- Unit 1 Kinematics	(G)Unit 2 Dynamics	Unit 3 Circular Motion \& Gravitation	Unit 4 Energy
- Vector vs. Scalar: Vectors include directions - Displacement vs. Distance - Velocity vs. Speed: Velocity is a vector. ALWAYS include direction for velocity. - Acceleration (also a vector) - Linearization - Big Four Equations $\begin{aligned} & V_{x}=V_{x o}+a t \\ & \Delta x=V_{0} t+1 / 2 a a^{2} \\ & V_{x}{ }^{2}=V_{0}^{2}+2 a(\Delta x) \\ & \Delta x=1 / 2 t\left(V_{x 0}+V_{x}\right) \end{aligned}$ - Projectile Motion - Position-Time Graphs - Velocity-Time Graphs (slope of position graph) - Acceleration-Time Graphs (slope of velocity graph) - Acceleration due to Gravity ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)	- Equilibrium: net force is equal to $\mathbf{0}$ - Newton's 1st Law - Law of Inertia - Newton's 2nd Law - Force $=$ mass \times acceleration - Newton's $3 \leftarrow$ Especially $\Sigma F=$ ma - Third Law Force Pairs (equal and opposite) - Friction $\mathrm{Ff}=\mathrm{F}_{\mathrm{n}} \mu$ - Coefficient of friction (μ) - Ramps/Inclined Planes - Know how to create free body diagram with angles - Force Body Diagrams - Force and Net Force	- Centripetal Force: not a force, just an expression for the net force $\text { - } \quad \mathrm{Fc}=\mathrm{mv}^{2} / \mathrm{r}$ - Centripetal Acceleration $\text { - } \quad A C=v^{2} / r$ - Universal Gravitation - Uniform Circular Motion: constant speed (magnitude of velocity is constant) - Combos with Forces, Energy, Simple Harmonic Motion, Rotation - Inertial mass vs. Gravitational mass - How do you find each one experimentally?	- Work (W = Fd) - Parallel: (+) Work Antiparallel: (-) Work - Work $=$ Change in Energy - PEg, PEs, 2 kinds of KE $\begin{array}{ll} \circ & \mathrm{PEg}=\mathrm{mgh} \\ \circ & \mathrm{PEs}=(1 / 2) \mathrm{kx} x^{2} \\ \circ & \mathrm{KE}=(1 / 2) \mathrm{mv}^{2} \\ \circ & \mathrm{KEr}=(1 / 2) \mathrm{I} \omega^{2} \text { (rotational } \\ & \text { motion) } \end{array}$ - Mechanical Energy: the sum of a system's kinetic and potential energy - Power ($\mathrm{P}=\mathrm{W} / \mathrm{t}$) or ($\mathrm{P}=\mathrm{Fv}$) - Conservation of Energy - Bar Charts, Graphs \& Diagrams
Unit 5 Momentum	Unit 6 Simple Harmonic Motion	Unit 7 Torque \& Rotational Motion	100 FRQ Tips
- Momentum ($p=m v$) - The direction of momentum is the same as the direction of motion - Impulse ($\mathrm{J}=\mathrm{Ft}$) - F vs t graphs (impulse $=$ area under curve) - Conservation of Momentum - Center of Mass - Combo with Energy, Rotational, Forces - Collisions (Inelastic vs. Elastic) - Elastic \rightarrow Kinetic Energy and Momentum are conserved - Inelastic \rightarrow Momentum is conserved - The velocity of the center of mass in a closed system is constant	- Spring \& Pendulum - Energy relationships - $\mathrm{F}, \mathrm{a}, \mathrm{v}, \mathrm{x} \leftarrow$ Diagrams \& Graphs - Combo with Forces, UCM, Energy, Rotational - Hooke's Law ($\mathrm{F}=\mathrm{kx}$) - Period Equations - What affects the period of a pendulum? $\mathrm{T}=2 \pi(\sqrt{l} / \sqrt{g})$ L is the length of a pendulum g is the gravitational field - What affects the period of a mass on a spring? - $\mathrm{T}=2 \pi(\sqrt{m} / \sqrt{k})$ - m is the mass attached to the spring - k is the spring constant $\rightarrow \mathrm{a}$ higher spring constant is indicative of a stiffer spring	- Rotational Kinematics (θ, ω, α) - Same as Unit 1 Big 4 equations, but with new symbols - Remember $x=\theta R, v=\omega R$, a $=\alpha \mathrm{R}$ - Torque \& Moment of Inertia ($\Sigma \tau=1 \alpha$) - Torque: a force applied to a point on an object about the axis of rotation (not the center of mass) - Net Torque causes angular acceleration - Rotational KE and Conservation of Energy - Angular Momentum \& Conservation of Momentum - Angular "Impulse"	FRQ Breakdown: - Experimental Design: Tests ability to design and analyze lab data. - Quantitative \& Qualitative Translation: Tests ability to translate between quantitative and qualitative reasoning. - Paragraph Argument: Tests ability to make a coherent argument in a physics phenomenon. - Short-Answer (2): Tests skills not highlighted in other questions. Solving Tips: - Does this equation model the correct observations? - Are the variables showing a direct or indirect relationship? - Cite info from the problem - Bring in Basic Physics - Describe how the info works with the Physics - Answer the question with a claim

