
1

Supporting Kubernetes
Applications in End Customer
Environments
There are many guides with cheat sheets for quickly getting up to speed on Kubernetes
and kubectl basics. In contrast, this guide is specifically for teams who build, deliver, and
support Kubernetes products deployed into customer environments. When delivering into
a Kubernetes environment that you don’t control, there are several things to be aware of,
and some workflows and patterns that we’ve found invaluable for accelerating remediation
in the field.

If you’re familiar with managing/supporting non-Kubernetes applications in customer
environments, but your engineering team is migrating your application(s) to Kubernetes,
then this guide is for you.

1

Workloads
Workloads manage Pods. Pods represent running instances of an application. The Kubernetes API uses control loops to ensure that an
application is running and healthy. When a user deploys an application to Kubernetes, the apiserver figures out which Nodes are eligible
for new assignments, and then it schedules workloads to run on those Nodes.

Workload types

Pods

The basic unit of work. A Pod is a group of
containers that share an IP address that is
assigned to run on a specific node in the cluster.
Each other concept in the “Workloads” section
represents a higher level abstraction that
represents a specific desired state of one or
more Pods.

ReplicaSets

A ReplicaSet specifies a group of Pods. The
desired state of a ReplicaSet is “N number of
Pods based on a specific template, running at all
times”. If a node fails, any Pods controlled by a
ReplicaSet will be rescheduled to healthy nodes
to meet that desired state.

Deployments

Deployments are the typical workload
Controller. A Deployment schedules Pods
to any node in the cluster by creating and
destroying ReplicaSets. Most useful for
stateless applications, but can be used with
stateful applications as well.

StatefulSets

The StatefulSets Controller schedules a
specified number of Pods to worker Nodes, but
makes the guarantee that once a Pod has been
scheduled to a node, that Pod will always get
rescheduled to the same node and will attach
to the same storage volume. Most useful for
stateful components like databases, queues and
caches.

Jobs &
CronJobs

The Jobs controller creates Pods that are
intended to run once and then exit without
restarting. Most useful for running one-off
processes, such as database migrations.

The CronJobs controller creates Jobs that are
executed at a given time, described by the
traditional `cron` notation. The CronJob
controller will wait for the right time, then
execute a Pod to perform some work.

DaemonSets

The DaemonSets Controller will schedule one
Pod per node across all nodes in the cluster.
Most useful for applications that would typically
run as daemons in a traditional Linux VM, such
as collectd or syslog.

Interacting with workloads

kubectl explain deployments
View the documentation for the
Deployment manifest.

kubectl get --all-namespaces
deploy,statefulset,daemonset,
jobs,cronjobs

View all the workloads running across
all namespaces in the cluster.

kubectl get po
kubectl get pods

List the Pods in the default namespace.

kubectl get po $pod -o yaml
Print the manifest for a Pod in YAML
format.

kubectl get po $pod -o json
Print the manifest for a Pod in JSON
format.

kubectl get po -n $ns -o wide
List all the Pods in the $ns namespace
and show their IP addresses and the
node they’re running on.

kubectl run -ti -rm busybox
--image=busybox -- sh

Launch a busybox Pod which will be
deleted when you exit.
Remove the “--rm” for it to persist.

kubectl exec -it -n rook-ceph
rook-ceph-tools -- bash

Launch a shell in an existing
deployment’s Pod, in this case rook-
ceph-tools within the rook-ceph
namespace.

kubectl delete all -l $LABEL=$VALUE

Delete all services, deployments, Pods,
jobs, and other workloads with a
matching Label.

Will not delete secrets, configmaps
and some other resources.

kubectl logs -f $pod
Continuously print the logs from $pod
in the default namespace.

kubectl logs $pod -c $ctr
--previous

Dump the logs from a previous
version of a given container in a given
Pod that has multiple containers.

kubectl rollout status $deployment
kubectl rollout history $deployment

Show the status or history of the
changes made to a Deployment. If
--record was used, print the reason for
the change.

kubectl scale deployment redis
--replicas=3

Scale the Deployment “redis” to 3
replicas.

kubectl get events --sort-by=
.metadata.creationTimestamp

List Events sorted by timestamp.

2

Services
A Service describes a software-defined load balancer for Pods. Since Pods are constantly being replaced, Pod IPs are not constant.
A Service provides an easy way to address a group of Pods. ​​Services use a selector to specify the Pods that they will operate on.
When an application makes a request to a Service, the Service will load balance the request to any Pods with a label matching the
Service’s selector.

