| Unit 1 Kinematics | ©Unit 2 Dynamics | Unit 3 Circular Motion & Gravitation | 从Dnit 4 Energy | |---|---|---|---| | Vector vs. Scalar: Vectors include directions Displacement vs. Distance Velocity vs. Speed: Velocity is a vector. | Equilibrium: net force is equal to 0 Newton's 1st Law Law of Inertia Newton's 2nd Law Force = mass x acceleration Newton's 3 ← Especially ∑F=ma Third Law Force Pairs (equal and opposite) Friction Ff = F_nµ Coefficient of friction (µ) Ramps/Inclined Planes Know how to create free body diagram with angles Force Body Diagrams Force and Net Force | Centripetal Force: not a force, just an expression for the net force Fc = mv²/r Centripetal Acceleration Ac = v²/r Universal Gravitation Uniform Circular Motion: constant speed (magnitude of velocity is constant) Combos with Forces, Energy, Simple Harmonic Motion, Rotation Inertial mass vs. Gravitational mass How do you find each one experimentally? | Work (W = Fd) Parallel: (+) Work Antiparallel: (-) Work Work = Change in Energy PEg, PEs, 2 kinds of KE PEg = mgh PEs = (½) kx² KE = (½) mv² KEr = (½) lω² (rotational motion) Mechanical Energy: the sum of a system's kinetic and potential energy Power (P = W/t) or (P = Fv) Conservation of Energy Bar Charts, Graphs & Diagrams | | Unit 5 Momentum | Unit 6 Simple Harmonic Motion | Whit 7 Torque & Rotational Motion | 🢯 FRQ Tips | | Momentum (p=mv) The direction of momentum is the same as the direction of motion Impulse (J = Ft) F vs t graphs (impulse = area under curve) Conservation of Momentum Center of Mass Combo with Energy, Rotational, Forces Collisions (Inelastic vs. Elastic) Elastic → Kinetic Energy and Momentum are conserved Inelastic → Momentum is conserved The velocity of the center of mass in a closed system is constant | Spring & Pendulum Energy relationships F, a, v, x ← Diagrams & Graphs Combo with Forces, UCM, Energy, Rotational Hooke's Law (F = kx) Period Equations What affects the period of a pendulum? T = 2π(√l/√g) L is the length of a pendulum g is the gravitational field What affects the period of a mass on a spring? T = 2π(√m/√k) m is the mass attached to the spring k is the spring constant → a higher spring constant is indicative of a stiffer spring | Rotational Kinematics (θ,ω,α) Same as Unit 1 Big 4 equations, but with new symbols Remember x = θR, v = ωR, a = αR Torque & Moment of Inertia (Στ = Iα) Torque: a force applied to a point on an object about the axis of rotation (not the center of mass) Net Torque causes angular acceleration Rotational KE and Conservation of Energy Angular Momentum & Conservation of Momentum Angular "Impulse" | FRQ Breakdown: Experimental Design: Tests ability to design and analyze lab data. Quantitative & Qualitative Translation: Tests ability to translate between quantitative and qualitative reasoning. Paragraph Argument: Tests ability to make a coherent argument in a physics phenomenon. Short-Answer (2): Tests skills not highlighted in other questions. Solving Tips: Does this equation model the correct observations? Are the variables showing a direct or indirect relationship? Cite info from the problem Bring in Basic Physics Describe how the info works with the Physics Answer the question with a claim |