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ABSTRACT
Data cleansing approaches have usually focused on detect-
ing and fixing errors with little attention to scaling to big
datasets. This presents a serious impediment since data
cleansing often involves costly computations such as enu-
merating pairs of tuples, handling inequality joins, and deal-
ing with user-defined functions. In this paper, we present
BigDansing, a Big Data Cleansing system to tackle ef-
ficiency, scalability, and ease-of-use issues in data cleans-
ing. The system can run on top of most common general
purpose data processing platforms, ranging from DBMSs
to MapReduce-like frameworks. A user-friendly program-
ming interface allows users to express data quality rules both
declaratively and procedurally, with no requirement of being
aware of the underlying distributed platform. BigDansing
takes these rules into a series of transformations that enable
distributed computations and several optimizations, such as
shared scans and specialized joins operators. Experimental
results on both synthetic and real datasets show that Big-
Dansing outperforms existing baseline systems up to more
than two orders of magnitude without sacrificing the quality
provided by the repair algorithms.

1. INTRODUCTION
Data quality is a major concern in terms of its scale as

more than 25% of critical data in the world’s top compa-
nies is flawed [31]. In fact, cleansing dirty data is a critical
challenge that has been studied for decades [10]. However,
data cleansing is hard, since data errors arise in different
forms, such as typos, duplicates, non compliance with busi-
ness rules, outdated data, and missing values.

Example 1: Table 1 shows a sample tax data D in which
each record represents an individual’s information. Suppose
that the following three data quality rules need to hold on
D: (r1) a zipcode uniquely determines a city; (r2) given two
distinct individuals, the one earning a lower salary should
have a lower tax rate; and (r3) two tuples refer to the same
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name zipcode city state salary rate
t1 Annie 10001 NY NY 24000 15
t2 Laure 90210 LA CA 25000 10
t3 John 60601 CH IL 40000 25
t4 Mark 90210 SF CA 88000 28
t5 Robert 60827 CH IL 15000 15
t6 Mary 90210 LA CA 81000 28

Table 1: Dataset D with tax data records

individual if they have similar names, and their cities are
inside the same county. We define these rules as follows:

(r1) φF : D(zipcode→ city)
(r2) φD : ∀t1, t2 ∈ D,¬(t1.rate > t2.rate ∧ t1.salary < t2.salary)
(r3) φU : ∀t1, t2 ∈ D,¬(simF(t1.name, t2.name)∧

getCounty(t1.city) = getCounty(t2.city))

φF , φD, and φU can respectively be expressed as a func-
tional dependency (FD), a denial constraint (DC), and a
user-defined function (UDF) by using a procedural language.
φU requires an ad-hoc similarity function and access to a
mapping table to get the county information. Tuples t2 and
t4 form an error w.r.t. φF , so do t4 and t6, because they have
the same zipcode but different city values. Tuples t1 and t2
violate φD, because t1 has a lower salary than t2 but pays
a higher tax; so do t2 and t5. Rule φU does not have data
errors, i.e., no duplicates in D w.r.t. φU . 2

Cleansing the above dataset typically consists of three
steps: (1) specifying quality rules; (2) detecting data er-
rors w.r.t. the specified rules; and (3) repairing detected er-
rors. Generally speaking, after step (1), the data cleansing
process iteratively runs steps (2) and (3) until obtaining an
instance of the data (a.k.a. a repair) that satisfies the spec-
ified rules. These three steps have been extensively studied
in single-node settings [6, 7, 11, 16–18, 23, 34]. However, the
main focus has been on how to more effectively detect and
repair errors, without addressing the issue of scalability.

Dealing with large datasets faces two main issues. First,
none of the existing systems can scale to large datasets for
the rules in the example. One main reason is that detecting
errors, e.g., with φF and φD, or duplicates, e.g., with φU , is
a combinatorial problem that quickly becomes very expen-
sive with large sizes. More specifically, if |D| is the number
of tuples in a dataset D and n is the number of tuples a given
rule is defined on (e.g., n = 2 for the above rules), the time
complexity of detecting errors is O(|D|n). This high com-
plexity leads to intractable computations over large datasets,
limiting the applicability of data cleansing systems. For in-
stance, memory-based approaches [6, 7] report performance
numbers up to 100K tuples while a disk-based approach [17]
reports numbers up to 1M records only. Apart from the scale
problem, implementing such rules in a distributed process-
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ing platform requires expertise both in the understanding of
the quality rules and in the tuning of their implementation
over this platform. Some research efforts have targeted the
usability of a data cleansing system (e.g., NADEEF [7]), but
at the expense of performance and scalability.

Therefore, designing a distributed data cleansing system
to deal with big data faces two main challenges:

(1) Scalability. Quality rules are varied and complex: they
might compare multiple tuples, use similarity comparisons,
or contain inequality comparisons. Detecting errors in a
distributed setting may lead to shuffling large amounts of
data through the network, with negative effects on the per-
formance. Moreover, existing repair algorithms were not
designed for distributed settings. For example, they often
represent detected errors as a graph, where each node rep-
resents a data value and an edge indicates a data error. De-
vising algorithms on such a graph in distributed settings is
not well addressed in the literature.

(2) Abstraction. In addition to supporting traditional qual-
ity rules (e.g., φF and φD), users also need the flexibility
to define rules using procedural programs (UDFs), such as
φU . However, effective parallelization is hard to achieve with
UDFs, since they are handled as black boxes. To enable scal-
ability, finer granular constructs for specifying the rules are
needed. An abstraction for this specification is challenging
as it would normally come at the expense of generality of
rule specification.

To address these challenges, we present BigDansing, a
Big Data Cleansing system that is easy-to-use and highly
scalable. It provides a rule specification abstraction that
consists of five operators that allow users to specify data
flows for error detection, which was not possible before.
The internal rewriting of the rules enables effective optimiza-
tions. In summary, we make the following contributions:
(1) BigDansing abstracts the rule specification process
into a logical plan composed of five operators, which it opti-
mizes for efficient execution. Users focus on the logic of their
rules, rather than on the details of efficiently implementing
them on top of a parallel data processing platform. More
importantly, this abstraction allows to detect errors and find
possible fixes w.r.t. a large variety of rules that cannot be
expressed in declarative languages (Section 3).

(2) BigDansing abstraction enables a number of optimiza-
tions. We present techniques to translate a logical plan into
an optimized physical plan, including: (i) removing data
redundancy in input rules and reducing the number of oper-
ator calls; (ii) specialized operators to speed up the cleansing
process; and (iii) a new join algorithm, based on partitioning
and sorting data, to efficiently perform distributed inequal-
ity self joins (which are common in quality rules);

(3) We present two approaches to implement existing re-
pair algorithms in distributed settings. First, we show how
to run a centralized data repair algorithm in parallel, with-
out changing the algorithm (Section 5.1). Second, we design
a distributed version of the seminal equivalence class algo-
rithm [5] (Section 5.2).

(4) We use both real-world and synthetic datasets to exten-
sively validate our system. BigDansing outperforms base-
line systems by up to more than two orders of magnitude.
The results also show that BigDansing is more scalable
than baseline systems without sacrificing the quality pro-
vided by the repair algorithms (Section 6).

2. FUNDAMENTALS AND AN OVERVIEW
We discuss the data cleansing semantics expressed by Big-

Dansing and then give an overview of the system.

2.1 Data Cleansing Semantics
In BigDansing, the input data is defined as a set of data

units, where each data unit is the smallest unit of input
datasets. Each unit can have multiple associated elements
that are identified by model-specific functions. For exam-
ple, tuples are the data units for the relational model and
attributes identify their elements, while triples are the data
units for RDF data (see Appendix C). BigDansing provides
a set of parsers for producing such data units and elements
from input datasets.

