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W ith the rise of artif i -
cial intelligence (AI) 
and machine learning 
(ML), the legal, ethical, 

and safety implications of their use are 
becoming increasingly pivotal in busi-
ness and society (for example, in autono-
mous vehicles). We are currently entering 
a new phase of the ”digital revolution” 
that might be termed big algo (cf. big data). 
We repurpose big data’s 5 V’s:

›› Volume: Soon there will be bil-
lions of algorithms interacting 
with each other.

›› Velocity: Algorithms are increas-
ingly making real-time, crucial 
decisions with minimal human 
intervention.

›› Variety: This is ubiquitous, from 
autonomous vehicles to med-
ical treatment, employment, 
and so on.

›› Veracity: This involves critical 
characteristics, such as reliabil-
ity, legality, fairness, accuracy, 
and so on.

›› Value: Business and government 
launch a proliferation of new 
services as sources of customer 
support, revenue, and cost sav-
ings, among others.

The focus in the last decade was 
on ”data privacy”; going forward, it is 
”algorithm conduct.”

Algorithms
An algorithm is a set of instructions 
designed to perform a specific task. 
Some perform simple tasks, like sort-
ing a list; others try to predict the out-
come of a pandemic. The former type 
has already been the focus of research 
for decades (such as in complexity and 
stability analysis). In this work, we 
are interested in the latter type, data 

science algorithms, which, for simplic-
ity, we abbreviate as algorithms. In par-
ticular, we have AI paradigms like ML 
or knowledge-based systems. Although 
the goal of algorithm auditing is ulti-
mately to cover the whole spectrum of 
algorithms and models, the focus of this 
article is the audit of ML algorithms.

For context, data science algorithms 
cover three broad domains1: computa-
tional statistics (for example, Monte 
Carlo methods), complex systems (such 
as agent-based systems), and AI (such 
as artificial neural networks).

›› Computational statistics: These 
are computationally inten-
sive statistical methods, 
including resampling meth-
ods (for example, bootstrap 
and cross-validation), Monte 
Carlo methods, kernel density 
estimation and other semi-
parametric and nonparamet-
ric methods, and generalized 
additive models.

›› Complex systems: These sys-
tems feature a large number of 
interacting components whose 
aggregate activity is nonlin-
ear, that is, systems featuring 
many interacting components 
whose aggregate activity is 
nonlinear and that typically 
exhibit hierarchical self-or-
ganization under selective 
pressures. Examples include 
cellular automata and multia-
gent systems.

›› AI algorithms: These algorithms 
mimic a new form of human 
learning, reasoning, knowledge, 
and decision making:
○	knowledge- or rule-based 

systems
○	evolutionary algorithms
○	ML.

Powerful new ML models include 
long short-term memory (LSTM) net-
works, generative adversarial net-
works (GANs), transfer/metalearning, 
and generative pretrained models (for 
example, GPT-3). The challenge is to 
interpret and manage their behavior.

Algorithm auditing
We define algorithm auditing as the 
research and practice of assessing, 
mitigating, and assuring an algo-
rithm’s legality, ethics, and safety. 
This includes the whole development 
process: staff training, test data sets, 
”circuit breaker” software, and reme-
dial action.

Importantly, there are a number of 
streams feeding into the nascent field of 
algorithm auditing, including proposals 
of oversight mechanism2; certification 
ensuring software security, reliability, 
and functionality3; and the wealth of 
legal/information and communications 
technology literature on data ethics and 
accountability.4 More directly, ”audits” 
have been performed, where the audit 
is taken principally in terms of mea-
suring the outcomes of a system.5,6 By  
contrast, in this article we propose sys-
temic auditing verticals and crucially  
do so with the various stages—from 
data and task setup to deployment.

