


BattleVerse
S E C U R I T Y  A S S E S S M E N T

November 17th 2022



Contents
T A B L E  O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_



Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval” 

of any particular project or team. These reports are not, nor should be considered, an 

indication of the economics or value of any “product” or “asset” created by any team 

or project that contracts d3ploy to perform a security review. D3ploy does not provide 

any warranty or guarantee regarding the absolute bug-free nature of the technology 

analyzed, nor do they provide any indication of the technologies proprietors, 

business, business model or legal compliance. 

D3ploy’s goal is to help reduce the attack vectors and the high level of variance 

associated with utilizing new and consistently changing technologies, and in no way 

claims any guarantee of security or functionality of the technology we agree to 

analyze.

D3ploy audits should not be used in any way to make decisions around investment 

or involvement with any particular project. These reports in no way provide 

investment advice, nor should be leveraged as investment advice of any sort. The 

report is provided only for the contract(s) mentioned in the report and does not 

include any other potential additions and/or contracts deployed by Owner. The 

report does not provide a review for contract(s), applications and/or operations, that 

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers 

increase the quality of their code while reducing the high level of risk presented by 

cryptographic tokens and blockchain technology. Blockchain technology and 

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that 

each company and individual are responsible for their own due diligence and 

continuous security. The security audit is not meant to replace functional testing 

done before a software release. As one audit-based assessment cannot be 

considered comprehensive, we always recommend proceeding with several 

independent manual audits and a public bug bounty program to ensure the security 

of the smart contracts.



Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves 

to verify the security and correctness of smart contracts and 

blockchain-based protocols. Through the utilization of our 

world-class technical expertise, alongside our proprietary, 

innovative tech, we’re able to support the success of our 

clients with best-in-class security, all whilst realizing our 

overarching vision; provable trust for all throughout all facets 

of blockchain. 



Secure your project with d3ploy

Vunerability checking


A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to 

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification


A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready 

for launch and built to protect the end-user

Risk assessment


Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security 

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting


A truly custom exhaustive report that is transparent and depicts details of any identified threats and 

vulnerabilities and classifies those by severity.

Fast turnaround


We know that your time is valuable and therefore provide you with the fastest turnaround times in the 

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers


Our engineers combine both experience and knowledge stemming from a large pool of developers at our 

disposal. We work with some of the brightest minds that have audited countless smart contracts over the 

last 4 years.

We offer field-proven audits with in-depth reporting and a 

range of suggestions to improve and avoid contract 

vulnerabilities. Industry-leading comprehensive and 

transparent smart contract auditing on all public and private 

blockchains.



Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

BattleVerse.io is a P2E online game powered by DeFi x NFT and blockchain 

technology. Binance Smart Chain GameFi Hackathon prize winner.

Their main goal is to give the opportunity to earn through fun gameplay, even if one 

is not an experienced player in the world of Play-to-Earn (P2E) games. A player’s 

every action in the huge game world, be it a battle, resource extraction, or 

completing missions and quests, will generate income.

Project Name 

Contract Name 

Contract Address 

Contract Chain 

Contract Type 

Platform 

Language 

Network 

Codebase 

Total Token Supply 

BattleVerse


BVC Token


0x9bee0c15676a65ef3c8cdb38cb3dd31c675bbd12


Mainnet


Smart Contract


EVM


Solidity


BNB Chain (BEP20)


Private GitHub Repository


1,000.000.000

https://t.me/battleverse_io

https://discord.com/HFVAnBS9qA

https://twitter.com/BattleVerse_io

https://github.com/tenfinance

https://battleverse.io/

https://battleverse.medium.com/

marketing@battleverse.io



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

96
Score
A U D I T

Critical 0

Major 0

Medium 0

Low 4

Informational 3

Discussion 0

Issues 7

All issues are described in further detail on 

the following pages.



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

BattleVerseIo/Marketplace-contracts/contracts/ Marketplace.sol Private GitHub Repository

BattleVerseIo/Marketplace-contracts/contracts/ Migrations.sol Private GitHub Repository

BattleVerseIo/Marketplace-contracts/contracts/ SimpleToken.sol Private GitHub Repository

BattleVerseIo/Marketplace-contracts/contracts/ TestNFT.sol Private GitHub Repository

ScopeA U D I T

C O D E B A S E  F I L E S L O C A T I O N



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for BattleVerse to discover issues and vulnerabilities 
in the source code of the BattleVerse project as well as any contract dependencies 
that were not part of an officially recognized library. A comprehensive examination 
has been performed, utilizing Dynamic, Static Analysis and Manual Review 
techniques.