BigDansing adopts UDFs as the basis to define quality
rules. Each rule has two fundamental abstract functions,
namely Detect and GenFix. Detect takes one or multiple
data units as input and outputs a violation, i.e., elements
in the input units that together are considered as erroneous
w.r.t. the rule:

Detect(data units)→ violation

GenFix takes a violation as input and computes alternative,
possible updates to resolve this violation:

GenFix(violation)→ possible fixes

The language of the possible fixes is determined by the
capabilities of the repair algorithm. With the supported
algorithms, a possible fix in BigDansing is an expression of
the form x op y, where x is an element, op is in {=, 6=, <,>,≥
,≤}, and y is either an element or a constant. In addition,
BigDansing has new functions to enable distributed and
scalable execution of the entire cleansing process. We defer
the details to Section 3.

Consider Example 1, the Detect function of φF takes two
tuples (i.e., two data units) as input and identifies a vio-
lation whenever the same zipcode value appears in the two
tuples but with a different city. Thus, t2(90210, LA) and
t4(90210, SF ) are a violation. The GenFix function could
enforce either t2[city] and t4[city] to be the same, or at least
one element between t2[zipcode] and t4[zipcode] to be differ-
ent from 90210. Rule φU is more general as it requires special
processing. Detect takes two tuples as input and outputs a
violation whenever it finds similar name values and obtains
the same county values from a mapping table. GenFix could
propose to assign the same values to both tuples so that one
of them is removed in set semantics.

By using a UDF-based approach, we can support a large
variety of traditional quality rules with a parser that auto-
matically implements the abstract functions, e.g., CFDs [11]
and DCs [6], but also more procedural rules that are pro-
vided by the user. These latter rules can implement any de-
tection and repair method expressible with procedural code,
such as Java, as long as they implement the signatures of
the two above functions, as demonstrated in systems such
as NADEEF [7]. Note that one known limitation of UDF-
based systems is that, when treating UDFs as black-boxes,
it is hard to do static analysis, such as consistency and im-
plication, for the given rules.

BigDansing targets the following data cleansing problem:
given a dirty data D and a set of rules Σ, compute a repair
which is an updated instance D′ such that there are no vi-
olations, or there are only violations with no possible fixes.
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Figure 1: BigDansing architecture

Among the many possible solutions to the cleans-
ing problem, it is common to define a notion of min-
imality based on the cost of a repair. A popular
cost function [5] for relational data is the following:∑

t∈D,t′∈Dr,A∈AR disA(D(t[A]), D(t′[A])), where t′ is the fix

for a specific tuple t and disA(D(t[A]), D(t′[A])) is a distance
between their values for attribute A (an exact match returns
0). This models the intuition that the higher is the sum of
the distances between the original values and their fixes, the
more expensive is the repair. Computing such minimum re-
pairs is NP-hard, even with FDs only [5, 23]. Thus, data
repair algorithms are mostly heuristics (see Section 5).

2.2 Architecture
We architected BigDansing as illustrated in Figure 1.

BigDansing receives a data quality rule together with
a dirty dataset from users (1) and outputs a clean
dataset (7). BigDansing consists of two main components:
the RuleEngine and the RepairAlgorithm.

The RuleEngine receives a quality rule either in a UDF-
based form (a BigDansing job) or in a declarative form (a
declarative rule). A job (i.e., a script) defines users opera-
tions as well as the sequence in which users want to run their
operations (see Appendix A). A declarative rule is written
using traditional integrity constraints such as FDs and DCs.
In the latter case, the RuleEngine automatically translates
the declarative rule into a job to be executed on a parallel
data processing framework. This job outputs the set of vio-
lations and possible fixes for each violation. The RuleEngine
has three layers: the logical, physical, and execution layers.
This architecture allows BigDansing to (i) support a large
variety of data quality rules by abstracting the rule speci-
fication process, (ii) achieve high efficiency when cleansing
datasets by performing a number of physical optimizations,
and (iii) scale to big datasets by fully leveraging the scala-
bility of existing parallel data processing frameworks. No-
tice that, unlike a DBMS, the RuleEngine also has an exe-
cution abstraction, which allows BigDansing to run on top
of general purpose data processing frameworks ranging from
MapReduce-like systems to databases.

(1) Logical layer. A major goal of BigDansing is to allow
users to express a variety of data quality rules in a simple
way. This means that users should only care about the logic
of their quality rules, without worrying about how to make
the code distributed. To this end, BigDansing provides five
logical operators, namely Scope, Block, Iterate, Detect, and
GenFix, to express a data quality rule: Scope defines the rel-
evant data for the rule; Block defines the group of data units
among which a violation may occur; Iterate enumerates the
candidate violations; Detect determines whether a candidate
violation is indeed a violation; and GenFix generates a set
of possible fixes for each violation. Users define these logi-
cal operators, as well as the sequence in which BigDansing
has to run them, in their jobs. Alternatively, users provide
a declarative rule and BigDansing translates it into a job
having these five logical operators. Notice that a job repre-
sents the logical plan of a given input quality rule.

(2) Physical layer. In this layer, BigDansing receives a
logical plan and transforms it into an optimized physical
plan of physical operators. Like in DBMSs, a physical plan
specifies how a logical plan is implemented. For example,
Block could be implemented by either hash-based or range-
based methods. A physical operator in BigDansing also
contains extra information, such as the input dataset and the
degree of parallelism. Overall, BigDansing processes a log-
ical plan through two main optimization steps, namely the
plan consolidation and the data access optimization, through
the use of specialized join and data access operators.

(3) Execution layer. In this layer, BigDansing determines
how a physical plan will be actually executed on the under-
lying parallel data processing framework. It transforms a
physical plan into an execution plan which consists of a set
of system-dependent operations, e.g., a Spark or MapReduce
job. BigDansing runs the generated execution plan on the
underlying system. Then, it collects all the violations and
possible fixes produced by this execution. As a result, users
get the benefits of parallel data processing frameworks by
just providing few lines of code for the logical operators.

Once BigDansing has collected the set of violations and
possible fixes, it proceeds to repair (cleanse) the input dirty
dataset. At this point, the repair process is independent
from the number of rules and their semantics, as the repair
algorithm considers only the set of violations and their pos-
sible fixes. The way the final fixes are chosen among all the
possible ones strongly depends on the repair algorithm itself.
Instead of proposing a new repair algorithm, we present in
Section 5 two different approaches to implement existing
algorithms in a distributed setting. Correctness and termi-
nation properties of the original algorithms are preserved in
our extensions. Alternatively, expert users can plug in their
own repair algorithms. In the algorithms that we extend,
each repair step greedily eliminates violations with possi-
ble fixes while minimizing the cost function in Section 2.1.
An iterative process, i.e., detection and repair, terminates
if there are no more violations or there are only violations
with no corresponding possible fixes. The repair step may
introduce new violations on previously fixed data units and
a new step may decide to again update these units. To en-
sure termination, the algorithm put a special variable on
such units after a fixed number of iterations (which is a user
defined parameter), thus eliminating the possibility of future
violations on the same data.
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3. RULE SPECIFICATION
BigDansing abstraction consists of five logical opera-

tors: Scope, Block, Iterate, Detect, and GenFix, which are
powerful enough to express a large spectrum of cleansing
tasks. While Detect and GenFix are the two general oper-
ators that model the data cleansing process, Scope, Block,
and Iterate enable the efficient and scalable execution of that
process. Generally speaking, Scope reduces the amount of
data that has to be treated, Block reduces the search space
for the candidate violation generation, and Iterate efficiently
traverses the reduced search space to generate all candidate
violations. It is worth noting that these five operators do not
model the repair process itself (i.e., a repair algorithm). The
system translates these operators along with a, generated or
user-provided, BigDansing job into a logical plan.

3.1 Logical Operators
As mentioned earlier, BigDansing defines the input data

through data units Us on which the logical operators oper-
ate. While such a fine-granular model might seem to incur a
high cost as BigDansing calls an operator for each U , it in
fact allows to apply an operator in a highly parallel fashion.

In the following, we define the five operators provided
by BigDansing and illustrate them in Figure 2 using the
dataset and rule FD φF (zipcode→ city) of Example 1. No-
tice that the following listings are automatically generated
by the system for declarative rules. Users can either modify
this code or provide their own for the UDFs case.

(1) Scope removes irrelevant data units from a dataset.
For each data unit U , Scope outputs a set of filtered data
units, which can be an empty set.

