
How ReadMe Went From SaaS To
On-Premises In Less Than One Week

The Story

Over 5,000 companies use ReadMe as their content management solution
for developer facing resources like documentation and sandboxes One
feature request ReadMe kept getting was for it to be available to be
deployed as a single-tenant, private instance within a customer’s own
servers, aka “on-premise.” It made sense as a feature request (HIPAA
compliance, secret projects, etc), however it was something they felt they
wouldn’t be able to do until they had a whole Enterprise team. So, they told
anyone that asked for it that they unfortunately weren’t able to do it. They
got enough requests, however, that we decided to investigate what it
would take to accomplish. It turned out to be much easier than they
expected.

Dockerizing ReadMe

They knew the easiest way to deploy ReadMe would be to Dockerize
ReadMe. Their original plan was to just send out Docker containers that
people could install locally, so they started there. Since they weren’t currently
using Docker, they had to containerize their app. It sounds a lot scarier than it
really is. They created a Dockerfile that looks like this:

•
•

•
•
•

1

FROM node:wheezy
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
COPY package.json /usr/src/app
COPY . /usr/src/app
RUN npm install -g gulp
RUN gulp deploy
ENV NODE_ENV "enterprise"
ENV MAILGUN_USER "postmaster@readme.io"
ENV MAILGUN_PASS "********"
EXPOSE 3000
CMD ["node", "server.js"]

It’s basically just a deploy script, with some environment variables and
configuration mixed in. Overall, Dockerizing their app took them about 2-3
hours. The biggest blocker was databases. They previously used Compose.io
for their backend database, so getting Mongo running inside Docker was the
hardest thing.

They originally thought about doing it themselves by sending customers a
Docker container. However, the scope quickly spiraled: licensing,
configuration, orchestration, updates, backups, reporting, monitoring,
debugging…. there was a lot to worry about. Also, their first customer was
pretty adamant about ensuring the integrity of their private environment,
meaning they wouldn’t have access to the machine it would be running on.
Without being about to view the logs or the server, they felt like they’d be too
in the dark.

They found Replicated and noticed that a bunch of companies they liked
(NPM, Travis, etc) were already using the platform. They decided to give it a
shot and see how fast they could get up and running. Greg Koberger
describes the process by saying, “It’s great; you just provide Replicated with a
Dockerized version of your app and they provide the features that make it an
enterprise-ready, installable application. After spending a few hours getting
our services Dockerized, it took us less than a day to integrate and get the
on-premise version of our product ready to go.”

Deployments
For their enterprise customers, the experience is pretty simple. The enterprise IT
admin runs an install command on whatever server they want to deploy to, and
system sets itself up. Their customers get it set up and running almost as quickly
as signing up on the SaaS site.

They didn’t want their customers to be stuck on old builds of ReadMe, which
would happen if they just sent out a plain Dockerized version. Replicated made it
easy for Readme to set policy for each individual enterprise customer’s license.
For smaller customers they can set policy to auto-deployed any updates
delivered by ReadMe, or for bigger customers they can provide the ability for
each update to be manually approved. Either way, upgrading is incredibly
simple: at most it’s one-click for the customer. Their SLA dictates that they don’t
support older versions (except for security updates), and they haven’t had any
issues with this yet. Most of their customers are happy to stay up-to-date; they
just want to be in control of pressing the button.

2

“On-premise was a
simple feature to add
that directly impacted
our growth. It’s had the
single biggest ROI for
us of anything we’ve
done.

Gregory Koberger
Founder, ReadMe

Managing Dockerfiles

Customer facing enterprise admin console.

”

Managing Environments

Third Party Apps

They use the same codebase for their on-premise deployments. Much like how
they have a production, staging and development environment, they also have
an enterprise environment. There’s two major differences in their enterprise
builds:

● Customer-entered environment variables - These are things specific to
each deployment, such as the URL or their Mailgun credentials.
Replicated lets the customer manage these variables, and they just read
them the same way as normal environment variables.

● Turning on/off irrelevant features - Not every feature, such as pricing, is
relevant for enterprise builds. Enterprise builds also get some additional
features that normally only their support staff would see, such as the
ability to toggle on beta features or view boring metadata they normally
hide away. They also didn’t want it to phone home at all, so those
features were disabled.

The ReadMe team are big fans of using third-party services for as much as
possible: Stripe for billing, Mailgun for emails, Segment for analytics, etc. (full
stack listed here). This is great for the public cloud version of your app, but
becomes problematic when going on-premise (as your end customer will likely
not want to set up a litany of 3rd party services to run your app). So, they split
things into two categories: things that could be removed (analytics, billing), and
things that could be replaced (emails).

For the former, they just put those features behind a flag and hid them when the
environment was Enterprise. They were already using basic feature flags to hide
things like analytics – they’re just “if” statements in their code for the most part.
For the latter, they allowed the customer to configure the application with their
own keys (you can also abstract things like SMTP out to allow your customer to
use any SMTP server if needed).

2

Communication and Support
One thing they failed at early on was encouraging their customers to come to
them as soon as there was a problem. Since they couldn’t monitor the servers
the way they do in production, they had some issues early on with things
breaking and them not knowing about it. It caused a bit of frustration on the
customer’s end and they were blissfully unaware (for a time).

So, they’ve worked to be better at communicating with customers using their
on-premise version. Replicated lets you do some basic monitoring (since
anything more would defeat the purpose of being on-premise), and we’ve
gotten better at spotting issues.

Companies get a nice dashboard, so they know what's running and what's
broken. They have four services running (main site, NGINX, Mongo and Redis),
and they're easily monitored:

Enterprise Contracts

Why You Should Too

On their end, they budgeted two weeks of a developer’s time for each install. It’s
a lot of time, however once it’s all up and running it tends to work well in the
future. If they end up doing more of these, I’d likely hire an engineer to do this
full-time (and potentially on-site). They haven’t had a need for that yet, though.
Greg recommends doing your first installation with a friendly company. That way
you can polish any rough edges in the process or product, before installing it at
larger companies. Like anything, the first time never goes as smoothly as you
expected!

Companies often chase after that elusive next feature which will change
everything and make revenue shoot up. And that feature doesn’t exist… with
one exception! On-premise was a simple feature to add that directly impacted
their growth. They went from their normal $59 plan to being able to sell their
product for two orders of magnitude more. It’s had the single biggest ROI for
them of anything we’ve done.

As Greg says, “If you have customers asking you for on-premise, you don’t have
an excuse… it’s a lot easier than you’d think!”

To get started, just sign up at www.replicated.com or
email contact@replicated.com

When you need to debug, you can have the company send you a “support
bundle” zip file that contains logs for all these running services:

2

If you have customers
asking you for on-prem,
you don’t have an
excuse... it’s a lot easier
than you’d think!

Gregory Koberger
Founder, ReadMe

They added a line to their ToS that everyone had to agree to before they could
install the Dockerfile.

You must not attempt to reverse engineer, read, or modify any ReadMe
code, or any code in a third party package being used by ReadMe. This
includes any code, configuration, or tools specifically related to the build
process (eg. Dockerfile).

They don't obfuscate their code, and trust their customers to not violate the ToS.
In the future, if this becomes a problem, they'll start minifying their Node before
shipping. They also created a support SLA for their companies using their
on-prem version. They give everyone their direct phone number for 24/7 support
(luckily this hasn’t been abused!), and guarantee 24-hour responses for non-vital
issues. It’s important to be proactive: since you can’t see the site or detect
issues, early on it’s important to check in every few days to make sure there’s no
issues.

“
”

http://www.replicated.com
mailto:contact@replicated.com

