

* AP Physics C: Mechanics – 2023 Cheat Sheet | See all AP Physics study guides | @ @ @ thinkfiveable

Systems of Particles & Linear Momentum

Unit 2 Newton's Laws of Motion

Unit 3 Work, Energy, & Power

- Scalar vs. vector
- 1-D motion
 - Four kinematic equations
 - Free-fall motion (gravity is only force)
- Cross product and vector addition
- x(t), v(t), a(t) graphs
 - Derivatives and integrals
- 2-D motion
 - x and y components (like 2 1-D motions)
- Special projectile motion formulas (symmetric)
 - $t = (v_x \sin \theta)/g$ to reach max heiaht
 - $H = (v_x^2 \sin^2 \theta)/2g$ to reach max height
 - $R = (v_x^2 \sin 2\theta)/g \text{ range}$

- Newton's 1st law: inertia
- Newton's 2nd law: Fnet = ma
- Newton's 3rd law: Action and reaction force pair
 - Equal in magnitude, opposite in direction
- Free-body diagrams
- Equilibrium (Fnet = 0) when at rest OR constant velocity
- Friction is fun! f = μN
 - Static > kinetic friction
- Centripetal = points to center
 - \circ Fc = $(mv^2)/r$
 - $ac = v^2/r$
- Uniform circular motion means speed is constant but direction changes
 - \circ $a = \sqrt{ar^2 + at^2}$ where ar is towards center and at is tangential

- W = F \triangle r cos θ and W = $\int Fx \, dx$
- Conservative vs. nonconservative forces
- Stable vs. unstable equilibrium
- Wconservative = △U
 - Gravity = conservative
- PE includes both gravitational and elastic
- Work-Kinetic Energy Theorem
 - \circ $\Sigma W = \triangle KE$
- Hooke's Law (force law for springs)
 - Fs = kx
- Conservation of energy
 - \circ Emech = $\triangle K + \triangle U$
- Conservation of energy (including work
- and heat)
 - \circ $\triangle K + \triangle U = W + Q$
- Average power P = w/∆t

- · Center of mass
- Conservation of linear momentum
 - Conserved when Fnet = 0
- Momentum is a vector
 - \circ $\Sigma F = dt/dp$
- Impulse $I = \int \Sigma F dt$
- Elastic collisions → KE and momentum conserved
 - Objects bounce off each other
- Inelastic collisions → KE is NOT conserved. momentum conserved
 - Perfectly inelastic = stick together
- Special elastic collision formulas

₩Unit 5

Rotation

🜊 Unit 6 Oscillations

Unit 7

Gravitation

PRQ Tips

- Same kinematic equations as Unit 1 but with θ. α. ω
- Angular and translational
 - \circ v = r ω tangential speed
 - \circ a = r α tangential acceleration
- Torque $\tau = rF\sin\theta$ is a vector
- Net torque $\Sigma \tau = I\alpha$
 - Clockwise -
 - Counterclockwise +
- Moment of inertia
 - Single particle I = mr²
 - Hoop, cylinder, rod, sphere
- KE includes both translational and rotational • Rotational KE = $(\frac{1}{2})I\omega^2$
- Angular momentum L = rmvsinθ
 - \circ And L = I ω
 - \circ Conserved when τ net = 0
- Parallel-axis theorem
 - \circ Io = Icm + MD²

- Hooke's Law
 - Fs = restoring force
 - Negative when Fs and x in opposite directions
- Simple Harmonic Motion (sin/cos functions)
 - $x(t) = A\cos(\omega t + \theta i)$
 - $v(t) = -\omega A \sin(\omega t + \theta i)$
 - $a(t) = -\omega^2 A \cos(\omega t + \theta i)$
- $vmax = \omega A$ and $amax = \omega^2 A$
 - A is max displacement from eauilibrium
- Energy conservation
 - $(\frac{1}{2})kA^2 = (\frac{1}{2})mv^2 = (\frac{1}{2})kx^2$

- Orbital speed $v = \sqrt{(GM)/R}$
 - M is mass of thing being orbited
- Gravity g = GM/R²
 - Add h to R if there is an altitude
- Minimum escape velocity $v = \sqrt{2GM/R}$
- Orbital period $T^2 = \frac{4\pi^2}{GM} r^3$
 - Kepler's 3rd law
 - Time it takes for a revolution around something
- Circular vs. elliptical orbits

- Always list your givens at the start of the problem (m, v, a, F, etc.)
- If you are given a graph, use it!
- Make sure you know how to integrate and differentiate (i.e. u-sub)
- Relationships between variables (i.e. Fnet = ma, and a = dv/dt
- Find keywords (constant speed means a=0, terminal speed means t=infinity)
- · Visualize, draw a picture or FBD!
- Use conservation of energy, especially when heights and movement are involved
- Fundamental concepts in units reappear in other units! (FBDs, kinematic equations, etc.)