

MH SWIFTSCAN REVIEW

MECHA MORPHING
JUNE 27 TH 2022

1	 LEGAL DISCLAIMER

2	 MH AUDITS INTRO

3	 PROJECT SUMMARY

4	 AUDIT SCORES

5	 AUDIT SCOPE

6	 METHODOLOGY

7	 KEY FINDINGS

8	 VULNERABILITIES

9	 SOURCE CODE

10	APPENDIX

 TABLE OF
CONTENTS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 LEGAL
DISCLAIMER

MH Audits are not, nor should be considered, an “endorsement” or “disapproval”
of any particular project or team. These reports are not, nor should be considered,
an indication of the economics or value of any “product” or “asset” created by
any team or project that contracts MH Audits to perform a security review.

MH Audits does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication
of the technologies proprietors, business, business model or legal compliance.

MH Audits should not be used in any way to make decisions around investment
or involvement with any particular project. These reports in no way provide
investment advice, nor should be leveraged as investment advice of any sort.

The report is provided only for the contract(s) mentioned in the report and does
not include any other potential additions and/or contracts deployed by Owner. The
report does not provide a review for contract(s), applications and/or operations,
that are out of this report scope.

MH Audits’ goal is to help reduce the attack vectors and the high level of variance
associated with utilizing new and consistently changing technologies, and in
no way claims any guarantee of security or functionality of the technology we
agree to analyze.

MH Audits represents an extensive auditing process intending to help our
customers increase the quality of their code while reducing the high level of risk
presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing
risk. MH Audits’ position is that each company and individual are responsible for
their own due diligence and continuous security.

The security audit is not meant to replace functional testing done before a software
release. As one audit-based assessment cannot be considered comprehensive,
we always recommend proceeding with several independent manual audits and
a public bug bounty program to ensure the security of the smart contracts.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 MH AUDITS
INTRODUCTION

MH Audits is a leading blockchain security company that serves to verify the
security and correctness of smart contracts and blockchain-based protocols.
Through the utilization of our world-class technical expertise, alongside our
proprietary, innovative tech, we’re able to support the success of our clients
with best-in-class security, all whilst realizing our overarching vision; provable
trust for all throughout all facets of blockchain.

Secure your project with MH Audits
We offer field-proven audits with in-depth reporting and a range of suggestions
to improve and avoid contract vulnerabilities.

Industry-leading comprehensive and transparent smart contract auditing on all
public and private blockchains.

Vunerability checking
A crucial manual inspection carried out to eliminate any code flaws and security
loopholes. This is vital to avoid vulnerabilities and exposures incurring costly
errors at a later stage.

Contract verification
A thorough and comprehensive review in order to verify the safety of a smart
contract and ensure it is ready for launch and built to protect the end-user.

Risk assessment
Analyse the architecture of the blockchain system to evaluate, assess and
eliminate probable security breaches. This includes a full assessment of risk and
a list of expert suggestions.

In-depth reporting
A truly custom exhaustive report that is transparent and depicts details of any
identified threats and vulnerabilities and classifies those by severity.

Fast turnaround
We know that your time is valuable and therefore provide you with the fastest
turnaround times in the industry to ensure that both your project and community
are at ease.

Best-of-class blockchain engineers
Our engineers combine both experience and knowledge stemming from a
large pool of developers at our disposal. We work with some of the brightest
minds that have audited countless smart contracts over the last 4 years.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 PROJECT
SUMMARY

PROJECT INTRODUCTION

Mecha Morphing is a fully decentralized ARPG energized by the players in its
metaverse. The Play-to-Earn game utilizes blockchain technology in the form of
digital currency and NFTs. Players in the Mecha Morphing metaverse can earn
income by engaging and contributing to the ecosystem. There are numerous
activities to earn tokens, including battles, forging weapons and armor, looting
land, trading items on the marketplace, mining resources, and completing tasks
through smart contracts implemented by other players. Mecha Morphing’s Play-
to-Earn model allows players to increase their asset value by participating in the
metaverse.

