
💻 AP Computer Science A – 2023 Cheat Sheet | See all AP CSA study guides | @thinkfiveable

🐒Unit 1
Primitive Types

📱Unit 2
Using Objects

✅Unit 3
Boolean Expressions & if Statements

● byte: a signed 8-bit integer. Its range is from �128 to 127.
● short: a signed 16-bit integer. Its range is from �32,768 to

32,767.
● int: a signed 32-bit integer. Its range is from

�2,147,483,648 to 2,147,483,647.
● long: a signed 64-bit integer. Its range is from

�9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

● float: a single-precision 32-bit floating point number. Its
range is from 1.4E�45 to 3.4028235E38.

● double: a double-precision 64-bit floating point number.
Its range is from 4.9E�324 to 1.7976931348623157E308.

● boolean: a boolean type, which can have either a true or
false value.

● char: a single 16-bit Unicode character. Its range is from
'\u0000' (or 0� to '\uffff' (or 65,535�.

● Create objects: Know how to create objects using the new
keyword, initialize object fields using constructors and setters,
and use the this keyword to refer to the current object.

● Classes and objects to solve problems: Practice creating
classes and objects to model real-world concepts and use them
to implement solutions to problems.

● Inheritance and polymorphism: Understand how to use
inheritance to inherit fields and methods from a parent class, and
how to use polymorphism to allow objects to be treated as
instances of their parent class or any of their implemented
interfaces.

● Interfaces: Understand how to create interfaces and use them
in your code to define a set of methods that a class must
implement.

● Access modifiers: Understand the different access modifiers
(private, protected, and public) and how they control the
visibility and accessibility of fields and methods in a class.

● ArrayLists and other collections: Understand how to use
ArrayLists and other collections to store and manipulate groups
of objects, including methods such as add(), remove(), and
size().

● Object methods: Understand how to use object methods such
as equals(), hashCode(), and toString() to compare objects,
generate hash codes, and convert objects to strings.

● Static methods and variables: Understand how to use static
methods and variables to define methods and fields that are
associated with a class rather than with objects of the class.

● Boolean expressions evaluate to either true or false, and are used
in if statements to determine whether to execute a block of code.
Make sure you understand how to create boolean expressions
using comparison operators (such as ==, !�, <, >, <=, and >=) and
logical operators (such as &&, ||, and !�.

● If statements: if statements are used to control the flow of
execution in a program. Make sure you understand how to use if
statements to execute different blocks of code based on different
conditions.

● Else and else if statements: else and else if statements can be
used to execute different blocks of code when the condition in the
if statement is false.

● Nest if statements: You can nest if statements inside other if
statements to test for multiple conditions.

● Short-circuit evaluation: When using logical operators such as &&
and ||, the right-hand side of the expression may not be evaluated
if the left-hand side determines the outcome of the expression.
This is known as short-circuit evaluation.

● Ternary operator: The ternary operator �?�� can be used as a
shorthand for if-else statements when assigning a value to a
variable.

● Switch statements: switch statements can be used as an
alternative to if-else statements when testing for multiple
conditions on a single variable.

● Boolean variables: boolean variables can be used to simplify
boolean expressions and make code easier to read and understand.

🕹Unit 4
Iteration

⚙Unit 5
Writing Classes

⌚Unit 6
Array

● Understand the different types of loops: 3 types of loops
in Java: while loops, do-while loops, and for loops.

● While loops and do while loops: while loops - used when
you want to execute a block of code repeatedly while a
certain condition is true. Do-while loops - similar to while
loops, but guarantee that the loop body will execute at
least once before checking the loop condition.

● For loops: Are used when you want to execute a block of
code a fixed number of times, or when iterating over a
collection of objects.

● Continue and break statements: continue is used to skip
over a single iteration of a loop, while break is used to exit
the loop entirely.

● Nested loops: Can be used to iterate over multiple
dimensions of an array, or to generate all possible
combinations of a set of variables.

● The scope of loop variables: Loop variables declared in a
for loop are only visible within the loop body, while
variables declared outside the loop can be accessed from
anywhere in the program.

● Efficient algorithms:When solving problems with loops, be
sure to use efficient algorithms to minimize the number of
loop iterations required.

● The concept of classes and objects: A class is a template or
blueprint for creating objects, which are instances of a class.
Make sure you understand the difference between a class and
an object, and how to create objects in Java.

● Define class attributes and methods: Class attributes are
variables that define the state of an object, while class methods
are functions that define the behavior of an object. Make sure
you understand how to define class attributes and methods, and
their data types and return types.

● Use constructors: Constructors are special methods that are
used to initialize the state of an object when it is created. Make
sure you understand how to define constructors and their
parameters.

● Use access modifiers: Access modifiers such as public, private,
and protected are used to control the visibility of class attributes
and methods. Make sure you understand how to use access
modifiers to control access to class members.

● Use inheritance: Inheritance allows you to create new classes
based on existing classes. This helps you to reuse code and to
create a hierarchy of classes. Make sure you understand how to
create subclasses and how to override methods inherited from a
superclass.

● The difference between an array and an ArrayList: An array is a
fixed-size collection of elements of the same type, while an
ArrayList is a dynamic-size collection of elements that can be of
different types. Make sure you understand the differences between
these two data structures and how to use them in Java.

● Declare and initialize arrays: Arrays are declared with a specific
size and type. Make sure you understand how to declare and
initialize arrays in Java, and how to access and modify their
elements.

● Use loops with arrays: Loops are often used with arrays to iterate
over their elements. Make sure you understand how to use for and
while loops with arrays in Java.

