. Unit 1 Kinematics	Unit 2 Newton's Laws of Motion	Unit 3 Work, Energy, \& Power
- Scalar vs. vector - 1-D motion - Four kinematic equations - Free-fall motion (gravity is only force) - Cross product and vector addition - $\mathrm{x}(\mathrm{t}), \mathrm{v}(\mathrm{t}), \mathrm{a}(\mathrm{t})$ graphs Derivatives and integrals - 2-D motion - $\quad x$ and y components (like 2 1-D motions) - Special projectile motion formulas (symmetric) $t=\left(v_{x} \sin \theta\right) / g$ to reach max height	- Newton's 1st law: inertia - Newton's 2nd law: Fnet = ma - Newton's 3rd law: Action and reaction force pair - Equal in magnitude, opposite in direction - Free-body diagrams - Equilibrium (Fnet $=0$) when at rest OR constant velocity - Friction is fun! $f=\mu N$ - Static > kinetic friction - Centripetal = points to center $\begin{aligned} & \mathrm{Fc}=\mathrm{r} \\ & \mathrm{ac}=\mathrm{r} \end{aligned}$ - Uniform circular motion means speed is constant but direction changes - where ar $a=$ is $\sqrt{ }$	- $W=F \Delta r \cos \theta$ and $W=\int d x$ - Conservative vs. nonconservative forces - Stable vs. unstable equilibrium - Wconservative $=-\Delta U$ - Gravity = conservative - PE includes both gravitational and elastic - Work-Kinetic Energy Theorem $\text { - } \quad \Sigma W=\triangle K E$ - Hooke's Law (force law for springs) $\text { - } \quad F s=-k x$ - Conservation of energy $\text { - Emech }=\Delta K+\Delta U$ - Conservation of energy (including work - and heat) $\Delta K+\Delta U=W+Q$ - Average power $\mathrm{P}=\mathrm{w}$
 Rotation	Unit 6 Oscillations	Unit 7 Gravitation
- Same kinematic equations as Unit 1 but with θ, α, ω - Angular and translational $v=r \omega$ tangential speed $a=r \alpha$ tangential acceleration - Torque $\tau=r F \sin \theta$ is a vector - Net torque $\Sigma \tau=1 \alpha$ - Clockwise - - Counterclockwise + - Moment of inertia - Single particle I = mr2 - Hoop, cylinder, rod, sphere - KE includes both translational and rotational - Rotational KE = I $\omega 212$ - Angular momentum $L=r m v s i n \theta$ - And L = I ω - Conserved when τ net $=0$ - Parallel-axis theorem - $\quad \mathrm{IO}=\mathrm{ICM}+\mathrm{MD} 2$	- Hooke's Law Fs = restoring force - Negative when Fs and x in opposite directions - Simple Harmonic Motion (sin/cos functions) $\begin{array}{ll} \circ & x(t)=A \cos (\omega t+\theta) \\ \circ & v(t)=-\omega A \sin (\omega t+\theta) \\ \circ & a(t)=-\omega A \cos (\omega t) 2+\theta i \end{array}$ - $\operatorname{vmax}=\omega \mathrm{A}$ and $\operatorname{amax}=\omega \mathrm{A} 2$ - A is max displacement from equilibrium - Energy conservation - kA mv kx	- Orbital speed $v=\checkmark$ RGM - $\quad M$ is mass of thing being orbited - Gravity g = R2GM - Add h to R if there is an altitude - Minimum escape velocity $v=\sqrt{ }$ R2GM - Orbital period Tr Kepler's 3rd law - Time it takes for a revolution around something - Circular vs. elliptical orbits

Unit 4

Systems of Particles \& Linear Momentum

- Center of mass
- Conservation of linear momentum
- Momentum is Conserved when Fnet $=0$
- Momentum is a vector
- Impulse I = F dt
- Elastic collisions \rightarrow KE and momentum conserved
- Objects bounce off each other
- Inelastic collisions \rightarrow KE is NOT conserved, momentum conserved
- Perfectly inelastic = stick together
- Special elastic collision formulas
- $\quad v) v) \vee 1 f=(m 1+m 2$
- Always list your givens at the start of the problem (m, v, a, F, etc.)
- If you are given a graph, use it!
- Make sure you know how to integrate and differentiate (i.e. u-sub)
- Relationships between variables (i.e. Fnet = ma , and $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$)
- Find keywords (constant speed means $a=0$, terminal speed means $t=$ infinity)
- Visualize, draw a picture or FBD!
- Use conservation of energy, especially when heights and movement are involved
- Fundamental concepts in units reappear in other units! (FBDs, kinematic equations, etc.)

