

✓ Unit 1 Electrostatics

Unit 2

Unit 3

Conductors, Capacitors, & Dielectrics

Electric Circuits

- Law of conservation of charge
- Conductors
 - Charge distributes evenly throughout, does not hold its charge
 - Inside has zero net charge
- Insulator:
- Charge will not distribute evenly, holds charge in
- Grounded: object touches earth through conductor, electrons
- Ways to induce charge: friction, conduction, induction
- Coulomb's Law: Fe = kg1g2/r²
 - o Positive Fe: repel, Negative Fe: attract
- Electric fields: E = F/q, $E = kQ/r^2$ for a point charge
- Density of electric field lines proportional to magnitude of field, direction is direction of a positive charge
- Electric Field due to a continuous charge distribution: E = ∮ dE \circ dE = k/r^2 dq
- Charge Densities:
 - o dq= λ dx, dq= σ dA, dq= ρ dV
- Gauss' Law: Flux of an electric field: $\Phi = E*A \cos \theta = \oint EdA =$ 4πkQenclosed
- Gaussian Surfaces:
 - o Symmetries: planar, cylindrical, spherical
 - o Field needs to be tangent/perpendicular
- Electric Potential Energy:
 - Electric field is doing work on particle, goes from high potential to low potential energy, gaining KE, losing U
 - Must be a conservative force, Δ U = -Fd
- Electric Potential: electric potential energy per unit charge in an area of space, positive plate is always high potential
 - o Vo = Uo/q
- Potential Difference (voltage): $\Delta V = -W/q = \Delta U/q = -\int E dx$
 - \circ V = k $\int dq/r$, V is a scalar!
- Equipotential Lines/Surfaces: perpendicular to electric field, regions of space at same electric potential
 - \circ Es = -dV/ds
 - o If two charges are the same, pulling them apart increases potential energy, pushing them together decreases potential energy and vice versa for same charges

- Capacitor: device that stores electric charge and energy. made up of two conductors separated by an insulator
 - \circ Q = C Δ V
- Parallel Plate Capacitor: C = Eo A/d
- Isolated Sphere: $C = 4\pi Eoa$
- Multiple Capacitors:
 - o Parallel: Ceq = C1 +C2 +...
 - Series: 1/Ceq = 1/C1 +1/C2 +...
- Energy Storage: ΔU = QV/2 = Q²/2C = Cy²/2
 - \circ U = $\frac{1}{2}$ Eo E² Ad
 - Stored energy density: $\mu = \frac{1}{2}$ Eo E²
- Dielectrics: nonconducting materials become ionized at dielectric breakdown 3*10^6
 - Since capacitors are limited by dielectric strength of air we introduce dielectrics to increase capacitance
 - They increase the electric field strength or increase the charge on the plates if there is a batterv
 - C = K Cair
 - ε = k ε o = permittivity of material
 - K > 1 for capacitor with a dielectric
 - If a battery is connected, constant voltage
 - If grounded, constant charge

- Current: I = da/dt
 - Current Density: J = I/A, I = ∮ J dA
 - J = neVd
- Resistance: R = V/I, R = Lp/A
 - ο ρ = E/J
- Ohm's Law: V = IR
- Power: describes brightness
 - \circ P = dW/dt = IV = I²R
- Electromotive force: = ε= dW/da • Kirchhoff's Loop Rule: ΔV = 0 for closed loops
- Kirchhoff's Junction Rule: In = lout for any junction
- Emf= V=ε -ir, internal resistance of the source
- RC Circuits Resistor + Capacitor
 - Charging: $q = C\epsilon(1 e^{-t/RC})$
 - I = loe^(-t/RC)
 - Discharging: $q = qo e^{-t/RC}$
 - I = loe^(-t/RC)
- Capacitors in Circuits:
 - Initial State: t = 0
 - Q = 0. Vc = 0. I = Vb/R
 - Steady State: t = ∞
 - Q = CVb, Vc = Vb,I = 0

CUnit 4

Magnetic Fields

- Magnetic Force: Fm = q(v xB)
 - \circ r=mv/qB when sin θ = 1
 - Magnetic fields do no work because velocity never changes, only direction
- Right Hand Rule: thumb is velocity, fingers are magnetic field, palm is direction of force
- Current Carrying Wires: dF = da (dI/dt)xB
 - Fµ = [I dI xB
 - \circ B = μ ol/2 π r
- Biot-Savart's Law: when you can't use Ampere's law because the B-field is not constant
 - o dB = μ oldlxr/4 π r^2
- Ampere's Law: basically Gauss's law, draw an amperian gool
- Solenoids: bunch of tightly wound wires
 - B = N µol/l = Bs = µol

Unit 5

Electromagnetism

- Electromagnetic induction means generating electricity by using a magnetic field to produce a voltage
- Magnetic Flux: Φ = B*A cos θ = ∮ BdA
 - o Can be changed in three ways:
 - Changing magnetic field, loop area, angle
- Lenz's Law: fixes negative sign in Faraday by finding direction of induced current
- Faradav's Law: $\varepsilon = -d\Phi/dt = -N d\Phi/d$
- Inductors: typically a solenoid
 - \circ VI = 1/2Li², ε =-LdI/dt
 - о Ф=П
 - Act open at t=0
- LC Circuit: cycle between charged for each at opposite times
- LR Circuit: same as RC but time constant is R/L
- Maxwell's equations: changing E-field induces magnetic field and vice versa
 - Gauss' Law + Ampere's Law + Faraday