● Use ArrayLists: ArrayLists are a more flexible alternative to arrays,
allowing you to add, remove, and modify elements dynamically.
Make sure you understand how to declare and initialize ArrayLists,
and how to use the various methods to manipulate them.

● Use enhanced for loops: Enhanced for loops are a convenient way
to iterate over the elements of an array or an ArrayList. Make sure
you understand how to use enhanced for loops in Java.

● Use multidimensional arrays: Multidimensional arrays are arrays of
arrays. Make sure you understand how to declare, initialize, and
access elements of multidimensional arrays in Java.

https://library.fiveable.me/ap-comp-sci-a
https://5able.me/3HKUX2x
https://5able.me/3HplAZp
https://5able.me/3XNnTMZ

💻 AP Computer Science A – 2023 Cheat Sheet | @thinkfiveable | See all AP CSA study guides | @thinkfiveable

💾Unit 7
ArrayList

💻Unit 8
2D Array

Unit 9
Inheritance

● Different types of searching and sorting algorithms:
There are various searching and sorting algorithms such
as linear search, binary search, selection sort, insertion
sort, bubble sort, and merge sort. Make sure you
understand the concept behind each algorithm, and how
to implement them in Java.

● Knowwhen to use each algorithm: Each algorithm has its
own advantages and disadvantages, and is more suited to
certain situations. For example, binary search is more
efficient than linear search for large datasets. Make sure
you understand when to use each algorithm.

● Analyze the time and space complexity of algorithms:
The time and space complexity of an algorithm determines
its efficiency in terms of time and memory usage. Make
sure you understand how to analyze the time and space
complexity of algorithms, and how to compare them.

● Practice implementing algorithms: Practice implementing
searching and sorting algorithms in Java, and make sure
you understand how to write efficient and correct code.

● Understand recursion: Some searching and sorting
algorithms use recursion, which is a programming
technique where a function calls itself. Make sure you
understand how recursion works, and how to use it to
implement algorithms such as binary search and merge
sort.

● Use test cases: Use test cases to test your code and
ensure that it works correctly. Make sure you understand
how to write test cases that cover all possible scenarios.

● Recursion: Recursion is a programming technique where a
function calls itself. Make sure you understand how recursion
works, and how it can be used to solve problems.

● Identify base cases and recursive cases: Recursive functions
typically have two parts: base cases and recursive cases. Base
cases are the terminating conditions that stop the recursion,
while recursive cases are the conditions that call the function
recursively. Make sure you understand how to identify base
cases and recursive cases in problems.

● Visualize the call stack: When a recursive function is called,
each call is added to a call stack. Make sure you understand how
the call stack works, and how to visualize it to better understand
recursive functions.

● Understand recursion with arrays and ArrayLists: Recursion
can be used to solve problems with arrays and ArrayLists. Make
sure you understand how to use recursion to search and sort
arrays and ArrayLists.

● Practice solving problems with recursion: Practice using
recursion to solve problems, and make sure you understand how
to write efficient and correct recursive functions.

● Avoid infinite recursion: Infinite recursion occurs when a
function calls itself indefinitely. Make sure you understand how
to avoid infinite recursion, and how to debug recursive functions
if they do not terminate.

● Understand the concept of two-dimensional arrays:
Two-dimensional arrays are arrays that have both rows and
columns. Make sure you understand how to declare and initialize
two-dimensional arrays in Java.

● Access elements in a two-dimensional array: To access elements
in a two-dimensional array, you need to specify the row and column
index. Make sure you understand how to access elements in a
two-dimensional array using nested loops.

● Manipulate two-dimensional arrays: You can manipulate
two-dimensional arrays by changing the values of individual
elements, swapping rows or columns, and transposing the array.
Make sure you understand how to manipulate two-dimensional
arrays to solve problems.

● Practice solving problems with two-dimensional arrays: Practice
using two-dimensional arrays to solve problems, such as searching
and sorting, and matrix operations.

● Understand the relationship between two-dimensional arrays
and nested loops: Two-dimensional arrays are often used in
conjunction with nested loops. Make sure you understand how to
use nested loops to iterate through a two-dimensional array.

● Understand irregular two-dimensional arrays: An irregular
two-dimensional array is an array where each row can have a
different number of elements. Make sure you understand how to
declare and manipulate irregular two-dimensional arrays.

💯FRQ Tips
Read the instructions carefully: Make sure to read the instructions and requirements for each question carefully. Follow the prompts and answer all parts of the
question // Manage your time: You will have 1 hour and 30 minutes to complete 4 FRQs // Use proper syntax: Make sure to use proper syntax and format your code
correctly. This includes using appropriate naming conventions, indentation, and commenting your code as needed // Show your work: Include comments in your
code to explain why you made certain decisions and how your code works // Use good programming practices: Use good programming practices such as
modularity and abstraction to break down complex problems into smaller, more manageable parts // Understand the scoring rubric: Familiarize yourself with the
scoring rubric for each question. The rubric outlines the specific requirements for each question and the points allocated for each part. Review and revise: Review
your answers and revise them as needed. Check for any errors or mistakes and make sure that your code is well-organized and readable // Don't leave anything
blank: Even if you are unsure of the answer to a question, make an attempt to answer it. Partial credit can be awarded for correct answers or reasonable attempts

https://www.instagram.com/thinkfiveable
https://library.fiveable.me/ap-comp-sci-a
https://5able.me/3HKUX2x
https://5able.me/3HplAZp
https://5able.me/3XNnTMZ