Software certification may be read 
as the most relevant literature and 
practice, and it has a considerable 
legacy.7 During the 1980s and 1990s, 
expert systems were mainly in vogue, 
and the main concern in relation to 
quality assurance was restricted to 
development and model.8 We should 
also mention that the focus during 
that period was more on accuracy and 
computational cost. Since the 2000s, 
the paradigm has shifted, with most of 
the industrial applications of AI now 
relying on ML.
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Current research on AI and ML 
includes fairness, explainability, robust-
ness, and privacy as well as the mature 
topics of data ethics, management, and 
stewardship since we are interested in 
data-driven algorithms. This can be 
read as a maturing of the multidisci-
plinary field of AI governance, which 
has moved from numerous statements 
of principles toward the task of translat-
ing ethics into practice.9,10

As with a financial audit, an algo-
rithm audit is required to deliver formal 
assurance that algorithms are legal, eth-
ical, and safe. The stakeholders range 
from those working on policy and reg-
ulation, to industry practitioners and 
developers. We also anticipate the 
nature and scope of the auditing levels 
and framework presented will inform 
those interested in systems of gover-
nance and regulation/standards.

Our goal in this article is to insti-
gate the debate on this novel area of 

research and practice with a robust 
set of areas, processes, and strategies. 
In a snapshot, Figure 1 outlines the 
dimensions and examples of activities 
that are part of algorithm auditing. We 
define them here:

›› Development: the process of 
developing an algorithmic 
system

›› Assessment: the process of eval-
uating the algorithm behavior 
and capacities

›› Mitigation: the process of servic-
ing or improving an algorithm 
outcome

›› Assurance: the process of declar-
ing that a certain system con-
forms to predetermined stan-
dards, practices, or regulations.

The following sections present the 
key components that cover algorithm 
audit research and practice, namely: 

algorithms, verticals of auditing, mit-
igation strategy, and assurance.  

ALGORITHMS
The key constituents of an algorithm 
are as follows:

›› Data: input, output, and the sim-
ulation environment; especially 
important in the training of 
algorithms

›› Model: objective function, 
formulation, parameters, and 
hyperparameters

›› Development: design, building 
process, and infrastructure, 
including staff training.

For completeness, t his section 
unpacks AI algorithms.

AI algorithms 
There are broadly two classes of AI 
algorithms; they can be termed static 
algorithms, traditional programs that 
perform a fixed sequence of actions; 
or dynamic algorithms, which embody 
ML and can evolve. It is these latter 
”intelligent” algorithms that present 
complex technical challenges for test-
ing and verification, which will impact 
and demand further regulation. These 
algorithms include:

›› Knowledge- or rule-based systems: 
Where knowledge is explicitly 
represented as ontologies or  
IF–THEN rules rather than 
implicitly via code

›› Evolutionary algorithms: A 
family of algorithms inspired 
by biological evolution, using 
population-based trial-and-error 
problem solvers with a meta-
heuristic or stochastic optimi-
zation character (such as genetic 
algorithms)

FIGURE 1. The activities of algorithm auditing.
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›› ML: A type of AI program with 
the ability to learn without 
explicit programming and to 
change when exposed to new 
data; mainly comprising super-
vised, unsupervised, and rein-
forcement learning.

Additionally, deep learning, adver-
saria l learning, transfer learning, 
and metalearning are new forms of 
learning that are ”disrupting” the 
prevalent supervised, unsupervised, 
and reinforcement learning. They are 
described as follows:

●	 Deep learning: This is an 
attempt to model high-level 
abstractions in data by using 
multiple processing layers, 
with complex structures 
or otherwise, composed of 
multiple nonlinear transfor-
mations; one example is the 
LSTMs.

●	 Adversarial learning: This tech-
nique is employed in the field 
of ML that attempts to ”fool” 
models through malicious 
input; an example is the GANs.

●	 Transfer/metalearning: These 
two learning paradigms are 
tightly connected as their 
main goal is to encapsulate 
knowledge learned across 
many tasks and transfer it to 
new, unseen ones. Knowledge 
transfer can help speed up 
training and prevent overfit-
ting, therefore improving the 
obtainable final performance.

