed to determine the thicknesses of SrRuO₃ and BiFeO₃.

List of fully-characterized samples available to the consortium:

REAL1519B BiFeO3 (62 nm) / SrRuO3 (5 nm) // DyScO3 (011)

REAL1519C BiFeO3 (47 nm) / SrRuO3 (5 nm) // TbScO3 (011)

TURF1091 BiFeO3 (36 nm) / SrRuO3 (5 nm) // TbScO3 (011)

REAL326 BiFeO3 (78 nm) / SrRuO3 (5 nm) // DyScO3 (110)

REAL1035 BiFeO3 (37 nm) / SrRuO3 (5 nm) // DyScO3 (110)

REAL1240 BiFeO3 (60 nm) // DyScO3 (110)

REAL 1352 BiFeO3 (60 nm) // GdScO3 (110)

REAL1369 BiFeO3 (30 nm) / SrRuO3 (5 nm) // DyScO3 (110)

REAL1506B BiFeO3 (33 nm) / SrRuO3 (5 nm) // DyScO3 (110)

TURF716 BiFeO3 (56 nm) / SrRuO3 (5 nm) // GdScO3 (110)

TURF772 BiFeO3 (25 nm) / SrRuO3 (5 nm) // SmScO3(110)

TURF776B BiFeO3 (54 nm) / SrRuO3 (5 nm) // SmScO3 (110)

TURF1070 BiFeO3:Mn (30 nm) / La0.7Sr0.3MnO3 (4 nm) // DyScO3 (110)

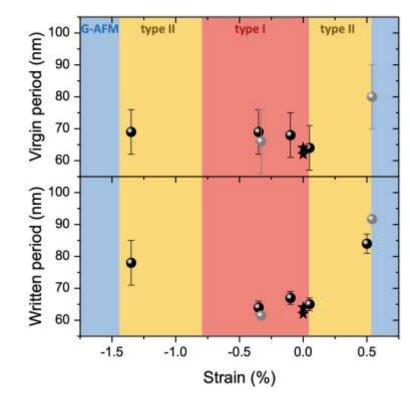


Figure 1. Magnetic state vs strain phase diagram of (001)-oriented BiFeO₃ thin films

- [1]D. Sando et al., Crafting the Magnonic and Spintronic Response of BiFeO3 Films by Epitaxial Strain, Nature Mater 12, 641 (2013).
- [2]H. Zhong et al., Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in Bi Fe O 3 Thin Films, Phys. Rev. Applied 17, 044051 (2022).
- [3]A. Haykal et al., *Antiferromagnetic Textures in BiFeO3 Controlled by Strain and Electric Field*, Nature Communications **11**, 1704 (2020).