Scope(U)→ list〈U ′〉

Notice that Scope outputs a list of Us as it allows data units
to be replicated. This operator is important as it allows
BigDansing to focus only on data units that are relevant
to a given rule. For instance, in Figure 2, Scope projects on
attributes zipcode and city. Listing 4 (Appendix B) shows
the lines of code for Scope in rule φF .

(2) Block groups data units sharing the same blocking key.
For each data unit U , Block outputs a blocking key.

Block(U)→ key

The Block operator is crucial for BigDansing’s scalability
as it narrows down the number of data units on which a vi-
olation might occur. For example, in Figure 2, Block groups
tuples on attribute zipcode, resulting in three blocks, with
each block having a distinct zipcode. Violations might occur
inside these blocks only and not across blocks. See Listing 5
(Appendix B) for the single line of code required by this
operator fro rule φF .

(3) Iterate defines how to combine data units Us to gener-
ate candidate violations. This operator takes as input a list
of lists of data units Us (because it might take the output
of several previous operators) and outputs a single U , a pair
of Us, or a list of Us.

Iterate(list〈list〈U〉〉)→ U ′ | 〈Ui, Uj〉 | list〈U ′′〉

This operator allows to avoid the quadratic complexity for
generating candidate violations. For instance, in Figure 2,
Iterate passes each unique combination of two tuples inside
each block, producing four pairs only (instead of 13 pairs):

(1) Scope (zipcode, city) (2) Block (zipcode) (3) Iterate
(t3, t5)
(t2, t4)
(t2, t6)
(t4, t6)

(4) Detect
(t2, t4)
(t4, t6)

zipcode city

10001 NY

90210 LA

60601 CH

90210 SF

t1

t2

t3

t4

t5 60601 CH

t6 90210 LA

zipcode city

10001 NY

90210 SF

90210 LA

t1

t4

60601 CHt3

t2

t5 60601 CH
B1

B2

B3

LA90210t6

(5) GenFix

t2[city] = t4[city];
t6[city] = t4[city]

Figure 2: Logical operators execution for rule FD φF

(t3, t5) from B1, (t2, t4), (t2, t6), and (t4, t6) from B3. List-
ing 6 (Appendix B) shows the code required by this Iterate
operator for rule φF .

(4) Detect takes a single U , a pair-U , or a list o Us, as
input and outputs a list of violations, possibly empty.

Detect(U | 〈Ui, Uj〉 | list〈U ′〉)→ {list〈violation〉}
Considering three types of inputs for Detect allows us to
achieve better parallelization by distinguishing between dif-
ferent granularities of the input. For example, having 1K
Us as input, rather than a single list of Us, would allow
us to run 1K parallel instances of Detect (instead of a single
Detect instance). In Figure 2, Detect outputs two violations,
v1 = (t2, t4) and v2 = (t6, t4), as they have different values
for city; and it requires the lines of code in Listing 1.

public ArrayList<Violation> detect(TuplePair in) {
1 ArrayList<Violation> lst = new ArrayList<Violation>();
2 if (! in . getLeft () . getCellValue (1) . equals(

in .getRight() . getCellValue (1))) {
3 Violation v = new Violation(”zipcode => City”);
4 v.addTuple(in. getLeft ()) ;
5 v.addTuple(in.getRight()) ;
6 lst .add(v); }
7 return lst ; }

Listing 1: Code example for the Detect operator.

(5) GenFix computes a set of possible fixes for a given
violation.

GenFix(violation)→ {list〈PossibleFixes〉}
For instance, assuming that only right-hand side values can
be modified, GenFix produces one possible repair for each
detected violation (Figure 2): t2[city] = t4[city] and t6[city] =
t4[city]. Listing 2 shows the code for this GenFix.

public ArrayList<Fix> GenFix(Violation v) {
1 ArrayList<Fix> result = new ArrayList<Fix>();
2 Tuple t1 = v.getLeft () ;
3 Tuple t2 = v.getRight() ;
4 Cell c1 = new Cell(t1.getID() , ”City ”,t1. getCellValue (1)) ;
5 Cell c2 = new Cell(t2.getID() , ”City ”,t2. getCellValue (1)) ;
6 result .add(new Fix(c1,”=”,c2)) ;
7 return result ; }

Listing 2: Code example for the GenFix operator.

Additionally, to better specify the data flow among the
different operators, we introduce a label to stamp a data
item and track how it is being processed.

In contrast to DBMS operators, BigDansing’s operators
are UDFs, which allow users to plug in any logic. As a result,
we are not restricted to a specific data model. However, for
ease of explanations all of our examples assume relational
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Detect Iterate Block
ScopeRule Logical 

plan
Found

Not found

Not found

Found

GenFix

Not found

Found

Not found

Figure 3: Planner execution flow

data. We report an RDF data cleansing example in Ap-
pendix C. We also report in Appendix D the code required
to write the same rule in a distributed environment, such
as Spark. The proposed templates for the operators allow
users to get distributed detection without any expertise on
Spark, only by providing from 3 to 16 lines of Java code. The
benefit of the abstraction should be apparent at this point:
(i) ease-of-use for non-expert users and (ii) better scalability
thanks to its abstraction.

3.2 The Planning Process
The logical layer of BigDansing takes as input a set of

labeled logical operators together with a job and outputs a
logical plan. The system starts by validating whether the
provided job is correct by checking that all referenced logi-
cal operators are defined and at least one Detect is specified.
Recall that for declarative rules, such as CFDs and DCs,
users do not need to provide any job, as BigDansing auto-
matically generates a job along with the logical operators.

After validating the provided job, BigDansing generates
a logical plan (Figure 3) that: (i) must have at least one
input dataset Di; (ii) may have one or more Scope opera-
tors; (iii) may have one Block operator or more linked to an
Iterate operator; (iv) must have at least one Detect operator
to possibly produce a set of violations; and (v) may have
one GenFix operator for each Detect operator to generate
possible fixes for each violation.
BigDansing looks for a corresponding Iterate operator for

each Detect. If Iterate is not specified, BigDansing gener-
ates one according to the input required by the Detect op-
erator. Then, it looks for Block and Scope operators that
match the input label of the Detect operator. If an Iterate
operator is specified, BigDansing identifies all Block oper-
ators whose input label match the input label of the Iterate.
Then, it uses the input labels of the Iterate operator to find
other possible Iterate operators in reverse order. Each new
detected Iterate operator is added to the plan with the Block
operators related to its input labels. Once it has processed
all Iterate operators, it finally looks for Scope operators.

In case the Scope or Block operators are missing, Big-
Dansing pushes the input dataset to the next operator in
the logical plan. If no GenFix operator is provided, the out-
put of the Detect operator is written to disk. For example,
assume the logical plan in Figure 4, which is generated by
BigDansing when a user provides the job in Appendix A.
We observe that dataset D1 is sent directly to a Scope and a
Block operator. Similarly, dataset D2 is sent directly to an
Iterate operator. We also observe that one can also iterate
over the output of previous Iterate operators (e.g., over out-
put DM ). This flexibility allows users to express complex
data quality rules, such as in the form of “bushy” plans as
shown in Appendix E.

4. BUILDING PHYSICAL PLANS
When translating a logical plan, BigDansing exploits two

main opportunities to derive an optimized physical plan:
(i) static analysis of the logical plan and (ii) alternative
translations for each logical operator. Since quality rules

Scope BlockD1
S

Block

S

T
Iterate

S

T
Iterate

D2

M

W
Detect

V
GenFix

V

Figure 4: Example of a logical plan

may involve joins over ordering comparisons, we also intro-
duce an efficient algorithm for these cases. We discuss these
aspects in this section. In addition, we discuss data storage
and access issues in Appendix F.

4.1 Physical Operators
There are two kinds of physical operators: wrappers and

enhancers. A wrapper simply invokes a logical operator.
Enhancers replace wrappers to take advantage of different
optimization opportunities.

A wrapper invokes a logical operator together with the cor-
responding physical details, e.g., input dataset and schema
details (if available). For clarity, we discard such physical
details in all the definitions below. In contrast to the logical
layer, BigDansing invokes a physical operator for a set D
of data units, rather than for a single unit. This enables the
processing of multiple units in a single function call. For
each logical operator, we define a corresponding wrapper.