Project Name Mecha Morphing

Contract Name MAPE Token

Contract Address 0xCa044F16AfA434C0C17c0478D8A6cE4FEEf46504

Contract Chain Mainnet

Contract Type Smart Contract

Platform EVM

Language Solidity

Codebase https://bscscan.com/
address/0xCa044F16AfA434C0C17c0478D8A6cE4FEEf46504#code

INFO & SOCIALS

Network BNB Chain (BEP20)

Max Token Supply 100.000.000

Website https://mechamorphing.com/

Twitter https://twitter.com/Mecha_Morphing

Telegram Chat https://t.me/Mecha_Morphing

Telegram Ann https://t.me/MechaMorphingANN

Discord hhttps://discord.com/F359MXvM8r

Medium https://medium.com/@mechamorphinggaming

BSCScan https://bscscan.com/
token/0xCa044F16AfA434C0C17c0478D8A6cE4FEEf46504

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 AUDIT
SCORES

Issues					 7
	 Critical				 0
 	Major					 0
 	Medium				 2
 	Minor					 3
 	 Informational 		 2
 	Discussion 			 0

All issues are described in further detail
on the following pages.

86*

PASS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

* Note that if no manual in-depth expert review has been performed
a score multiplier of .9 will apply to the final result.

 AUDIT
SCOPE

FILE

contract.sol

LOCATION

BNB Chain Deployment:
/address/0xCa044F16AfA434C0C17c0478D8A6cE4FEEf46504#code

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 REVIEW
METHODOLOGY

TECHNIQUES

This report has been prepared for Mecha Morphing to discover issues and
vulnerabilities in the source code of the Mecha Morphing project as well as any
contract dependencies that were not part of an officially recognized library. An
examination has been performed, utilizing Static Analysis and MH SwiftScan
review techniques.

The auditing process pays special attention to the following considerations:

•	 Testing the smart contracts against both common and uncommon attack vectors.

•	 Assessing the codebase to ensure compliance with current best practices and
industry standards.

•	 Ensuring contract logic meets the specifications and intentions of the client.

•	 Cross referencing contract structure and implementation against similar smart
contracts producedby industry leaders.

The security assessment resulted in findings that ranged from major to informational.
We recommend addressing these findings to ensure a high level of security
standards and industry practices. We suggest recommendations that could better
serve the project from the security perspective in the comments below.

TIMESTAMP

Version	 	 v1.0
Date			 2022/06/27
Description	 Layout project
				 Automated / Static security testing
				 Summary

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 KEY
FINDINGS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

SEVERITY

 Medium

 Medium

 Minor

 Minor

 Minor

 Informational

 Informational

TITLE

Missing Exception On BEP20 Transfer Failure

BEP20 Approve Front-Running Attack

Outdated Complier Version

Cheaper Inequalities In Require()

Use Of Floating Pragma

In-Line Assembly Detected

Private Modifier Does Not Hide Data

STATUS

Pending

Pending

Pending

Pending

Pending

Pending

Pending

 IN-DEPTH
VULNERABILITIES

Issue: Missing Exception On BEP20 Transfer Failure

Level: Medium

Recommendation: The BEP20 standard recommends
throwing exceptions in functions transfer and transferFrom.

SafeBEP20 standard can also be used that automatically
throws on failure.

Alleviation:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description:

Functions of BEP-20 Token Standard should throw in special cases:

•	 transfer should throw if the _from account balance does not have enough tokens to
spend.

•	 transferFrom should throw unless the _from account has deliberately authorized the
sender of the message via some mechanism.

Location: contract.sol L506-L524

 IN-DEPTH
VULNERABILITIES

Issue: ERC20 Approve Front-Running Attack

Level: Medium

Recommendation: Only use the approve function of the BEP-
20 standard to change the allowed amount to 0 or from 0
(wait till transaction is mined and approved).

Token owner just needs to make sure that the first transaction
actually changed allowance from N to 0, i.e., that the spender
didn’t manage to transfer some of N allowed tokens before
the first transaction was mined. Such checking is possible
using advanced blockchain explorers such as [Etherscan.io]
(https://bscscan.io/)

Another way to mitigate the threat is to approve token transfers
only to smart contracts with verified source code that does
not contain logic for performing attacks like described above,
and to accounts owned by the people you may trust.

Alleviation:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description:

The approve() method overrides current allowance regardless of whether the spender
already used it or not, so there is no way to increase or decrease allowance by a
certain value atomically unless the token owner is a smart contract, not an account.

This can be abused by a token receiver when they try to withdraw certain tokens from
the sender’s account.

Meanwhile, if the sender decides to change the amount and sends another approve
transaction, the receiver can notice this transaction before it’s mined and can extract
tokens from both the transactions, therefore, ending up with tokens from both the
transactions. This is a front-running attack affecting the BEP20 Approve function.