Service Types

ClusterIP Creates a virtual IP to forward in-cluster traffic
to Pods matching the Service’s selector.

NodePort

Open a port on each node (usually in the 30000-
32768 range) that will forward traffic from
outside the cluster to the Service’s matching
Pods.

LoadBalancer

Create a cloud-based load balancer like an AWS
ELB or GCP Forwarding Rule for the service.
Cloud Provider Only -- requires the kube-
controller-manager process to be configured
to manage cloud resources. If a LoadBalancer
Service is stuck in the Pending state, the cluster
may not be configured to manage cloud
resources.

Handy Service Commands

kubectl explain service
View the documentation for the
Service manifest.

kubectl get service -n $NAMESPACE
kubectl get svc -n $NAMESPACE

List the Services in a given
namespace and show ClusterIP and
any listening ports.

kubectl get svc -o wide
List the Services in the default
namespace and show the selector
for each.

kubectl get endpoints
kubectl get ep

Show health/ready endpoints for
each service in a namespace.

kubectl expose deployment httpd
--port=80 --target-port=80

Create a Service in the default
namespace that exposes a
Deployment “httpd” on port 80
within the cluster.

kubectl port-forward svc/$MYAPP
8800:8800

Forward traffic from localhost:8800
to the service $MYAPP.

3

Nodes
A node is typically a virtual machine or bare metal server that runs Pods. Pods are a logical group of containers. A node shares resources
like CPU, memory, etc., with the Pods it runs. A node communicates with the Kubernetes API Server using a process called kubelet.
Kubelet talks to the container orchestrator to spin up the containers that represent a Pod. A Node understands which Pods it is supposed
to be running and communicates those Pods’ the status (including success/failure) back to the API Server. You can use kubectl describe
node or kubectl get node -o json to inspect the status of a node.

Interacting with Nodes

kubectl drain
$node

Drain a given node in preparation for
maintenance -- removes all Pods and
“cordons” the node, preventing new Pods
from being scheduled to it.

kubectl uncordon
$node

Post-maintenance, mark a given node as
schedulable.

kubectl top node
$node

Show metrics for a given node.

kubectl describe
node $node

Show node information and events.

kubectl get node
$node -o json

Show raw node json -- useful for
inspecting status fields (see to the right).

Useful Node Status Fields

Addresses DNS and IP addresses known to be
attributed to this node.

Allocatable, Capacity
Shows the available / total resources
on the node, including CPUs, Storage,
memory, and more.

Conditions

A collection of events that describe
the node. For example a healthy node
will have a KernelDeadlock status of
False with a message “kernel has
no deadlock”. There are many such
conditions which can help an operator
understand the health of a node.

Images A list of docker images already present
on the node.

NodeInfo
Basic info like Architecture, Kernel
Version, OS Image, and Kubernetes
Component versions.

4

Storage
Persistent storage in Kubernetes is handled by PersistentVolume and PersistentVolumeClaim objects. PersistentVolumes represent
attached block storage. PersistentVolumeClaims represent a relationship between Persistent Volumes and the Pods that consume them.
PersistentVolumes can either be created dynamically (typically with an automated call to the cloud provider), or statically (where
volumes are created by an administrator and then made available to Kubernetes as a resource). Users or ServiceAccounts can submit
a claim for some storage. If a free PersistentVolume matches a Pod’s claim, then the PersistentVolume will be assigned
to that Pod. PersistentVolume definitions are static and cannot be changed once created.

Storage Objects Types

PersistentVolume

A static definition for some kind of
persistent storage. May be a local
filesystem path, or may be part of an
IaaS system such as AWS EBS/EFS or
Azure File Storage.

Cluster Scoped

PersistentVolumeClaim
A request for some storage to be
assigned to a Pod.

Namespace Scoped

StorageClass

A generalized specification for
a volume. Used to dynamically
provision PVs without administrator
intervention. Used in combination
with a provisioner.

Cluster Scoped

Inspecting Storage Objects

kubectl get --all-namespaces pv,pvc
Describe all the PVCs in all
namespaces and list the PVs
that are in the cluster scope.

kubectl describe storageclass
default

Show the specification for the
default StorageClass.

kubectl describe pvc -n $ns $pvc

Show the status of a given PVC
in a given namespace. Note the
Status which will show Bound
if the PVC has a matching &
bound PV, and the Events table
which may describe any errors
that occurred when trying to
mount the PV. See the PVC’s
capacity, read/write mode, and
StorageClass.