(1) PScope applies a user-defined selection and projection
over a set of data units D and outputs a dataset D′ ⊂ D.

PScope(D)→ {D′}

(2) PBlock takes a dataset D as input and outputs a list
of key-value pairs defined by users.

PBlock(D)→ map〈key, list〈U〉〉

(3) PIterate takes a list of lists of Us as input and outputs
their cross product or a user-defined combination.

PIterate(list〈list〈U〉〉)→ list〈U〉 | list〈Pair〈U〉〉

(4) PDetect receives either a list of data units Us or a list
of data unit pairs U -pairs and produces a list of violations.

PDetect(list〈U〉 | list〈Pair〈U〉〉)→ list〈V iolation〉

(5) PGenFix receives a list of violations as input and out-
puts a list of a set of possible fixes, where each set of fixes
belongs to a different input violation.

PGenFix(list〈V iolation〉)→ list〈{PossibleF ixes}〉

With declarative rules, the operations over a dataset are
known, which enables algorithmic opportunities to improve
performance. Notice that one could also discover such oper-
ations with code analysis over the UDFs [20]. However, we
leave this extension to future work. BigDansing exploits
such optimization opportunities via three new enhancers op-
erators: CoBlock, UCrossProduct, and OCJoin. CoBlock is
a physical operator that allows to group multiple datasets
by a given key. UCrossProduct and OCJoin are basically two
additional different implementations for the PIterate opera-
tor. We further explain these three enhancers operators in
the next section.
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Algorithm 1: Logical plan consolidation

input : LogicalPlan lp
output: LogicalPlan clp

1 PlanBuilder lpb = new PlanBuilder();
2 for logical operator lopi ∈ lp do
3 lopj ← findMatchingLO(lopi, lp);
4 DS1 ← getSourceDS(lopi);
5 DS2 ← getSourceDS(lopj);
6 if DS1 == DS2 then
7 lopc ← getLabelsFuncs(lopi, lopj);
8 lopc.setInput(DS1, DS2);
9 lpb.add(lopc);

10 lp.remove(lopi, lopj);

11 if lpb.hasConsolidatedOps then
12 lpb.add(lp.getOperators());
13 return lpb.generateConsolidatedLP();

14 else
15 return lp;

4.2 From Logical to Physical Plan
As we mentioned earlier, optimizing a logical plan is per-

formed by static analysis (plan consolidation) and by plug-
ging enhancers (operators translation) whenever possible.

Plan Consolidation. Whenever logical operators use a
different label for the same dataset, BigDansing translates
them into distinct physical operators. BigDansing has to
create multiple copies of the same dataset, which it might
broadcast to multiple nodes. Thus, both the memory foot-
print at compute nodes and the network traffic are increased.
To address this problem, BigDansing consolidates redun-
dant logical operators into a single logical operator. Hence,
by applying the same logical operator several times on the
same set of data units using shared scans, BigDansing is
able to increase data locality and reduce I/O overhead.

Algorithm 1 details the consolidation process for an input
logical plan lp. For each operator lopi, the algorithm looks
for a matching operator lopj (Lines 2-3). If lopj has the
same input dataset as lopi, BigDansing consolidates them
into lopc (Lines 4-6). The newly consolidated operator lopc
takes the labels, functions, and datasets from lopi and lopj
(Lines 7-8). Next, BigDansing adds lopc into a logical plan
builder lpb and removes lopi and lopj from lp (Lines 9-10).
At last, if any operator was consolidated, it adds the non-
consolidated operators to lpb and returns the consolidated
logical plan (Lines 11-13). Otherwise, it returns lp (Line 15).

Let us now illustrate the consolidation process with an
example. Consider a DC on the TPC-H database stating
that if a customer and a supplier have the same name and
phone they must be in the same city. Formally,

DC : ∀t1, t2 ∈ D1,¬(t1.c name = t2.s name∧
t1.c phone = t2.s phone ∧ t1.c city 6= t2.s city)

(1)

For this DC, BigDansing generates the logical plan in Fig-
ure 5(a) with operators Scope and Block applied twice over
the same input dataset. It then consolidates redundant log-
ical operators into a single one (Figure 5(b)) thereby reduc-
ing the overhead of reading an input dataset multiple times.
The logical plan consolidation is only applied when it does
not affect the original labeling of the operators.

Operators Translation. Once a logical plan have been
consolidated, BigDansing translates the consolidated logi-

Scope Block

D1
T1

Iterate Detect

ScopeT2 Block

T1
T1

T2
T2

T12

(a) Logical plan

Scope BlockD1 Iterate Detect
T12T1,T2

(b) Consolidated logical plan

PScope PBlockD1 PIterate PDetect
T12

(c) Physical plan

T1,T2 T1,T2

T1,T2 T1,T2 T1,T2

GenFix
T12

GenFix
T12

PGenFix
T12

Figure 5: Plans for DC in rule 1

cal plan into a physical plan. It maps each logical operator
to its corresponding wrapper, which in turn maps to one or
more physical operators. For example, it produces the phys-
ical plan in Figure 5(c) for the consolidated logical plan in
Figure 5(b). For enhancers, BigDansing exploits some par-
ticular information from the data cleansing process. Below,
we detail these three enhancers operators as well as in which
cases they are used by our system.

• CoBlock takes multiple input datasets D and applies a
group-by on a given key. This would limit the comparisons
required by the rule to only blocks with the same key from
the different datasets. An example is shown in Figure 16
(Appendix E). Similar to the CoGroup defined in [28], in the
output of CoBlock, all keys from both inputs are collected
into bags. The output of this operator is a map from a key
value to the list of data units sharing that key value. We
formally define this operator as:

CoBlock (D)→ map〈key, list〈list〈U〉〉〉

If two non-consolidated Block operators’ outputs go to the
same Iterate and then to a single PDetect, BigDansing
translates them into a single CoBlock. Using CoBlock al-
lows us to reduce the number of candidate violations for the
Detect. This is because Iterate generates candidates only
inside and not across CoBlocks (see Figure 6).

• UCrossProduct receives a single input dataset D and ap-
plies a self cross product over it. This operation is usually
performed in cleansing processes that would output the same
violations irrespective of the order of the input of Detect.
UCrossProduct avoids redundant comparisons, reducing the

number of comparisons from n2 to n×(n−1)
2

, with n being
the number of units Us in the input. For example, the out-
put of the logical operator Iterate in Figure 2 is the result
of UCrossProduct within each block; there are four pairs in-
stead of thirteen, since the operator avoids three compar-
isons for the elements in block B1 and six for the ones in B3
of Figure 2. Formally:

UCrossProduct(D)→ list〈Pair〈U〉〉

If, for a single dataset, the declarative rules contain only
symmetric comparisons, e.g., = and 6=, then the order in
which the tuples are passed to PDetect (or to the next logical
operator if any) does not matter. In this case, BigDansing
uses UCrossProduct to avoid materializing many unnecessary
pairs of data units, such as for the Iterate operator in Fig-
ure 2. It also uses UCrossProduct when: (i) users do not
provide a matching Block operator for the Iterate operator;
or (ii) users do not provide any Iterate or Block operator.

• OCJoins performs a self join on one or more ordering com-
parisons (i.e., <, >, ≥, ≤). This is a very common operation
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in rules such as DCs. Thus, BigDansing provides OCJoin,
which is an efficient operator to deal with join ordering com-
parisons. It takes input dataset D and applies a number of
join conditions, returning a list of joining U -pairs. We for-
mally define this operator as follows:

OCJoin(D)→ list〈Pair〈U〉〉

Every time BigDansing recognizes joins conditions defined
with ordering comparisons in PDetect, e.g., φD, it trans-
lates Iterate into a OCJoin implementation. Then, it passes
OCJoin output to a PDetect operator (or to the next logi-
cal operator if any). We discuss this operator in detail in
Section 4.3.

We report details for the transformation of the physical
operators to two distributed platforms in Appendix G.

