| © Unit 1 <br> Kinematics | Unit 2 <br> Newton's Laws of Motion | Unit 3 <br> Work, Energy, \& Power | Unit 4 <br> Systems of Particles \& Linear Momentum |
| :---: | :---: | :---: | :---: |
| - Scalar vs. vector <br> - 1-D motion <br> - Four kinematic equations <br> - Free-fall motion (gravity is only force) <br> - Cross product and vector addition <br> - $x(t), v(t), a(t) g r a p h s$ <br> Derivatives and integrals <br> - 2-D motion <br> - $\quad x$ and $y$ components (like 2 1-D motions) <br> - Special projectile motion formulas (symmetric) <br> - $t=\left(v_{x} \sin \theta\right) / g$ to reach max height <br> - $H=\left(v^{2}{ }_{x} \sin ^{2} \theta\right) / 2 g$ to reach max height <br> - $R=\left(v^{2}{ }_{x} \sin 2 \theta\right) / g$ range | - Newton's 1st law: inertia <br> - Newton's 2nd law: Fnet = ma <br> - Newton's 3rd law: Action and reaction force pair <br> - Equal in magnitude, opposite in direction <br> - Free-body diagrams <br> - Equilibrium (Fnet $=0$ ) when at rest OR constant velocity <br> - Friction is fun! $f=\mu N$ <br> - Static > kinetic friction <br> - Centripetal $=$ points to center $\begin{aligned} & \mathrm{Fc}=\left(m v^{2}\right) / \mathrm{r} \\ & \mathrm{ac}=\mathrm{v}^{2} / \mathrm{r} \end{aligned}$ <br> - Uniform circular motion means speed is constant but direction changes <br> $a=\sqrt{a r^{2}+a t^{2}}$ where ar is towards center and at is tangential | - $\mathrm{W}=\mathrm{F} \Delta \mathrm{r} \cos \theta$ and $\mathrm{W}=\int_{x i}^{x f} F x d x$ <br> - Conservative vs. nonconservative forces <br> - Stable vs. unstable equilibrium <br> - Wconservative $=-\Delta U$ <br> Gravity = conservative <br> - PE includes both gravitational and elastic <br> - Work-Kinetic Energy Theorem $\Sigma \mathrm{W}=\triangle \mathrm{KE}$ <br> - Hooke's Law (force law for springs) $F s=-k x$ <br> - Conservation of energy $\text { - Emech }=\Delta K+\Delta U$ <br> - Conservation of energy (including work <br> - and heat) $\text { - } \quad \Delta K+\Delta U=W+Q$ <br> - Average power $P=w / \Delta t$ | - Center of mass <br> - Conservation of linear momentum <br> Conserved when Fnet $=0$ <br> - Momentum is a vector $\therefore \quad \Sigma \mathrm{F}=\mathrm{dt} / \mathrm{dp}$ <br> - Impulse $I=\int_{t i}^{t f} \Sigma F d t$ <br> - Elastic collisions $\rightarrow$ KE and momentum conserved <br> - Objects bounce off each other <br> - Inelastic collisions $\rightarrow$ KE is NOT conserved, momentum conserved Perfectly inelastic = stick together <br> - Special elastic collision formulas |
| S叐Unit 5 <br> Rotation | 3 Unit 6 <br> Oscillations | Unit 7 <br> Gravitation | 100 FRQ Tips |

- Same kinematic equations as Unit 1 but with $\theta, \alpha, \omega$
- Angular and translational
- $\quad v=r \omega$ tangential speed
- $\quad a=r \alpha$ tangential acceleration
- Torque $\tau=r F \sin \theta$ is a vector
- Net torque $\Sigma \tau=1 \alpha$
- Clockwise
- Counterclockwise +
- Moment of inertia
- Single particle I = mr ${ }^{2}$

Hoop, cylinder, rod, sphere

- KE includes both translational and rotational
- Rotational KE = $(1 / 2) \mid \omega^{2}$
- Angular momentum $L=r m v s i n \theta$
- And $L=I \omega$
- Conserved when $\tau$ net $=0$
- Parallel-axis theorem
- $\quad \mathrm{lo}=\mathrm{Icm}+\mathrm{MD}^{2}$
- Hooke’s Law
- Fs = restoring force
- Negative when Fs and $x$ in opposite directions
- Simple Harmonic Motion (sin/cos functions)
- $\quad x(t)=A \cos (\omega t+\theta i)$
- $\quad v(t)=-\omega A \sin (\omega t+\theta i)$
- $\quad a(t)=-\omega^{2} A \cos (\omega t+\theta i)$
- $\operatorname{vmax}=\omega \mathrm{A}$ and amax $=\omega^{2} \mathrm{~A}$
- $A$ is max displacement from equilibrium
- Energy conservation
- $(1 / 2) k A^{2}=(1 / 2) m v^{2}=(1 / 2) k x^{2}$
- Orbital speed $\mathrm{v}=\sqrt{(G M) / R}$
- $\quad M$ is mass of thing being orbited
- Gravity g = GM/R2
- Add h to R if there is an altitude
- Minimum escape velocity $\mathrm{v}=\sqrt{2 G M / R}$
- Orbital period $\mathrm{T}^{2}=\frac{4 \pi^{2}}{G M} r^{3}$
- Kepler's 3rd law
- Time it takes for a revolution around something
- Circular vs. elliptical orbits
- Always list your givens at the start of the problem (m, v, a, F, etc.)
- If you are given a graph, use it!
- Make sure you know how to integrate and differentiate (i.e. u-sub)
- Relationships between variables (i.e. Fnet $=$ ma, and a = dv/dt)
- Find keywords (constant speed means $\mathrm{a}=0$, terminal speed means $t=$ infinity)
- Visualize, draw a picture or FBD!
- Use conservation of energy, especially when heights and movement are involved
- Fundamental concepts in units reappear in other units! (FBDs, kinematic equations, etc.)