The auditing process pays special attention to the following considerations�
� Testing the smart contracts against both common and uncommon attack 

vectors�
� Assessing the codebase to ensure compliance with current best practices and 

industry standards�
� Ensuring contract logic meets the specifications and intentions of the client�
� Cross referencing contract structure and implementation against similar smart 

contracts producedby industry leaders�
� Thorough line-by-line manual review of the entire codebase by industry experts.



The security assessment resulted in findings that ranged from major to 
informational. We recommend addressing these findings to ensure a high level of 
security standards and industry practices. We suggest recommendations that could 
better serve the project from the security perspective in the comments below.

Version         

Date              

Descrption   

v1.0


2022/11/07


Layout project


                      Architecture / Manual review / Static & dynamic security testing 


                      Summary

Version         

Date              

Descrption   

v1.1


2022/11/17


Reaudit addressed issues


                      Final Summary

MethodologyR E V I E W



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Pragma Version Too Recent
 Low Resolved

Floating Pragma
 Low Resolved

Missing Events in Important Functions
 Low Resolved

Cheaper Inequalities In Require()
 Gas Acknowledged

Missing Zero Address Validations
 Low Resolved

Gas Optimization in Require Statements
 Gas Acknowledged

Unindexed Event Parameters
 Informational Acknowledged

T I T L E S E V E R I T Y S T A T U S

FindingK E Y



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Solidity constantly releases new compiler versions and it is not recommended to 
stay on
the latest and recent versions as there may be unidentified bugs, 
inconsistencies, and
exploits present in the newer versions.

Issue

Type

Level

Remediation

Alleviation / Retest

 : Pragma Version Too Recent




 : Missing Best Practices
 



 : Low



 : It is suggested to use a compiler version that is neither too recent nor 
too old. A stable
compiler version should be used that is time-tested by the 
community, which fixed
vulnerabilities introduced in older compiler versions. The 
code should be kept updated
according to the compiler release cycle. It should be 
tested before going on the Mainnet
to reduce the chances of new vulnerabilities 
being introduced.




It is recommended to use version 0.8.7 which is the most stable at this time.
.



 : The BattleVerse team opted to consider our recommendation 
and applied the suggested 0.8.7 compiler version.

� Marketplace.sol�
� SimpleToken.sol

1

I M P A C T S

Recent compiler versions are not time-tested and may be susceptible to unknown


vulnerabilities and exploits.



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Locking the pragma helps ensure that the contracts do not accidentally get 
deployed
using an older version of the Solidity compiler affected by vulnerabilities.


The contracts found in the repository were allowing floating or unlocked pragma to 
be
used, i.e., ^0.8.15.


This allows the contracts to be compiled with all the solidity compiler versions 
above
0.8.15. The following contracts were found to be affected -

� Marketplace.sol�
� SimpleToken.sol

Issue

Type

Level

Remediation

Alleviation / Retest 

 : Floating Pragma



 : Floating Pragma (SWC-103)
   

 : Low



 : Keep the compiler versions consistent in all the smart contract files. 
Do not allow
floating pragmas anywhere.




Reference: https://swcregistry.io/docs/SWC-103



: The BattleVerse team opted to consider our references and 
applied the recommendation.

2

I M P A C T S

If the smart contract gets compiled and deployed with an older or too recent 
version of
the solidity compiler, there’s a chance that it may get compromised due 
to the bugs present in the older versions or unidentified exploits in the new versions.


Incompatibility issues may also arise if the contract code does not support features 
in
other compiler versions, therefore, breaking the logic.


The likelihood of exploitation is really low therefore this is only informational.


I M P A C T SI M P A C T S



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Events are inheritable members of contracts. When you call them, they cause the


arguments to be stored in the transaction’s log—a special data structure in the


blockchain. These logs are associated with the address of the contract which can 
then
be used by developers and auditors to keep track of the transactions.




The contract was found to be missing these events on certain critical functions 
which
would make it difficult or impossible to track these transactions off-chain.

The following functions were affected�
� Marketplace.setFee()�
� Marketplace.setBeneficiary()

Issue

Type

Level

Remediation

Alleviation / Retest 

 : Missing Events in Important Functions




 : Missing Best Practices
 



 : Low



 : Consider emitting events for the functions mentioned above. It is also 
recommended to
have the addresses indexed.



: The BattleVerse team heeded our references and applied the 
suggested recommendation.

3

I M P A C T S

Events are used to track the transactions off-chain and missing these events on 
critical
functions makes it difficult to audit these logs if they’re needed at a later 
stage.




W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The require() statement takes an input string to show errors if the validation fails.


