Unit 1
Exploring One-Variable Data

Categorical data (not numerical) is shown in two-way tables \& ba graphs, analyzing proportions
Quantitative data is displayed in histograms, dotplots, box plots, stem and leaf plots, and scatterplots. Mean: non-resistant (affected by outliers)
Median: resistant (affected by outliers)
Unimodal = one clear peak, Bimodal two clear peaks, Uniform = no clear peaks, flat
Use comparison words when comparing distributions

- For a histogram -> make sure you approximate the mean (500-750 units) and use words like "no more" "approximately" when describing range
- When analyzing distributions, always CUSS \& BS in context - Center, Unusual features, Shape, Spread (remember skew pulls mean), BE SPECIFIC and always contextualize your answer.
- Normal distribution: mound-shaped and symmetric. Its parameters are mu (μ) for mean and sigma σ for standard deviation.
- Calculate z-score (value-mean / SD), measuring how many SD a value is from a mean
- The Standard Normal Distribution has
a Mean of 0 and a SD of 1
- Empirical Rule: 68\% of observations within 1 S

For categorical data to be independen conditional

- frequency = marginal frequency
- For quantitative data, always describe
associations with
direction, strength, form.
- Dlrection - positive / negative (slope)
- Form - linear / non-linear
- r (correlation coefficient) measures strength \& direction, NOT FORM
- Least Squares regression line (LSRL) predicts values of response variable (y) given
explanatory variable (x)
- LSRL written as $\hat{y}=a+b x$
- $\hat{y}=$ predicted value of rsp variable
- $\mathrm{a}=\mathrm{y}$-int, $\mathrm{b}=$ slope
- Residual = predicted - actual
- Look for random scatter on residual plot!
- Using LSRL to make predictions outside the interval of values of x used to make the
equation of the line=extrapolation
- S \& R-sq influenced by outliers (s \uparrow, r-sq \downarrow)

Key Interpretations: (For FRQ Writing)

- Slope/b: As the [exp var.] increases by 1 [unit],
the [rsp var.] is predicted to increase by b
[units].
- Y-intercept: When there are zero [exp var], the predicted [rsp var.] is y-int.
- \mathbf{s} : When using LSRL to predict [rsp var] from
[exp var] we are typically off by [value of s].
- $\mathbf{r}^{\mathbf{2}}$ (in \%): About [r-sq]\% of variation in [rsp var]
is explained by the LSRL using [exp var].
- a residual: The actual (rsp var) is about
[residual] more/less than the predicted (rsp var).

Unit 3
Collecting Data

Unit 4

Probability, Random Variables, \& Probability Distributions

- Probability = the chance of an event occurring, expressed in a decimal ($0-1$)
- P (event) = successful outcomes / total outcomes
- Complement of an event P (not event) is equal to 1 - P (event)

Common complements = at least, at most, greater/less a certain size has an equal chance of being selected

- Cluster Sample=Divide pop. into
heterogeneous groups [all from some]
- Stratified Random Sample=Divide pop. into strata of homogeneous groups [some from all]
- Why stratify by X, explain why indivs in those strata would have different rsps as opposed to some other variable
- Stratifying: \downarrow variability, \uparrow precision
- Bias types=undercoverage, nonresponse response bias (inaccurate)-Always say if it leads to over/underestimate of a rsp
- EXPERIMENTS ASSIGN TREATMENTS
- Confounding-When a variable and the exp. variables are associated in a way that their effects on a rsp. Variable can't be
distinguished from one another
- Experiments have comparison, random assignment (creates roughly equiv. groups of exp. units by balancing the effects of other variables among treatment groups), control (helps avoid confounding \& \downarrow variability in rsp var.), \& replication (any diffs in effects of treatments can be distinguished from chance differences b / w groups)
- Randomized block design: random assignment of treatments is carried out separately in each block
- Blocks share a var that may impact rsp \downarrow variability in rsp var, allows for easier comparison of treatments
- Matched pairs = compare 2 treatments in block size 2
- $\quad P(A$ and $B=P(A \cap B)=$ probability that BOTH events A and B occur

In a 2 -way table $=$ intersection In a 2-way table = intersection
of the two events divided by of the two events divided
full total of the two events Using condt'l probability $=P(A)$ Using condt'l probability $=P(A)$
$* P(B \mid A)$ $P(A$ or $B)=P(A \cup B)=$ probability th either events A or B occur

- Conditional Probability $=P(A \mid B)=P(A$ given $B)=$ probability that event A given $B)=$ probability that event A occurs giver $\quad \circ \quad P(A \mid B)=P(A$ and $B) / P(B)$
- Events are mutually exclusive if $P(A$ or $B)$ Events are mu
$=P(A)+P(B)$
- Events are indep if $P(A \mid B)=P(A)$ OR if
$P(A$ and $B)=P(A) * P(B)$
- Random variables are quantitative and take numerical values determined by th outcome of a chance event.
- Discrete = has a set number of values like number of coins that land heads or composite ACT score
- Expected Value (OR MEAN) of discret random variable is calculated using (x_1*p_1) + (x_2*p_2)..+(x_i*p_i)
- Continuous random var takes on all values in an interval of numbers, values in an interval of numbers,
- Binomial Random Variables: multiple trials of the same event

Independent (10\%), Number of fixed trials, Same probability of success p
Parameters: n (number of trials) \& p (prob of success on any trial), $x=$ successes

- Geometric Random Variables are STILL independent with fixed probability of success without trials set previously Check Binary, Indep, same prob of success p
* Unit 8 Chi-Squares / 3 Unit 9 Slopes

Unit 8 - Chi-Square Inference:

Major Formula:
$\chi^{2}=\Sigma\left((\text { observed }- \text { expected })^{2} /\right.$ expected $)$
3 Tests: GoF, Independence, and Homogeneity
1 Type of Statistical Inference: Hypothesis Test

- Chi-Squared is a non-parametric test meaning we do not make assumptions - Remember to calculate your df ($\mathrm{n}-1$)

3 Major Conditions: random, indep., at least 5 success/fail

Remember to name the correct type of test

Unit 9-Inference for Slopes

LSRL Equation for Inference for Slopes: $\mu=a+\beta x$
5 Major Conditions: Linear, Indep, Normal, equal SD, Random

For a confidence interval - use this equation t t* SEb)
For unit 9 , $d=n$ if - use this equation: ($\mathrm{B}-\beta 0$)/SEb