Broadly speaking, we can split the 
algorithm development process into gov-
ernance and implementation aspects. 
Regarding governance, the aspects 
include 1) skills and training of staff, 2) 

accountability roles, and 3) model val-
idation and acceptable standards for 
algorithm conduct. Regarding imple-
mentation, we can note five stages:

1.	 Data and task setup: collecting, 
storing, extracting, transform-
ing, and loading data; ensuring 
that the task (regression, clas-
sification, and so on) has been 
well specified and designed

2.	 Feature preprocessing: enrich-
ing, transforming, and engi-
neering the feature space

3.	 In-processing/model selection: 
running the whole model 
validation, optimization, and 
comparison

4.	 Postprocessing and reporting: 
adding thresholds and auxil-
iary tools to improve interpret-
ability, presenting the results to 
key stakeholders, and evaluat-
ing the impact of the algorith-
mic system to the business

5.	 Productionizing and deploying: 
passing through several review 
processes, from IT to business, 
and putting in place monitor-
ing and delivery interfaces.

Although these stages appear static 
and self-containing, in practice, they 
interact in a dynamic fashion, particu-
larly the stages between preprocessing 
and postprocessing.

THE MAIN VERTICALS OF 
ALGORITHM AUDITING
Issues of explainability, fairness, pri-
vacy, governance, and robustness are 
now popular research themes among 
AI researchers—they are increasingly 
referred to as trustworthy AI. From an 
engineering point of view, we believe 
the most mature and impactful crite-
ria are the following:

›› Performance and robustness: Sys-
tems should be safe and secure, 
not vulnerable to tampering or 
compromising of the data on 
which they are trained.

›› Bias and discrimination: Systems 
should avoid unfair treatment of 
individuals given their protected 
characteristics.

›› Interpretability and explainability: 
Systems should provide deci-
sions or suggestions that can be 
understood by their users and 
developers.

›› Algorithm privacy: Systems 
should be trained following data 
minimization principles and 
should adopt privacy-enhancing 
techniques to mitigate personal 
or critical data leakage.

In Table 1, we list how each criterion 
interacts with the five stages of algo-
rithm implementation. The verticals 
are not self-contained: they are inter-
related, and there is a growing cog-
nizance of the tradeoffs among them 
(see the section ”Interactions and 
Tradeoff Analysis”). 

Performance and robustness
An algorithm’s performance and robust-
ness are characterized by how effec-
tively it can be deemed safe and secure. 
We can rate an algorithm’s robustness 
using four key criteria.

›› Resilience to attack and security: 
Algorithmic systems, like all 
software systems, should be 
protected against vulnerabilities 
that can be exploited by adver-
saries, such as data ”poisoning,” 
model leakage, or the infra-
structure, both software and 
hardware. This idea is linked 
with the mathematical concept 
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of adversarial robustness; that 
is, how would the algorithm 
have performed in the worst-
case scenario? (For example, 
how would the algorithm have 
reacted during the 2008 finan-
cial crisis?)

›› Fallback plan and general safety: 
Automated systems should 
have safeguards that enable a 
fallback plan in case of prob-
lems. Also, the level of safety 
measures required depends 
on the magnitude of the risk. 
This notion is strongly associ-
ated with the technical concept 
of formal verification, which in 
broad terms means: Does the 
algorithm attend the problem 
specifications and constraints? 
(For example, does it respect 
physical laws?)

›› Accuracy: Accuracy pertains 
to a system’s ability to make 
correct judgments (such as cor-
rectly classifying information 
or the ability to make correct 
predictions, recommendations, 
or decisions). Accuracy as a 
general concept can be quanti-
fied by estimating the expected 

generalization performance, 
which means, in general, the 
question is asked: How well does 
the algorithm work? (For exam-
ple, in seven out of 10 cases, does 
the algorithm make the right 
decision?)