The strings inside these functions that are longer than 32 bytes require at least one


additional MSTORE, along with additional overhead for computing memory offset, 
and
other parameters. For this purpose, having strings lesser than 32 bytes saves a


significant amount of gas.


� Marketplace.sol L29; L125

Issue

Type

Level

Remediation

Alleviation / Retest 

 : Gas Optimization in Require Statements




 : Gas Optimization 



 : Gas



 : It is recommended to shorten the strings passed inside require() 
statements to fit
under 32 bytes. This will decrease the gas usage at the time of 
deployment and at
runtime when the validation condition is met.



: BattleVerse team will leave the checks ‘as-is’ for better 
readability. Agreed as not an exploitable issue.

4

I M P A C T S

Having longer require strings than 32 bytes costs a significant amount of gas.



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Events in solidity contain two kinds of parameters - indexed and non-indexed. 
These
indexes are also known as "topics" and are the searchable parameters used 
in events.


In the Ethereum system, events must be easily searched for, so that applications 
can
filter and display historical events without undue overhead.


It was noticed that the following event parameters were not indexed making the 
search
for past events cumbersome.


� Marketplace.sol L14-L17

Issue

Type

Level

Remediation

Alleviation / Retest 

 : Unindexed Event Parameters




 : Missing Best Practices
   

 : Informational



 : It should be noted that indexed event parameters take up more gas 
than non-indexed
ones. Keeping that in mind, the contract should add indexed 
keywords to the
searchable parameters to make searching efficient using an event 
filter.




: BattleVerse team commented that their app does not require 
searching for historical data, and they index that data off-chain. Will keep 
parameters unindexed. Agreed as not an exploitable issue.

5

I M P A C T S

This does not impact the security aspect of the Smart contract but affects the ease 
of
use when searching for past events.




W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract was found to be performing comparisons using inequalities inside the


“require” statement. When inside the “require” statements, non-strict inequalities 
(>=,
<=) are usually costlier than strict equalities (>, <).


� Marketplace.sol L30; L131

Issue

Type

Level

Remediation

Alleviation / Retest 

 : Cheaper Inequalities In Require()



 : Gas & Missing Best Practices
   

 : Gas



 : It is recommended to go through the code logic, and, if possible, 
modify the non-strict
inequalities with the strict ones to save some gas as long as 
the logic of the code is not
affected.



: BattleVerse team will leave the checks ‘as-is’ for better 
readability. Agreed as not an exploitable issue.

6

I M P A C T S

Using non-strict inequalities inside require statements cost more gas.




W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract Marketplace.sol was found to be setting or using new addresses


without proper validations for zero addresses.


Address type parameters should include a zero-address check otherwise contract


functionality may become inaccessible or tokens burnt forever.


Depending on the logic of the contract, this could prove fatal and the users or the


contracts could lose their funds, or the ownership of the contract could be lost.


� constructor() - IERC20 _BVC L28

Issue

Type

Level

Remediation

Alleviation / Retest 

 : Missing Zero Address Validations




 : Missing Input Validation
 



 : Low



 : Add a zero address validation to all the functions where addresses are 
being set.




: The BattleVerse team heeded our references and applied the 
suggested recommendation.

7

I M P A C T S

If address type parameters do not include a zero-address check, contract 
functionality
may become unavailable or tokens may be burned permanently.



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

P r i v a t e  G i t H u b  R e p o s i t o r y



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G  C A T E G O R I E S A U D I T  S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-
depth manual review and/or other security techniques.



This report has been prepared for BattleVerse project using the above techniques to 
examine and discover vulnerabilities and safe coding practices in BattleVerse’s 
smart contract including the libraries used by the contract that are not officially 
recognized.



A comprehensive static and dynamic analysis has been performed on the solidity 
code in order to find vulnerabilities ranging from minor gas optimizations to major 
vulnerabilities leading to the loss of funds.



Various common and uncommon attack vectors will be investigated to ensure that 
the smart contracts are secure from malicious actors. The testing methods find and 
flag issues related to gas optimizations that help in reducing the overall gas cost It 
scans and evaluates the codebase against industry best practices and standards 
to ensure compliance It makes sure that the officially recognized libraries used in 
the code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the 
time of the report issuance date.



D3ploy Audit Score is not, nor should be considered, an “endorsement” or 
“disapproval” of any particular project or team. These reports and scores are not, 
nor should be considered, an indication of the economics or value of any “product” 
or “asset” created by any team or project that contracts d3ploy to perform a 
security review.



W E B S I T E d3ploy.co T W I T T E R@d3ploy_


