

BeatBox-iST workflow for efficient, high-throughput protein analysis of different cell types

¹Chloé Moritz, ¹Katrin Hartinger, ¹Zuzana Demianova | ¹PreOmics GmbH, Martinsried, Germany

Spotlights

- Up to 96 samples homogenized in 10 min¹
- Small footprint, quiet operation at a steady temperature for the modern lab
- From eukaryotic to prokaryotic cell types
- From thousands to ten million of cells per well
- Seamless integration with iST workflows²

Materials & Methods

- Input: S.cerevisiae (4.4E6 cells), E.coli (8.4E7 cells) and HEK293 (4E5 cells)
- Sonication: Boiling step (95 °C, 10 min) followed by 10 sonication cycles, 30 sec on, 30 sec off in iST LYSE buffer
- BeatBox: No boiling step except for yeast (95 °C, 10 min), followed by 10 min homogenization with standard power setting in iST LYSE buffer
- Sample digestion/peptide clean-up: iST workflow
- Protein assay: Micro BCA™ Protein Assay Kit (ThermoFisher Scientific)
- MS and data analysis: EASY-nLC™ 1200 TimsTOF Pro, MaxQuant (v 2.0.1.0), STRING (v11.5)

Workflow

Results & Discussion

- **Protein yields**
- BeatBox significantly improves protein yields for *E.coli* and *S.cerevisiae*
- For HEK cells, BeatBox provided better protein IDs despite lower protein yields

BeatBox

Overlap Sonication

Protein identification rate

- Similar protein groups IDs were obtained for each species
- HEK293 cell line shows a higher difference between extracted proteins by BeatBox and the sonication technique
- CVs below 3% for protein groups and peptides IDs

Shared GO	BeatBox specific GO	Sonication specific GO
Intracellular	Organelle membrane	Catalytic complex
Intracellular organelle	Microtubule cytoskeleton	Autophagosome
Organelle	Microtubule organizing center	
Intracellular membrane-bounded organelle	Centrosome	
Membrane-bounded organelle	Spindle	
Cytoplasm	TRAPP complex	
Nucleus	Endosome	
Nucleoplasm	Ubiquitin ligase complex	
Cytosol	Endomembrane system	
Nuclear lumen	Bounding membrane of organelle	
Protein-containing complex	Organelle envelope	
Cellular anatomical entity	Vesicle tethering complex	
Transferase complex	Lysosomal membrane	
Intracellular organelle lumen		

Specific Gene Ontology Cellular Component

 HEK293 cell line lysed by BeatBox show solid improvements in the enrichment of membrane-related protein groups

Conclusions

- BeatBox provides high-throughput, efficient, and reproducible lysis across various cell types
- Similar and in-depth proteomic data were obtained using both homogenization techniques
- Equal protein IDs and superb reproducibility were achieved with 4-time less cells in the sample
- Enrichment of cellular component protein groups was measured in BeatBox lysed cells.

References

- ¹Technical note: BeatBox: Tissue homogenization simplified (www.preomics.com/resources)
- ²Application note: High-throughput homogenization technique for deeper analysis of multiple mouse tissue proteomes (www.preomics.com/resources)