4.3 Fast Joins with Ordering Comparisons
Existing systems handle joins over ordering comparisons

using a cross product and a post-selection predicate, leading
to poor performance. BigDansing provides an efficient ad-
hoc join operator, referred to as OCJoin, to handle these
cases. The main goal of OCJoin is to increase the ability
to process joins over ordering comparisons in parallel and
to reduce its complexity by reducing the algorithm’s search
space. In a nutshell, OCJoin first range partitions a set of
data units and sorts each of the resulting partitions in order
to validate the inequality join conditions in a distributed
fashion. OCJoin works in four main phases: partitioning,
sorting, pruning, and joining (see Algorithm 2).

Partitioning. OCJoin first selects the attribute, PartAtt,
on which to partition the input D (line 1). We assume
that all join conditions have the same output cardinality.
This can be improved using cardinality estimation tech-
niques [9,27], but it is beyond the scope of the paper. OCJoin
chooses the first attribute involved in the first condition.
For instance, consider again φD (Example 1), OCJoin sets
PartAtt to rate attribute. Then, OCJoin partitions the input
dataset D into nbParts range partitions based on PartAtt
(line 2). As part of this partitioning, OCJoin distributes
the resulting partitions across all available computing nodes.
Notice that OCJoin runs the range partitioning in parallel.
Next, OCJoin forks a parallel process for each range partition
ki to run the three remaining phases (lines 3-14).

Sorting. For each partition, OCJoin creates as many sorting
lists (Sorts) as inequality conditions are in a rule (lines 4-
5). For example, OCJoin creates two sorted lists for φD:
one sorted on rate and the other sorted on salary. Each
list contains the attribute values on which the sort order is
and the tuple identifiers. Note that OCJoin only performs
a local sorting in this phase and hence it does not require
any data transfer across nodes. Since multiple copies of a

Algorithm 2: OCJoin

input : Dataset D, Condition conds[ ], Integer nbParts
output: List Tuples〈Tuple〉
// Partitioning Phase

1 PartAtt ← getPrimaryAtt(conds[].getAttribute());
2 K ← RangePartition(D, PartAtt, nbParts);
3 for each ki ∈ K do
4 for each cj ∈ conds[ ] do // Sorting
5 Sorts[j] ← sort(ki, cj .getAttribute());

6 for each kl ∈ {ki+1...k|K|} do
7 if overlap(ki, kl, PartAtt) then // Pruning
8 tuples = ∅;
9 for each cj ∈ conds[ ] do // Joining

10 tuples ← join(ki, kl, Sorts[j], tuples);
11 if tuples == ∅ then
12 break;

13 if tuples != ∅ then
14 Tuples.add(tuples);

partition may exist in multiple computing nodes, we apply
sorting before pruning and joining phases to ensure that each
partition is sorted at most once.

Pruning. Once all partitions ki ∈ K are internally sorted,
OCJoin can start joining each of these partitions based on
the inequality join conditions. However, this would require
transferring large amounts of data from one node to an-
other. To circumvent such an overhead, OCJoin inspects
the min and max values of each partition to avoid joining
partitions that do not overlap in their min and max range
(the pruning phase, line 7). Non-overlapping partitions do
not produce any join result. If the selectivity values for the
different inequality conditions are known, OCJoin can order
the different joins accordingly.

Joining. OCJoin finally proceeds to join the overlapping
partitions and outputs the join results (lines 9-14). For this,
it applies a distributed sort merge join over the sorted lists,
where some partitions are broadcast to other machines while
keeping the rest locally. Through pruning, OCJoin tells the
underlying distributed processing platform which partitions
to join. It is up to that platform to select the best approach
to minimize the number of broadcast partitions.

5. DISTRIBUTED REPAIR ALGORITHMS
Most of the existing repair techniques [5–7, 11, 17, 23, 34]

are centralized. We present two approaches to implement a
repair algorithm in BigDansing. First, we show how our
system can run a centralized data repair algorithm in par-
allel, without changing the algorithm. In other words, Big-
Dansing treats that algorithm as a black box (Section 5.1).
Second, we design a distributed version of the widely used
equivalence class algorithm [5,7, 11,17] (Section 5.2).

5.1 Scaling Data Repair as a Black Box
Overall, we divide a repair task into independent smaller

repair tasks. For this, we represent the violation graph as
a hypergraph containing the violations and their possible
fixes. The nodes represent the elements and each hyperedge
covers a set of elements that together violate a rule, along
with possible repairs. We then divide the hypergraph into
smaller independent subgraphs, i.e., connected components,
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and we pass each connected component to an independent
data repair instance.

Connected components. Given an input set of violations,
form at least one rule, BigDansing first creates their hyper-
graph representation of such possible fixes in a distributed
manner. It then uses GraphX [37] to find all connected com-
ponents in the hypergraph. GraphX, in turn, uses the Bulk
Synchronous Parallel (BSP) graph processing model [25] to
process the hypergraph in parallel. As a result, BigDans-
ing gets a connected component ID for each hyperedge. It
then groups hyperedges by the connected component ID.
Figure 7 shows an example of connected components in a
hypergraph containing three violations v1, v2, and v3. Note
that violations v1 and v2 can be caused by different rules.
Violations v1 and v2 are grouped in a single connected com-
ponent CC1, because they share element c2. In contrast, v3
is assigned to a different connected component CC2, because
it does not share any element with v1 or v2.

Independent data repair instance. Once all connected
components are computed, BigDansing assigns each of
them to an independent data repair instance and runs such
repair instances in a distributed manner (right-side of Fig-
ure 7). When all data repair instances generate the required
fixes, BigDansing updates the input dataset and pass it
again to the RuleEngine to detect potential violations in-
troduced by the RepairAlgorithm. The number of iterations
required to fix all violations depends on the input rules, the
dataset, and the repair algorithm.

Dealing with big connected components. If a con-
nected component does not fit in memory, BigDansing uses
a k-way multilevel hypergraph partitioning algorithm [22] to
divide it into k equal parts and run them on distinct ma-
chines. Unfortunately, naively performing this process can
lead to inconsistencies and contradictory choices in the re-
pair. Moreover, it can fix the same violation independently
in two machines, thus introducing unnecessary changes to
the repair. We illustrate this problem with an example.

Example 2: Consider a relational schema D with 3 attributes
A, B, C and 2 FDs A→ B and C → B. Given the instance
[t1](a1, b1, c1), [t2](a1, b2, c1), all data values are in viola-
tion: t1.A, t1.B, t2.A, t2.B for the first FD and t1.B, t1.C,
t2.B, t2.C for the second one. Assuming the compute nodes
have enough memory only for five values, we need to solve
the violations by executing two instances of the algorithm
on two different nodes. Regardless of the selected tuple, sup-
pose the first compute node repairs a value on attribute A,
and the second one a value on attribute C. When we put
the two repairs together and check their consistency, the
updated instance is a valid solution, but the repair is not
minimal because a single update on attribute B would have
solved both violations. However, if the first node fixes t1.B
by assigning value “b2” and the second one fixes t2.B with

“b1”, not only there are two changes, but the final instance
is also inconsistent. 2

We tackle the above problem by assigning the role of mas-
ter to one machine and the role of slave to the rest. Every
machine applies a repair in isolation, but we introduce an
extra test in the union of the results. For the violations that
are solved by the master, we mark its changes as immutable,
which prevents us to change an element more than once. If a
change proposed by a slave contradicts a possible repair that
involve a master’s change, the slave repair is undone and a
new iteration is triggered. As a result, the algorithm always
reaches a fix point to produce a clean dataset, because an
updated value cannot change in the following iterations.

BigDansing currently provides two repair algorithms us-
ing this approach: the equivalence class algorithm and a
general hypergraph-based algorithm [6, 23]. Users can also
implement their own repair algorithm if it is compatible with
BigDansing’s repair interface.