›› Reliability and reproducibility: 
A reliable automated system is 
one that works properly with a 
range of inputs and in a variety 
of situations, whereas reproduc-
ibility describes whether an AI 
experiment exhibits the same 
behavior when repeated under 
the same conditions. This idea 
is tied to the concept of continu-
ous integration; that is, does the 
algorithm reliably reproduce 
its decisions?

Bias and discrimination
In A I and ML , there a re multiple 
sources of bias leading to automated 
d e c i s i o n-m a k i ng processes t h at 
become unfair.

›› Tainted training data: Any ML 
system keeps the bias existing 
in the old data caused by human 
bias (for example, recruitment).

›› Skewed sample: Future observa-
tions confirm predictions, which 
create a perverse feedback loop 
(for example, a police record).

›› Limited features: Features may be 
less informative or reliably col-
lected for minority group(s).

›› Sample size disparity: There 
may be much less train-
ing data coming from the 
minority group than from the 
majority group.

›› Proxies: Even if protected attri-
butes are not used for training, 
there may be proxies for pro-
tected attributes (for example, a 
neighborhood).

›› Algorithm development: The staff 
may not be aware or trained to 
assess and address biases.

To diagnose and mitigate bias in 
decision making, we first need to 
differentiate between 1) individua ls, 
treating similar individuals simi-
larly; and 2) groups, ensuring equality 
across all groups. There are multiple 
ways to translate these concepts math-
ematically. As an example, we use the 
SAT score as a feature for predicting 
success in college.

TABLE 1. Interrelations between development stage and auditing verticals.

Stage Explainability Robustness Fairness Privacy

Data and task setup Data collection and labeling Data accuracy Population balance DPIA

Feature preprocessing Dictionary of variables Feature engineering Fair representations Data minimization

Model selection Model complexity Model validation Fairness constraints Differential privacy

Postprocessing and reporting Auxiliary tools Adversarial testing Bias metrics assessment Model inversion

Productionizing and deploying Interface and 
documentation

Concept drift detection and 
continuous integration

Real-time monitoring of 
bias metrics

Rate limiting and user 
query management

DPIA: Data Protection Impact Assessment. 
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›› Equality of opportunity: The 
score correlates well with 
future success, and there is a 
way to use the score to correctly 
compare the abilities of appli-
cants. A mathematical defini-
tion often used is the average 
odds difference.

›› Equality of outcome: The SAT 
score may contain structural 
biases, so its distribution being 
different across groups should 
not be mistaken for a differ-
ence in distribution in ability. 
The statistical parity differ-
ence seems to be the most 
adopted form to represent this 
idea symbolically.

Interpretability and explainability
In the context of AI and ML, explain-
ability and interpretability are often 
used interchangeably. Algorithm inter-
pretability is about the extent to which 
a cause and effect can be observed and 
the extent to which an observer is able 
to predict what will happen for a given 
set of input or algorithm parameters. 
Algorithm explainability is the extent to 
which the internal mechanics of an ML 
(deep learning) system is explainable 
in human terms.

There are multiple ways to gener-
ate and provide explanations, includ-
ing model-specific, model-agnostic, 
global, and local techniques.

›› Model specific: A model is 
designed and developed in such 
a way that it is fully transparent 
and explainable by design.

›› Model agnostic: A mathemati-
cal technique is applied to the 
outputs including very complex 
and opaque models to provide 
an interpretation of the decision 
drivers for models.

›› Global: This facet focuses on 
understanding the algorithm’s 
behavior at a high/data set/
population level. Typical users 
are researchers and designers of 
algorithms since they tend to be 
more interested in the general 
insights and knowledge discov-
ery that the model produces.

›› Local: This method focuses on 
understanding the algorithm’s 
behavior at a low/subset/indi-
vidual level. Typical users of 
local explanations are individu-
als being targeted by an algo-
rithm as well as members of the 
judiciary and regulators trying 
to make a case about potential 
discrimination.