Location: contract.sol L53; L269-L272

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda Issue: Outdated Complier Version

Level: Minor

Recommendation: It is recommended to use a recent version
of the Solidity compiler that should not be the most recent
version, and it should not be an outdated version as well.
Using very old versions of Solidity prevents the benefits of bug
fixes and newer security checks. Consider using the solidity
version 0.8.7, which patches most solidity vulnerabilities.

Alleviation:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description:

Using an outdated compiler version can be problematic especially if there are publicly
disclosed bugs and issues that affect the current compiler version.

Location: contract.sol L05; L89; L117; L143; L498

 IN-DEPTH
VULNERABILITIES

Issue: Cheaper Inequalities In Require()

Level: Minor

Recommendation: It is recommended to go through the code
logic, and, if possible, modify the non-strict inequalities with
the strict ones to save ~3 gas as long as the logic of the code
is not affected.

Alleviation:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description:

The contract was found to be doing comparisons using inequalities inside the require
statement. When inside the require statements, non-strict inequalities (>=, <=) are usually
costlier than the strict equalities (>, <).

Location: contract.sol L295; L336; L369; L418;

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda Issue: Use Of Floating Pragma

Level: Minor

Recommendation: It is recommended to follow the latter
example, as future compiler versions may handle certain
language constructions in a way the developer did not foresee.
The developers should always use the exact Solidity compiler
version when designing their contracts as it may break the
changes in the future.

pragma solidity ^0.4.17; not recommended -> compiles with 0.4.17 and
above

pragma solidity 0.8.4; recommended -> compiles with 0.8.4 only

Alleviation:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description:

Solidity source files indicate the versions of the compiler they can be compiled with
using a pragma directive at the top of the solidity file. This can either be a floating
pragma or a specific compiler version.

The contract was found to be using a floating pragma which is not considered safe as
it can be compiled with all the versions described.

Location: contract.sol L05

 IN-DEPTH
VULNERABILITIES

Issue: In-Line Assembly Detected

Level: Informational

Recommendation: Avoid using inline assembly instructions if
possible because it might introduce certain issues in the code
if not dealt with properly because it bypasses several safety
features that are already implemented in Solidity.

Alleviation:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description:

Inline assembly is a way to access the Ethereum Virtual Machine at a low level. This
bypasses several important safety features and checks of Solidity. This should only be
used for tasks that need it and if there is confidence in using it.

Multiple vulnerabilities have been detected previously when the assembly is not
properly used within the Solidity code; therefore, caution should be exercised while
using them.

Location: contract.sol L134-L136

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda Issue: Private Modifier Does Not Hide Data

Level: Informational

Recommendation: Keep in mind that the private modifier does
not make a variable invisible and should not keep sensitive
contents within the modifier.

It is a best practice to use private when you really want to protect
your state variables and functions because you hide them
behind logic executed through internal or public functions.

Alleviation:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description:

Everything that is inside a contract is visible to all observers external to the blockchain.
Making something private only prevents other contracts from reading or modifying
the information, but it will still be visible to the whole world and observers of the
blockchain.

Miners have access to all contracts’ code and data. Developers must account for the
lack of privacy in EVM.

Location: contract.sol L173-L180; L511

 SOURCE
CODE

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

https://bscscan.com/address/0xCa044F16AfA434C0C17c0478D8A6cE4FEEf46504#code

 REPORT
APPENDIX

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

FINDING CATEGORIES

The assessment process will utilize a mixture of static analysis, swift scan and
other security techniques.

This report has been prepared for Mecha Morphing project using MH SwiftScan
to examine and discover vulnerabilities and safe coding practices in Supernova’s
smart contract including the libraries used by the contract that are not officially
recognized.

The scan runs a comprehensive static analysis on the solidity code and finds
vulnerabilities ranging from minor gas optimizations to major vulnerabilities leading
to the loss of funds. The coverage scope pays attention to all the informational
and critical vulnerabilities with over (110+) modules. The scanning and auditing
process covers the following areas:

Various common and uncommon attack vectors will be investigated to ensure
that the smart contracts are secure from malicious actors. The scanner modules
find and flag issues related to gas optimizations that help in reducing the overall
gas cost It scans and evaluates the codebase against industry best practices
and standards to ensure compliance It makes sure that the officially recognized
libraries used in the code are secure and up to date.

AUDIT SCORES

MH Audits AuditScores is not a live dynamic score. It is a fixed value determined
at the time of the report issuance date.

*Note that if no manual in-depth expert review has been performed a score
multiplier of .9 will apply to the final result.

MH Audits AuditScores are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports and scores
are not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts MH
Audits to perform a security review.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