5

Kubernetes RBAC
RBAC overview

Roles, RoleBindings, ServiceAccounts
Kubernetes RBAC is a way of managing Authorization - who can perform which actions on the Kubernetes API. ServiceAccounts are non-
human users - typically used by applications inside Kubernetes that need to talk to the Kubernetes API. Permissions describe what actions
can be performed. A Permission is an association of a verb (list, create, update, etc.) with the name of a Kubernetes object (Pods, Services,
etc.). A Role is a set of permissions. RoleBindings associate a Role to a user, group, or service account.

Subject
A Subject refers to the actor (a user or
ServiceAccount) that performs some
action on the cluster.

Role
A Role defines the actions that a Subject
may perform on a specific set of objects
in a specific namespace.

RoleBinding A RoleBinding assigns a Role to a list of
Subjects.

ClusterRole
A ClusterRole is a set of actions that
may be performed on objects across the
entire cluster.

ClusterRoleBinding
A ClusterRoleBinding assigns a Role
or ClusterRole to a Subject across all
namespaces.

kubectl get -n $namespace
role,rolebinding,serviceaccount

List the Roles, RoleBindings,
and ServiceAccounts in a given
namespace.

kubectl get clusterrole,
clusterrolebinding

List the ClusterRoles and
ClusterRoleBindings.

kubectl describe rolebinding
$role-binding

Show the Role and Subject that are
governed by a given RoleBinding.

kubectl auth can-i --list
Show all authorizations my current
user can perform.

Does all of this sound hard? Replicated built troubleshoot.sh to automate common support tasks and
expedite remediation for trustless troubleshooting in customer-controlled environments. For more info,
book a demo today.

Embedded Trouble Analyzers
Identify common application-level errors for
faster diagnosis of application issues for trustless
troubleshooting with custom redaction from
support bundles to remove sensitive data before
sharing.

Troubleshoot Collectors
Collect customer data with redaction of
sensitive information for secure support and
troubleshooting.

Preflight Checks
Ensure predictable deployments, with advanced
validation of the customer environment for the
requirements of your application.

Configuration Validation
Test the validity of the configuration parameters
entered by your customer post-install.

6

https://troubleshoot.sh/
https://www.replicated.com/contact

7

kubectl krew install preflight support bundle Install Troubleshoot.sh plugins with krew.dev

kubectl preflight spec.yaml
Run preflight checks based on a local yaml file, running collectors and analyzers
to surface pass/warn/fail insights about the cluster.

kubectl preflight https://preflight.replicated.com Use a URL-hosted spec instead of a local file.

kubectl support-bundle spec.yaml
Run Collectors and Show analysis based on a local SupportBundle spec, leaving
behind a .tar.gz with all collected information for easy sharing. As with preflight,
can also be pointed at a remote URL.

kubectl support-bundle https://help.example.com/support-
bundle.yaml --redactors=./redact.yaml

Run a support bundle based on a remote spec, with custom redaction logic
applied.

Example Specs

Preflight
Check Node count and size

Redactor
Remove sensitive usernames from
collected logs

SupportBundle
Collect Cluster Info and logs from Pods
matching app=api

apiVersion: troubleshoot.sh/v1beta2
kind: Preflight
metadata:
 name: preflight-tutorial
spec:
 analyzers:

 - nodeResources:
 checkName: One node must have 16
GB RAM and 8 CPU Cores
 filters:
 allocatableMemory: 16Gi
 cpuCapacity: “8”
 outcomes:
 - fail:
 when: count() < 1
 message: Cannot find a node
with sufficient memory and cpu
 - pass:
 message: Sufficient CPU and
memory is available

apiVersion: troubleshoot.sh/v1beta2
kind: Redactor
metadata:
 name: my-redactor-name
spec:
 redactors:
 - name: remove passwords
 removals:
 regex:
 - redactor: (another)(?P<mask>.*)
(here)
 - selector: ‘S3_ENDPOINT’
 redactor: ‘(“value”: “).*(“)’
 yamlPath:
 - “abc.xyz.*”

apiVersion: troubleshoot.sh/v1beta2
kind: SupportBundle
metadata:
 name: my-application-name
spec:
 collectors:
 - clusterInfo: {}
 - clusterResources: {}
 - logs:
 selector:
 - app=api
 namespace: default