Algorithm privacy
From the principles level, privacy is closely 
linked to the principle of prevention of 
”harm.” It is possible to group privacy con-
cerns into the following two key areas:

›› Privacy and data protection: Sys-
tems must guarantee privacy 
and data protection throughout 
a system’s lifecycle, and pro-
tocols governing data access 
should be put in place.

›› Model inferences: The security 
of any system is measured 
with respect to the adversarial 
goals and capabilities that it is 
designed to defend against. In 
this sense, one needs to provide 
information about 1) the level of 
access the attacker might have 
(”black box” or ”white box”), 2) 
where the attack might take 
place (inference or training), and 
3) passive versus active attacks.

Therefore, the risk assessment of 
algorithm privacy can be disentangled 

into ”data,” ”algorithm,” and the inter-
action between both components. 
Here we outline the key methods avail-
able to a ssess r i sk s com i ng f rom 
these elements.

›› Data: The standard procedure to 
assess risks in this vertical is the 
Data Protection Impact Assess-
ment (DPIA), with another 
vector for data poisoning, where 
an attacker maliciously manip-
ulates the training data to affect 
the algorithm behavior. 

›› Algorithm: The key attack vector in 
this component is inferring model 
parameters to build a ”knockoff” 
version of it. To assess vulner-
ability, the auditor could apply 
techniques that aim to extract 
an equivalent or near-equivalent 
copy or steal some functionalities 
of an algorithm.

›› Data–algorithm interaction: The 
attack vectors in this component 
are inferring about members of 
the population or members of the 
training data set through interac-
tions with the algorithm. Attacks 
such as statistical disclosure or 
model inversion are different 
criteria that can be applied to an 
algorithm to assess vulnerability.

Interactions and tradeoff analysis
Because of the interaction between 
verticals, a critical area of exploration 
is tradeoff analysis. It presents the 
growing evidence that in trustworthy 
AI there is seldom a ”solution”; rather 
there is only management of tradeoffs. 
In what follows we explore two of these.

›› Explainability/interpretability 
versus robustness/performance: 
The typical scenario is to have 
linear models and decision 
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trees at the top of the explain-
ability scale and at the bot-
tom in terms of performance, 
while conversely having deep 
learning and support vector 
machines. This depiction is 
highly debatable in the light of 
data science practice since it 
could be that a linear model is 
the most accurate model, but, 
due to massive preprocessing 
performed (for example, non-
linear features), the explain-
ability level has been drasti-
cally reduced.

›› Fairness/bias versus robust-
ness/performance: A standard 
occurrence is that, by mit-
igating algorithm bias, the 
algorithm performance is 
impacted. The work of an algo-
rithm designer, therefore, is 
to identify acceptable bound-
aries of statistical bias and 
performance. These boundar-
ies can be identified by liasing 
with business and end users 
and analyzing best practices, 
standards, or regulations com-
monly adopted in the field of  
application.

LEVELS OF ACCESS  
FOR AUDITING
In the literature, it is commonplace 
is to categorize the knowledge about 
the system into two extremes: ”white 
box” and ”black box.” In fact, the 
spectrum has more ”shades of gray,” 
that is, a continuum. This additional 
nuance allows a richer exploration of 
the technologies available for assess-
ment and mitigation as well as the 
right level of disclosure for a business 
to feel comfortable.

Hence, we can identify seven levels 
of system access for an auditor (Table 2),  

ranging from white box (full model 
detail disclosure) to process access 
(indirect observation of a system). The 
levels in between are set by limiting the 
access to the components behind the 
learning process (such as knowledge 
of the objective function, model archi-
tecture, input data, and so on).

This categorization has the follow-
ing two monotonic properties:

›› Detail: The accuracy and rich-
ness increase with the level.

›› Concealment: The information con-
cealed decreases with the level.

