

Unit 1

Unit 2

✓ Unit 3

💡 Unit 4

Fluids

Thermodynamics

Electric Force, Field, & Potential

Electric Circuits

- **Density**: $\rho = \frac{m}{\nu}$; if the density of an object is greater than the density of water, the object will sink in water
- **Pressure**: $P = \frac{F}{A}$, $Pabs = Patm + \rho gh$ where ρgh is the guage pressure
- Archimedes' Principle: the buoyant force on an object is equal to the weight of the displaced fluid ($F = \rho \mathbb{Z} V_0 g$)
- Fluid Flow Rate: $Q = \frac{V}{t} = \frac{Al}{t}$ Continuity Equation: if $Q_1 = Q_2$, then
- $A_1v_1=A_2v_2$
- Bernoulli's Principle:

$$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$

- Faster moving fluid is at a lower pressure
- Pascal's Principle: any pressure applied to a confined and incompressible fluid is transmitted throughout
- Mechanical Advantage: F

- Temperature Conversion: $Tf = \frac{9}{5}Tc + 32$ °C, Tc = Tk - 273.15 °C
- Kinetic Energy: $KE = \frac{3}{2} kb T$; Internal energy i the sum of kinetic energies of all particles and the potential energies of all interactions
- Ideal Gas Law: PV = nRT
- $\bullet \ \Delta U = N \frac{3}{2} kb T$
- First Law of Thermodynamics: $Q = W + \Delta U$

		Q	W	ΔU
	+	heat added	increase in V	temp increase
	1	heat lost	decrease in V	temp decrease

- When +W, work is being done by the gas. When -W, work is being done to the gas
- $W = P\Delta V$
- Second Law of Thermodynamics: law of entropy, heat flows from hotter body to cooler body

- Coulomb Force: $FE = \frac{kq_1q_2}{2}$
- Electric Field: $E = \frac{kQ}{L^2}$ (measured in $\frac{N}{C}$ or $\frac{V}{m}$).
- Electric Potential: $V = \frac{kQ}{r}$ for non-uniform fields. V = Ed for uniform fields
- Equipotential lines are perpendicular to electric field lines. Equipotential lines represent locations where the voltage is the same. A metal surface is an equipotential surface since charge resides on the top of conductors.
- Charge only flows in the presence of electric fields. To generate an electric field, there must be a difference in electric potential. For example, the electric field is 0 inside of a conductor because there is no potential difference.
- Electric fields lines go from high potential to low potential. For example, they point away from positively charged particles.
- $W = q\Delta V$

- A battery doesn't create current, it creates a potential difference. Long side of the battery is high potential end.
- Capacitance: $C = k\epsilon_0 \frac{A}{d}$ (measured in F)
- Charge on Capacitor: Q = CV
- Energy: $EC = \frac{1}{2}CV^2$
- Capacitance and Resistance

Capacitan	ce	Resistance		
Series	Parallel	Series	Parallel	
$Q \square = Q_1 = Q_2$	$Q \square = Q_1 + Q_2$	$I \square = I_1 = I_2$	$I \square = I_1 + I_2$	
$\frac{1}{C^{\oplus}} = \frac{1}{C_1} + \frac{1}{C_2}$	$C \square = C_1 + C_2$	$Req = R_1 + R_2$	$\frac{1}{Req} = \frac{1}{R_1} + \frac{1}{R_2}$	
$V \square = V_1 + V_2$	$V \square = V_1 = V_2$	$V \square = V_1 + V_2$	$V \square = V_1 = V_2$	

- Ohm's Law: V = IR
- **Kirchhoff's Laws**: $\Sigma I in = \Sigma I out$ (Loop Rule) and sum of all potential drops is 0 (Voltage Rule)
- Internal resistance of battery is r
- \bullet P = IV

CUnit 5

Magnetism & Electromagnetic Induction

Q Unit 6

Geometric & Physical Optics

Unit 7

Quantum, Atomic, & Nuclear Physics

PRQ Tips

- Earth's magnetic fields come from the convective currents of the core. Magnetic fields deflect the sun's rays making Earth habitable.
- Feromagnetic materials like iron and neodynium have the ability to make electron spins line up. Heating soft magnets (iron) unaligns spins and reduces magnetic field
- Magnetic field goes in concurrent circles around wire; direction is determined using
- Magnetic Field: $B = \frac{\mu_0 I}{2\pi r}$ (measured in T)
- Magnetic Force: $FB = l(I \times B) = BIlsin\theta$ or $FB = q(v \times B) = qvBsin\theta$; determine the direction of force using RHR
- Faraday's Law: $\varepsilon = -N \frac{\Delta \Phi}{\Delta t}$ where $\Phi = B.A$
- Lenz's Law: The direction of induced current will be to produce a field that counterracts the magnetic field
- Motional emf: $\varepsilon = Blv$

• Mirror and Lens Equation: $\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_1}$ where d_0 is always positive.

		Mirror	Lens
	$d_{ m i}$	+ if image is in front of mirror (real) - if image is behind mirror (virtual)	+ if image behind lens - if image in front of lens
	f	+ if concave mirror - if convex mirror	+ for convex lens (converging) - for concave lens (diverging)

- Magnification: $M = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$
- · Light that isn't refracted is reflected
- Snell's Law: $n_i sin\theta_i = n_r sin\theta_r$
- The critical angle is the angle at which total internal reflection occurs
- Thickness of $\frac{\lambda'}{2}$ for constructive interference; $\frac{\lambda'}{4}$ for destructive interference.
- $\lambda' = \frac{n\lambda}{n'}$ where $n = \frac{c}{v}$
- Young's Double Slit Experiment Equation:

- $r = \frac{n^2 h^2}{mkq^2} = n^2 a_0$ $E = -\frac{mk^2 q^4}{2h^2 n^2} = -\frac{z^2 w_0}{n^2}$ where $w_0 = 13.6 \, eV$ and z
- $E = \hbar f = \frac{hc}{\lambda}$ where \hbar is Planck's constant
- Light can act as both a wave and a particle depending on the situation. An electron is called a photelectron if broken off by photon
- $E\varphi = \varphi + K$ where φ is the incident photon
- Stopping Potential: voltage at which photoelectrons are prevented from reaching the
- Work Function: energy that it takes to break off a photoelectron; every metal has its own work function
- Threshold Frequency: minimum frequency needed to produce photoelectrons
- The slope of Stopping Potential v. Light Frequency is ħ
- DeBroglie's Wavelength: $\lambda = \frac{h}{n}$

- · Start every FRQ by writing out all of the
- Always write the original equation. For example, always write $\Sigma F = ma$ or E = E'before solving.
- Always write units.
- Remember that the 3 most important things in every graph are the y-intercept, the slope, and the area under the curve.
- · Keep all written explanations precise and
- Be detailed when explaining experiment
- Don't worry about rounding decimal answers. Two to three decimal places is typically recommended.
- If unable to find the answer to the first part of a problem, make up an answer and use that answer to solve all following parts to obtain as many points as possible.
- Stay calm and don't panic!