5.2 Scalable Equivalence Class Algorithm
The idea of the equivalence class based algorithm [5] is to

first group all elements that should be equivalent together,
and to then decide how to assign values to each group. An
equivalence class consists of pairs of the form (t, A), where
t is a data unit and A is an element. In a dataset D, each
unit t and each element A in t have an associated equivalence
class, denoted by eq(t, A). In a repair, a unique target value
is assigned to each equivalence class E, denoted by targ(E).
That is, for all (t, A) ∈ E, t[A] has the same value targ(E).
The algorithm selects the target value for each equivalence
class to obtain a repair with the minimum overall cost.

We extend the equivalence class algorithm to a distributed
setting by modeling it as a distributed word counting al-
gorithm based on map and reduce functions. However, in
contrast to a standard word count algorithm, we use two
map-reduce sequences. The first map function maps the vi-
olations’ possible fixes for each connected component into
key-value pairs of the form 〈〈ccID,value〉,count〉. The key
〈ccID,value〉 is a composite key that contains the connected
component ID and the element value for each possible fix.
The value count represents the frequency of the element
value, which we initialize to 1. The first reduce function
counts the occurrences of the key-value pairs that share the
same connected component ID and element value. It out-
puts key-value pairs of the form 〈〈ccID,value〉,count〉. Note
that if an element exists in multiple fixes, we only count its
value once. After this first map-reduce sequence, another
map function takes the output of the reduce function to cre-
ate new key-value pairs of the form 〈ccID,〈value,count〉〉.
The key is the connected component ID and the value is the
frequency of each element value. The last reduce selects the
element value with the highest frequency to be assigned to
all the elements in the connected component ccID.

6. EXPERIMENTAL STUDY
We evaluate BigDansing using both real and synthetic

datasets with various rules (Section 6.1). We consider a
variety of scenarios to evaluate the system and answer the
following questions: (i) how well does it perform compared
with baseline systems in a single node setting (Section 6.2)?
(ii) how well does it scale to different dataset sizes compared
to the state-of-the-art distributed systems (Section 6.3)?
(iii) how well does it scale in terms of the number of nodes
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Dataset Rows Dataset Rows
TaxA1–TaxA5 100K – 40M customer2 32M
TaxB1–TaxB3 100K – 3M NCVoter 9M

TPCH1–TPCH10 100K – 1907M HAI 166k
customer1 19M

Table 2: Statistics of the datasets
Identifier Rule
ϕ1 (FD): Zipcode→ City
ϕ2 (DC): ∀t1, t2 ∈ TaxB,¬(t1.Salary > t2.Salary

∧t1.Rate < t2.Rate)
ϕ3 (FD): o custkey→ c address
ϕ4 (UDF): Two rows in Customer are duplicates
ϕ5 (UDF): Two rows in NCVoter are duplicates
ϕ6 (FD): Zipcode→ State
ϕ7 (FD): PhoneNumber→ Zipcode
ϕ8 (FD): ProviderID→ City,PhoneNumber

Table 3: Integrity constraints used for testing

(Section 6.4)? (iv) how well does its abstraction support a
variety of data cleansing tasks, e.g., for deduplication (Sec-
tion 6.5)? and (v) how do its different techniques improve
performance and what is its repair accuracy (Section 6.6)?

6.1 Setup
Table 2 summarizes the datasets and Table 3 shows the

rules we use for our experiments.

(1) TaxA. Represents personal tax information in the
US [11]. Each row contains a person’s name, contact in-
formation, and tax information. For this dataset, we use
the FD rule ϕ1 in Table 3. We introduced errors by adding
random text to attributes City and State at a 10% rate.

(2) TaxB. We generate TaxB by adding 10% numerical ran-
dom errors on the Rate attribute of TaxA. Our goal is to
validate the efficiency with rules that have inequality condi-
tions only, such as DC ϕ2 in Table 3.

(3) TPCH. From the TPC-H benchmark data [2], we joined
the lineitem and customer tables and applied 10% random
errors on the address. We use this dataset to test FD rule ϕ3.

(4) Customer. In our deduplication experiment, we use
TPC-H customer with 4.5 million rows to generate tables
customer1 with 3x exact duplicates and customer2 with 5x
exact duplicates. Then, we randomly select 20% of the total
number of tuples, in both relations, and duplicate them with
random edits on attributes name and phone.

(5) NCVoter. This is a real dataset that contains North Car-
olina voter information. We added 20% random duplicate
rows with random edits in name and phone attributes.

(6) Healthcare Associated Infections (HAI)
(http://www.hospitalcompare.hhs.gov). This real dataset
contains hospital information and statistics measurements
for infections developed during treatment. We added 10%
random errors on the attributes covered by the FDs and
tested four combinations of rules (ϕ6 – ϕ8 from Table 3).
Each rule combination has its own dirty dataset.

To our knowledge, there exists only one full-fledged data
cleansing system that can support all the rules in Table 3:

(1) NADEEF [7]: An open-source single-node platform sup-
porting both declarative and user defined quality rules.

(2) PostgreSQL v9.3: Since declarative quality rules can be
represented as SQL queries, we also compare to PostgreSQL
for violation detection. To maximize benefits from large
main memory, we configured it using pgtune [30].
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Figure 8: Data cleansing times.

The two declarative constraints, DC ϕ2 and FD ϕ3 in Ta-
ble 3, are translated to SQL as shown below.

ϕ2: SELECT a.Salary, b.Salary, a.Rate, b.Rate
FROM TaxB a JOIN TaxB b
WHERE a.Salary > b.Salary AND a.Rate < b.Rate;

ϕ3: SELECT a.o custkey, a.c address, b.c address FROM
TPCH a JOIN TPCH b ON a.custkey = b.custkey
WHERE a.c address 6= b.c address;

We also consider two parallel data processing frameworks:

(3) Shark 0.8.0 [38]: This is a scalable data processing en-
gine for fast data analysis. We selected Shark due to its
scalability advantage over existing distributed SQL engines.

(4) Spark SQL v1.0.2:It is an experimental extension of
Spark v1.0 that allows users run relational queries natively
on Spark using SQL or HiveQL. We selected this system as,
like BigDansing, it runs natively on top of Spark.

We ran our experiments in two different settings: (i) a
single-node setting using a Dell Precision T7500 with two
64-bit quad-core Intel Xeon X5550 (8 physical cores and 16
CPU threads) and 58GB RAM and (ii) a multi-node setting
using a compute cluster of 17 Shuttle SH55J2 machines (1
master with 16 workers) equipped with Intel i5 processors
with 16GB RAM constructed as a star network.

6.2 Single-Node Experiments
For these experiments, we start comparing BigDansing

with NADEEF in the execution times of the whole cleans-
ing process (i.e., detection and repair). Figure 8(a) shows
the performance of both systems using the TaxA and TPCH
datasets with 100K and 1M (200K for ϕ2) rows. We observe
that BigDansing is more than three orders of magnitude
faster than NADEEF in rules ϕ1 (1M) and ϕ2 (200K), and
ϕ3 (1M). In fact, NADEEF is only “competitive” in rule ϕ1

(100K), where BigDansing is only twice faster. The high
superiority of BigDansing comes from two main reasons:
(i) In contrast to NADEEF, it provides a finer granular ab-
straction allowing users to specify rules more efficiently; and
(ii) It performs rules with inequality conditions in an efficient
way (using OCJoin). In addition, NADEEF issues thou-
sands of SQL queries to the underlying DBMS. for detect-
ing violations. We do not report results for larger datasets
because NADEEF was not able to run the repair process for
more than 1M rows (300K for ϕ2).

We also observed that violation detection was dominating
the entire data cleansing process. Thus, we ran an exper-
iment for rule ϕ1 in TaxA with 1M rows by varying the
error rate. Violation detection takes more than 90% of the
time, regardless of the error rate (Figure 8(b)). In particu-
lar, we observe that even for a very high error rate (50%),
the violation detection phase still dominates the cleansing
process. Notice that for more complex rules, such as rule
ϕ2, the dominance of the violation detection is even ampli-
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Figure 9: Single-node experiments with ϕ1, ϕ2, and ϕ1
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Figure 10: Multi-nodes experiments with ϕ1, ϕ2 and ϕ3

fied. Therefore, to be able to extensively evaluate BigDans-
ing, we continue our experiments focusing on the violation
detection phase only, except if stated otherwise.