It is worth mentioning that Level 7 
access allows all of the analysis of the 
preceding levels, simply because we 
have full access to the algorithm. Con-
versely, analysis and techniques requir-
ing Level 7 cannot be used at Level 6 
without proper assumptions. Hence, 
Level 7 contains all of the assessment, 
monitoring, and mitigation strategies 
of the preceding levels, with the report 
becoming less detailed and more inac-
curate as the levels decrease. 

Level 1: Process access
The auditor has no direct access to 
the algorithm, with its investigations 
and interventions occurring at the 
model development process. With 
the impossibility to perform calls at 
the model f, the auditor depends on 
checklists that can consist of par-
tially qualitative and quantitative 
information. This level of disclosure 
and feedback detail is probably most 
appropriate for low-stakes and low-
risk applications.

Level 2: Model access (black box)
The auditor has the ability to make 
predictive calls with the model but 
w it hout h av i ng a ny i n for m at ion 

about t he act ua l distributions of 
the input data. This level of access 
entails the least amount of informa-
tion disclosed to the auditor since no 
data-sharing agreements are needed. 
The level of automation that can be 
achieved is very high since only appli-
cation programming interface access 
is needed to perform the analysis.

Level 3: Input data access
The auditor has the capacity to make 
predictive calls with the model using 
the actual inputs used to train and val-
idate it but cannot compare the pre-
dictions with actual outcome data. 
The absence of outcome information 
makes the problem of assessing the 
generalization behavior of a model 
difficult. Since only the predictions 
are available, some analysis can still 
be performed (for example, disparate 
impact) as well as property and mem-
bership inference or creating surro-
gate explanations.

Level 4: Outcome 
access (gray box)
The auditor has the capacity to make 
predictive calls with the model using 
the actual input data and to compare 
with outcome/output/target infor-
mation. This setup is deemed black 
box by some authors. From a model-
ing perspective, a host of techniques 
is available to assess and operate at 
this level, most of them under the 
umbrella of ”model-agnostic” pro-
cedures (cross-validation, Shapley 
values, and so on). Since there are 
higher levels of nonaccess, we deem 
this level as gray box since some 
information is still known to the 
auditor. With the available access, 
and based on a few assumptions, the 
auditor can perform concept drift 
analysis, investigate the accuracy 
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of explanations, perform inversion 
attacks, and assess bias.

Level 5: Parameter manipulation
The auditor can recalibrate/reparam-
eterize the model but has no informa-
tion on its type or family or the incen-
tives/objective function on which it 
was built. This level explicitly allows 
the auditor to perform stability and 
perturbation analysis on the model. 
Hence, it enables one to provide a rea-
sonable feedback, covering in particu-
lar the areas of how stable the system 
is performing, its judgments, and the 
explanations being provided.

Level 6: Learning goal
The auditor knows most of the details 
encompassing the creation and pur-
pose of the predictive system: learning 
procedure and task objectives, param-
eters, output and input data used to 
train and validate the model, and the 
access to perform predictions. From 
a modeling point of view, the auditor 
knows how to refit/relearn the model 
using the actual incentives/objec-
tive function on which it was trained. 
This level of access allows the audi-
tor to investigate an almost accurate 
picture of the system without neces-
sarily infringing on the intellectual 

property. The feedback has a high 
degree of detail.

Level 7: White-box auditing
The auditor knows all of the details 
encompassing the system, very much 
identical to those that the system devel-
oper and business user have, allowing 
an accurate and richer feedback. This 
level of access is more appropriate for 
internal auditors or in-house consul-
tants since it may require nondisclo-
sure, intellectual property sharing, data 
sharing, and other agreements in place. 
It is accurate because the whole assess-
ment was performed using the actual 

TABLE 2. The landscape of algorithm auditing.

