| Unit 1 Chemistry of Life | QUnit 2 Cell Structure & Function | Unit 3 Cellular Energetics | |---|--|--| | Water has hydrogen bonds = fun, special properties! Cohesion (water molecules stick to each other) Adhesion (water molecules stick to other surfaces) Surface tension (bugs walk on water!) Hydrolysis = cleave monomer bonds; dehy. synt. = form DNA and RNA: made of nucleic acids, genetic information Nucleotides made of (1) deoxy/ribose, (2) phosphate grp, (3) nitrogenous base. Proteins: made of amino acids; order of the polypeptide ⇒ protein's structure and function. Carbohydrates: made of sugar monomers; store energy! Lipids: nonpolar, vary in saturation; found in cell membrane | Organelle mania: ribosomes make proteins; ER detoxes, makes lipids; Golgi complex folds, packages proteins; mitochondria powerhouse of cell; lysosomes expels waste Inner membrane folds → increase surf. area more ATP made! more resources, more waste expelled = win, win! High surface area + smaller volume = ideal ratio for cells Phospholipid bilayers are (p)icky: nutrients pass on their own, some need channel proteins to chaperone Small nonpolar (N₂, O₂, CO₂) easily pass; large polar don't Passive transport = high to low conc. w/o ATP cost Facilitated diffusion uses proteins to move H2O, Na⁺, K⁺, etc Active transport = low to high. conc. w/ ATP cost (bike up hill) Endosymbiosis theory: organelles merged>form new species | Enzymes lower activation energy ⇒ catalyze chem rxn Enzymes meet substrate @ active site Enzymes love certain pH, temperature, concentration; otherwise they'll be less efficient or denature Competitive inhibitors (compete for active site) and noncompetitive inhibitors (sabotage active site binding) = BAD PHOTOSYNTHESIS - 2 parts: (1) chlorophylls charge electrons in photosystems I and II w/ light energy; (2) Calvin cycle powers carb. production @ stroma using electrons Cell respiration (need O₂) & fermentation (don't need) make ATP CELL. RESPIRATION: transfer of electrons → proton gradient → ATP produced → organism uses up energy → cycle repeats! Big takeaway: organisms always need energy to function! | | Unit 4 Cell Communication & Cell Cycle | Unit 5 Heredity | Sene Expression & Regulation | | SIGNALING types: paracrine = nearby cells, endocrine = long distances, autocrine = within own cell SIgnal transduc.: reception → transduction → response Reception: ligand (molecule) binds to cell memb. receptor (e.g. ion-gated channel, G-protein coupled receptor) Transduction: signal amplifies w/ help of messengers Response: gene transcription activates/some other way Negative feedback = reduce stimulus (insulin & glucose). Positive feedback = increase response (oxytocin & birth) Cell cycle: three stages of interphase (G1, S, G2) before it enters into mitosis Mitosis: cell duplicates entire genome → identical daughter cells | Meiosis: di→haploid set of chromosomes (n) Meiosis I: homologous chromosomes cross over (swap bits) and split (X X >>> X and X) Meiosis II: sister chromatids (X >>> \ and /) Crossing over & indep. assortment = more genetic diversity Mono/dihybrid crosses = handy tool to predict inheritance patterns for autosomal/sex-linked genes. Genotype = genetic makeup, phenotype = appearance Pedigrees – use to track traits across multiple generations! Environment can affect phenotype: weight, melanin, fur color Human genetic disorders – caused by mutated alleles, chromosome changes (nondisjunction), etc | DNA replicates 5' to 3'-style, semi-conservative way Enzyme mania: helicase = unwinds; topoisomerase = prevents coiling; DNA polymerase = builds DNA molecule; ligase = combines fragments in lagging strand. Transcription: DNA copied into RNA; processing involves (1) GTP cap and poly-A tail addition + (2) intron splicing Translation: ribosome reads mRNA ⇒ protein! Gene expression - regulated by transcription factors (eukaryotic) or operons (prokaryotic). DNA mutations ⇒ protein loses/gains function (or unaffected) Gel electrophoresis: separates DNA fragments by size PCR: amplifies DNA segments Bacterial transformation: introduces DNA to bacterial cells. | | Unit 7 Natural Selection | \$ Unit 8 Ecology | 炒 FRQ Tips | | Reproductive success = evolutionary fitness Competition + selective pressure ⇒ natural selection Random events (mutations) & genetic drift drive evol. Use Hardy-Weinberg equation to predict equilib. freqs! Common ancestry links lots of organisms Phylogenetic trees, cladograms: relates diff. lineages Extinction: provides newly available niches. Variation: affects population dynamics | Homeostasis = maintain internal equilibrium, respond to env. Net gain in energy = growth in an organism! Endotherms: use heat → int. temps. (exotherms can't) Some factors limit populations; popns create s (logistic) curve Simpson's Diversity Index: calculates ecosystem diversity More biodiversity in ecosys. = more resilient to disruptions Kinds of species interactions: commensalism, mutualism, parasitism, predator-prey, competition, etc. Going up a trophic level = only 10% energy transferred; most energy lost via heat | Read. The. Question. Carefully. (read directions carefully) Figure out which are worth the most points, the least points, will take the longest, will be the quickest then prioritize! Identify and graph/draw questions = quickest to respond to (don't require complete sentences) and get out of the way Skip the fluff and go straight to the point Label your responses (a, b, c,) COMMIT TO YOUR ANSWER! Erase "might" and "possible" and "I think" from your vocabulary If possible, always give an example |