Figures 9(a), Figure 9(b), and 9(c) show the violation
detection performance of all systems for TaxA, TaxB, and
TPCH datasets. TaxA and TPCH datasets have 100K, 1M,
and 10M rows and TaxB has 100K, 200K, and 300K rows.
With equality-based rules ϕ1 and ϕ3, we observe that Post-
greSQL is always faster than all other systems on the small
datasets (100K rows). However, once we increase the size by
one order of magnitude (1M rows), we notice the advantage
of BigDansing: it is at least twice faster than PostgreSQL
and more than one order of magnitude faster than NADEEF.
For the largest dataset (10M rows), BigDansing is almost
two orders of magnitude faster than PostgreSQL for the FD

in TaxA and one order of magnitude faster than PostgreSQL
for the DC in TaxA. For the FD in TPCH, BigDansing is
twice faster than PostgreSQL. It is more than three orders
of magnitude faster than NADEEF for all rules. Overall, we
observe that BigDansing performs similarly to Spark SQL.
The small difference is that Spark SQL uses multithreading
better than BigDansing. We can explain the superiority
of BigDansing compared to the other systems along two
reasons: (i) BigDansing reads the input dataset only once,
while PostgreSQL and Shark read it twice because of the
self joins; and (ii) BigDansing does not generate duplicate
violations, while SQL engines do when comparing tuples us-
ing self-joins, such as for TaxA and TPCH’s FD. Concerning
the inequality-based rule ϕ2, we limited the runtime to four
hours for all systems. BigDansing is one order of magni-
tude faster than all other systems for 100K rows. For 200K
and 300K rows, it is at least two orders of magnitude faster
than all baseline systems. Such performance superiority is
achieved by leveraging the inequality join optimization that

is not supported by the baseline systems.

6.3 Multi-Node Experiments
We now compare BigDansing with Spark SQL and Shark

in the multi-node setting. We also implemented a lighter
version of BigDansing on top of Hadoop MapReduce to
show BigDansing independence w.r.t. the underlying
framework. We set the size of TaxA to 10M, 20M, and 40M
rows. Moreover, we tested the inequality DC ϕ2 on TaxB
dataset with sizes of 1M, 2M, and 3M rows. We limited the
runtime to 40 hours for all systems.

BigDansing-Spark is slightly faster than Spark SQL for
the equality rules in Figure 10(a). Even though BigDans-
ing-Spark and Shark are both implemented on top of Spark,
BigDansing-Spark is up to three orders of magnitude faster
than Shark. Even BigDansing-Hadoop is doing better than
Shark (Figure 10(a)). This is because Shark does not pro-
cess joins efficiently. The performance of BigDansing over
baseline systems is magnified when dealing with inequalities.
We observe that BigDansing-Spark is at least two orders
of magnitude faster than both Spark SQL and Shark (Fig-
ure 10(b)). We had to stop Spark SQL and Shark executions
after 40 hours of runtime; both Spark SQL and Shark are
unable to process the inequality DC efficiently.

We also included a testing for large TPCH datasets of
sizes 150GB, 200GB, 250GB, and 300GB (959M, 1271M,
1583M, and 1907M rows resp.) producing between 6.9B and
13B violations. We excluded Shark as it could not run on
these larger datasets. BigDansing-Spark is 16 to 22 times
faster than BigDansing-Hadoop and 6 to 8 times faster
than Spark SQL (Figure 10(c)). BigDansing-Spark signifi-
cantly outperforms Spark SQL since it has a lower I/O com-
plexity and an optimized data cleansing physical execution
plan. Moreover, the performance difference between Big-
Dansing-Spark and BigDansing-Hadoop stems from Spark
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Figure 11: Results for the experiments on (a) scale-out, (b) deduplication, and (c) physical optimizations.

being generally faster than Hadoop; Spark is an in-memory
data processing system while Hadoop is disk-based.

6.4 Scaling BigDansing Out
We compared the speedup of BigDansing-Spark to

Spark SQL when increasing the number of workers on a
dataset size of 500M rows. We observe that BigDansing-
Spark is at least 3 times faster than Spark SQL starting
from one single worker and up to 16 (Figure 11(a)). We
also notice that BigDansing-Spark is about 1.5 times faster
than Spark SQL while using only half the number of work-
ers used by Spark SQL. Although both BigDansing-Spark
and Spark SQL generally have a good scalability, BigDans-
ing-Spark performs better than Spark SQL on large input
datasets since it does not copy the input data twice.

6.5 Deduplication in BigDansing
We show that one can run a deduplication task with Big-

Dansing. We use cust1, cust2, and NCVoters datasets on
our compute cluster. We implemented a Java version of
Levenshtein distance and use it as a UDF in both BigDans-
ing and Shark. Note that we do not consider Spark SQL
in this experiment since UDFs cannot be implemented di-
rectly within Spark SQL. That is, to implement a UDF in
Spark SQL the user has to either use a Hive interface or ap-
ply a post processing step on the query result. Figure 11(b)
shows the results. We observe that BigDansing outper-
forms Shark for both small datasets as well as large datasets.
In particular, we see that for cust2 BigDansing outperforms
Shark up to an improvement factor of 67. These results not
only show the generality of BigDansing supporting a dedu-
plication task, but also the high efficiency of our system.

6.6 BigDansing In-Depth
Physical optimizations. We first focus on showing the
benefits in performance of the UCrossProduct and OCJoin
operators. We use the second inequality DC in Table 3 with
TaxB dataset on our multi-node cluster. Figure 11(c) re-
ports the results of this experiment. We notice that the
UCrossProduct operator has a slight performance advantage
compared to the CrossProduct operator. This performance
difference increases with the dataset size. However, by using
the OCJoin operator, BigDansing becomes more than two
orders of magnitudes faster compared to both cross product
operators (up to an improvement factor of 655).

Abstraction advantage. We now study the benefits of
BigDansing’s abstraction. We consider the deduplication
scenario in previous section with the smallest TaxA dataset

on our single-node machine. We compare the performance
difference between BigDansing using its full API and Big-
Dansing using only the Detect operator. We see in Fig-
ure 12(a) that running a UDF using the full BigDansing
API makes BigDansing three orders of magnitudes faster
compared to using Detect only. This clearly shows the bene-
fits of the five logical operators, even for single-node settings.

Scalable data repair. We study the runtime efficiency
of the repair algorithms used by BigDansing. We ran an
experiment for rule ϕ1 in TaxA with 1M rows by varying
the error rate and considering two versions of BigDansing:
the one with the parallel data repair and a baseline with a
centralized data repair, such as in NADEEF. Figure 12(b)
shows the results. The parallel version outperforms the cen-
tralized one, except when the error rate is very small (1%).
For higher rates, BigDansing is clearly faster, since the
number of connected components to deal with in the repair
process increases with the number of violations and thus
the parallelization provides a stronger boost. Naturally, our
system scales much better with the number of violations.

Repair accuracy. We evaluate the accuracy of Big-
Dansing using the traditional precision and recall measure:
precision is the ratio of correctly updated attributes (exact
matches) to the total number of updates; recall is the ratio
of correctly updated attributes to the total number of errors.

We test BigDansing with the equivalence class algorithm
using HAI on the following rule combinations: (a) FD ϕ6;
(b) FD ϕ6 and FD ϕ7; (c) FD ϕ6, FD ϕ7, and FD ϕ8. Notice
that BigDansing runs (a)-combination alone while it runs
(b)-combination and (c)-combination concurrently.

Table 4 shows the results for the equivalence class algo-
rithm in BigDansing and NADEEF. We observe that Big-
Dansing achieves similar accuracy and recall as the one ob-
tained in a centralized system, i.e., NADEEF. In particu-
lar, BigDansing requires the same number of iterations as
NADEEF even to repair all data violations when running
multiple rules concurrently. Notice that both BigDansing
and NADEEF might require more than a single iterations
when running multiple rules because repairing some viola-
tions might cause new violations. We also tested the equiv-
alence class in BigDansing using both the black box and
scalable repair implementation, and both implementations
achieved similar results.