Dimension

Level 1:  
Process  
access

Level 2:  
Model access 
f  ( . )

Level 3:  
Input access 
f  (x)

Level 4:  
Outcome access 
f  (x), y

Level 5:  
Parameter control 
fθ  (x), y

Level 6: 
Learning goal 
L  (fθ  (x), y)

Level 7:  
White-box

Explainability Checklist Feature relevance,
partial 
dependency

Surrogate 
explanations

Accuracy of 
explanations

Stability of 
explanations

Model 
complexity

Documents
and specific 
explanations

Robustness Checklist Adversarial attacks Synthetic data Concept drift 
analysis

Stability analysis Stress testing Model 
selection and 
validation

Fairness Checklist Adversarial 
fairness

Bias in outcome Bias in 
opportunity

Stability of bias 
metrics

Tradeoff of 
bias and loss 
metric

Model 
selection and 
development

Privacy Checklist Statistical 
disclosure

Property and
membership 
inference

Inversion attacks Functionality 
stealing

Model 
extraction

Model security 
evaluation

Information 
concealed

Very high High High High/medium Medium Medium Low

Feedback 
detail

Low Medium Medium High/medium High High Very high

Typical 
application

Sales 
forecasting

Cybersecurity Recruitment Credit scoring Facial recognition Algorithmic 
trading

Self-driving 
vehicle

Appropriate 
oversight

Guidelines External auditing/
certification

External 
auditing

External auditing External auditing Internal/
external 
auditing

Internal 
Auditing
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system and based on few to no assump-
tions; it is richer because the number 
of tests and recommendations that can 
be made range from the actual model 
selection to training, bias mitigation, 
validation, and security. It would be eas-
ier to assess mitigation strategies and 
provide actual information that can be 
more easily documented by developers.

MITIGATION STRATEGIES
Mitigation strategies are techniques 
employed to address issues highlighted 

in the auditing assessment. To some 
extent, they act as ”add-ons” to cer-
tain stages of model development 
and, hence, demand a retraining and 
reassessment of the model. Figure 2 
establishes this feedback loop. We can 
highlight the following two types of 
mitigation procedures:

›› Human: all procedures that involve 
how algorithm developers design, 
collaborate, reflect, and develop 
algorithms. These procedures can 

involve (re)training, impact assess-
ment, and other tasks

›› Algorithm: all methodologies 
that can be applied to improve 
an algorithm current outcome.

Table 3 displays the mitigation strat-
egies that can be employed to improve 
an algorithm: robustness, explainabil-
ity, privacy, and fairness. Note that these 
strategies can be implemented jointly 
or in a targeted fashion; tradeoffs/inter-
actions will be needed in this analysis.

Table 3 broadly places the strategies 
in the five stages of algorithm imple-
mentation upon which they can act: 

›› Data and task setup: These are 
simple mitigation strategies 
with a bigger involvement of 
humans, such as creating a dic-
tionary of variables and data set 
sheets to improve explainability, 
anonymizing data to avoid leak-
age of personal/sensible infor-
mation, labeling more informa-
tion or reframing a loss function 
so that the model performance 
is improved, and searching 

• Data and Task
• Preprocessing
• Modeling
• Postprocessing
• Deployment

• Robustness
• Privacy
• Fairness
• Explainability

• Anonymization
• Synthetic Data
• Surrogate
 Explanations
• Training

Development Assessment Mitigation

FIGURE 2. The algorithm audit process: from development, assessment, and mitigation, 
to redevelopment, reassessment, and reimplementing mitigation strategies.

TABLE 3. Interrelations between implementation stage and mitigation strategies.

Stage Explainability Robustness Fairness Privacy

Data and task Setup Dictionary of variables  
and data set sheets

Collecting targeted data, 
reframing loss function

Alternative data sources Anonymization

Feature preprocessing Avoiding excessive  
feature engineering

Feature squeezing Synthetic data generation Dimensionality 
reduction

Model selection By-design interpretable models Adversarial training Counterfactual fairness Federated learning

Postprocessing and  
reporting

LIME, SHAP High confidence predictions 
and confidence intervals

Calibrated odds Model inversion 
mitigation

Productionizing and 
deploying

Recourse interface ”Circuit breaking” Monitoring panels Rate limiting and user 
query management

LIME: Local interpretable model-agnostic explanations; SHAP: Shapley additive explanations.
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for alternative data sources to 
improve bias assessment and 
further mitigation.

›› Feature preprocessing: These 
strategies incur a mix of human 
intervention with the support of 
auxiliary algorithms, like feature 
squeezing to defend against adver-
sarial attacks, avoiding excessing 
feature engineering to improve 
model interpretability, synthetic 
data generation to rebalance 
the distribution across minority 
groups/classes, and dimension-
ality reduction to address data 
minimization concerns.

›› Model selection (also known as 
in-processing): Most procedures 
center on adding components 
and restrictions to the algorithm: 
adversarial training to increase 
resilience to attack and secu-
rity; federated learning to avoid 
unnecessary data sharing; pre-
ferring by-design interpretable 
models like decision trees, linear 
regression, and so on; and using 
causal methods to produce ”coun-
terfactually fair” algorithms.

›› Postprocessing and reporting: 
These are mixed human–algo-
rithm strategies, like adding 
methods for model explana-
tions, such as local interpretable 
model-agnostic explanations 
(LIME) or Shapley additive 
explanations (SHAP); applying 
procedures like calibrated odds 
to address any outcome/pre-
diction bias; and adding model 
inversion mitigation for algo-
rithm privacy improvement and 
high-confidence predictions and 
confidence intervals for robust-
ness and performance.

›› Productionizing and deploy-
ing: This involves setting up 

interfaces and monitors to track 
algorithm behavior: 1) interfaces 
giving users the ability to seek 
recourse, 2) rate limiting user 
queries, 3) monitoring panels 
to compute real-time metrics of 
disparate impact, and 4) circuit 
breaking with the algorithm 
trespass governance boundaries.

ASSURANCE PROCESSES
The broader outcome of an auditing 
process is to improve confidence 
or ensure trust. After assessing the 
system and implementing mitiga-
tion strategies, the auditing process 
assesses whether the system conforms 
to regulatory, governance, and ethical 
standards. Here we list the key points 
that embody the assurance process.

›› General and sector-specific assur-
ance: broad national regula-
tions and standards (provided 
by agents such as the National 
Institute of Standards and Tech-
nology, the United Kingdom’s 
Information Commissioner’s 
Office, and the European Union, 
among others) along with sec-
tor-specific ones, such as those 
in financial services (such as the 
U.S. Securities and Exchange 
Commission and the U.K. Finan-
cial Conduct Authority), health 
(for example, the National 
Institutes of Health and National 
Health Service), and others

›› Governance: from two aspects, 
namely technical assessments 
(for example, robustness and 
privacy) and impact (such as risk 
and compliance) assessments

›› Unknown risks: discussing risk 
schemes and highlighting ”red 
teaming,” used to mitigate 
unknown risks

›› Monitoring interfaces: outlining 
risk assessments and the use 
of ”traffic-light” user-friendly 
monitoring interfaces

›› Certification: the numerous ways 
in which certification may occur, 
such as certification of a system 
or AI engineers, and so on

›› Insurance: a subsequent service 
to emerge as a result of assur-
ance maturing.

This work is a first step toward 
understanding the key com-
ponents underlying algorithm 

auditing. This study is a U.K. collabora-
tion to investigate an ”Algorithm Certi-
fication Service” involving large indus-
try players across different sectors, key 
academic institutes, and governmental 
bodies. In this article, we provide a list 
of definitions and a taxonomy since this 
area is a combination of research done 
mostly in silos, such as bias and dis-
crimination, robustness, explainabil-
ity, and privacy. Our goal is to instigate 
the debate in this novel area of research 
and practice. Translating concepts such 
as accountability, fairness, and trans-
parency into engineering practice is 
nontrivial, with its impact perceived in 
design choices, algorithms used, deliv-
ery mechanisms, and built infrastruc-
ture. This demands a full integration 
with respect to governance structures 
with real-time algorithm auditing. 
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