We also test BigDansing with the hypergraph algorithm
using DC rule φD on a TaxB dataset. As the search space
of the possible solutions in φD is huge, the hypergraph al-
gorithm uses quadratic programming to approximates the
repairs in φD [6]. Thus, we use the euclidean distance to
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NADEEF BigDansing Itera-

Rule(s) precision recall precision recall tions

ϕ6 0.713 0.776 0.714 0.777 1
ϕ6&ϕ7 0.861 0.875 0.861 0.875 2
ϕ6–ϕ8 0.923 0.928 0.924 0.929 3

|R,G|/e |R,G| |R,G|/e |R,G| Iter.
φD 17.1 8183 17.1 8221 5

Table 4: Repair quality using HAI and TaxB datasets.

measure the repairs accuracy on the repaired data attributes
compared to the attributes of the ground truth.

Table 4 shows the results for the hypergraph algorithm in
BigDansing and NADEEF. Overall, we observe that Big-
Dansing achieves the same average distance (|R,G|/e) and
similar total distance (|R,G|) between the repaired data R
and the ground truth G. Again, BigDansing requires the
same number of iterations as NADEEF to completely repair
the input dataset. These results confirm that BigDansing
achieves the same data repair quality as in a single node set-
ting. This by providing better data cleansing runtimes and
scalability than baselines systems.

7. RELATED WORK
Data cleansing, also called data cleaning, has been a

topic of research in both academia and industry for decades,
e.g., [6, 7, 11–15, 17–19, 23, 29, 34, 36]. Given some “dirty”
dataset, the goal is to find the most likely errors and a pos-
sible way to repair these errors to obtain a “clean” dataset.
In this paper, we are interested in settings where the detec-
tion of likely errors and the generation of possible fixes is
expressed through UDFs. As mentioned earlier, traditional
constraints, e.g., FDs, CFDs, and DCs, are easily expressed
in BigDansing and hence any errors detected by these con-
straints will be detected in our framework. However, our
goal is not to propose a new data cleansing algorithm but
rather to provide a framework where data cleansing, includ-
ing detection and repair, can be performed at scale using a
flexible UDF-based abstraction.

Work in industry, e.g., IBM QualityStage, SAP Busines-
sObjects, Oracle Enterprise Data Quality, and Google Re-
fine has mainly focused on the use of low-level ETL rules [3].
These systems do not support UDF-based quality rules in a
scalable fashion as in BigDansing.

Examples of recent work in data repair include cleaning
algorithms for DCs [6, 17] and other fragments, such as FDs

and CFDs [4, 5, 7, 11, 17]. These proposals focus on specific
logical constraints in a centralized setting, without much re-
gards to scalability and flexibility as in BigDansing. As
shown in Section 5, we adapted two of these repair algo-
rithms to our distributed platform.

Another class of repair algorithms use machine learning
tools to clean the data. Examples include SCARE [39] and
ERACER [26]. There are also several efforts to include users
(experts or crowd) in the cleaning process [33,40]. Both lines
of research are orthogonal to BigDansing.

Closer to our work is NADEEF [7], which is a general-
ized data cleansing system that detects violations of various
data quality rules in a unified programming interface. In
contrast to NADEEF, BigDansing: (i) provides a richer
programming interface to enable efficient and scalable vi-
olation detection, i.e., block(), scope(), and iterate(), (ii)
enables several optimizations through its plans, (iii) intro-
duces the first distributed approaches to data repairing.
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Figure 12: (a) Abstraction and (b) scalable repair.

SampleClean [35] aims at improving the accuracy of aggre-
gate queries by performing cleansing over small samples of
the source data. SampleClean focuses on obtaining unbiased
query results with confidence intervals, while BigDansing
focuses on providing a scalable framework for data cleansing.
In fact, one cannot use SampleClean in traditional query
processing where the entire input dataset is required.

As shown in the experiment section, scalable data pro-
cessing platform, such as MapReduce [8] or Spark [41], can
implement the violation detection process. However, cod-
ing the violation detection process on top of these plat-
forms is a tedious task and requires technical expertise.
We also showed that one could use a declarative system
(e.g., Hive [32], Pig [28], or Shark [1]) on top of one of these
platforms and re-implement the data quality rules using its
query language. However, many common rules, such as rule
φU , go beyond declarative formalisms. Finally, these frame-
works do not natively support inequality joins.

Implementing efficient theta-joins in general has been
largely studied in the database community [9, 27]. Stud-
ies vary from low-level techniques, such as minimizing disk
accesses for band-joins by choosing partitioning elements us-
ing sampling [9], to how to map arbitrary join conditions to
Map and Reduce functions [27]. These proposals are orthog-
onal to our OCJoin algorithm. In fact, in our system, they
rely at the executor level: if they are available in the under-
lying data processing platform, they can be exploited when
translating the OCJoin operator at the physical level.

Dedoop [24] detects duplicates in relational data using
Hadoop. It exploits data blocking and parallel execution
to improve performance. Unlike BigDansing, this service-
based system maintains its own data partitioning and dis-
tribution across workers. Dedoop does not provide support
for scalable validation of UDFs, nor repair algorithms.

8. CONCLUSION
BigDansing, a system for fast and scalable big data

cleansing, enables ease-of-use through a user-friendly pro-
gramming interface. Users use logical operators to de-
fine rules which are transformed into a physical execution
plan while performing several optimizations. Experiments
demonstrated the superiority of BigDansing over baseline
systems for different rules on both real and synthetic data
with up to two order of magnitudes improvement in exe-
cution time without sacrificing the repair quality. More-
over, BigDansing is scalable, i.e., it can detect violation on
300GB data (1907M rows) and produce 1.2TB (13 billion)
violations in a few hours.

There are several future directions. One relates to ab-
stracting the repairing process through logical operators,
similar to violation detection. This is challenging because
most of the existing repair algorithms use different heuristics
to find an “optimal” repair. Another direction is to exploit
opportunities for multiple data quality rule optimization.
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[21] A. Jindal, J.-A. Quiané-Ruiz, and S. Madden. Cartilage:
Adding Flexibility to the Hadoop Skeleton. In SIGMOD,
2013.

[22] G. Karypis and V. Kumar. Multilevel K-way Hypergraph
Partitioning. In Proceedings of the 36th Annual
ACM/IEEE Design Automation Conference, DAC. ACM,
1999.

[23] S. Kolahi and L. V. S. Lakshmanan. On Approximating
Optimum Repairs for Functional Dependency Violations. In
ICDT, 2009.

[24] L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient
Deduplication with Hadoop. PVLDB, 2012.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System
for Large-scale Graph Processing. In SIGMOD, 2010.

[26] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a
database approach for statistical inference and data
cleaning. In SIGMOD, 2010.

[27] A. Okcan and M. Riedewald. Processing theta-joins using
mapreduce. In SIGMOD, 2011.

[28] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-so-foreign Language for
Data Processing. In SIGMOD, 2008.

[29] E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. IEEE Data Eng. Bull., 23(4):3–13,
2000.

[30] G. Smith. PostgreSQL 9.0 High Performance: Accelerate
your PostgreSQL System and Avoid the Common Pitfalls
that Can Slow it Down. Packt Publishing, 2010.

[31] N. Swartz. Gartner warns firms of ‘dirty data’. Information
Management Journal, 41(3), 2007.

[32] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: A
Warehousing Solution over a Map-reduce Framework.
PVLDB, 2(2):1626–1629, 2009.

[33] Y. Tong, C. C. Cao, C. J. Zhang, Y. Li, and L. Chen.
CrowdCleaner: Data cleaning for multi-version data on the
web via crowdsourcing. In ICDE, 2014.

[34] M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller.
Continuous data cleaning. In ICDE, 2014.

[35] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg,
T. Kraska, and T. Milo. A Sample-and-Clean Framework
for Fast and Accurate Query Processing on Dirty Data. In
SIGMOD, 2014.

[36] J. Wang and N. Tang. Towards dependable data repairing
with fixing rules. In SIGMOD, 2014.

[37] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica.
GraphX: A Resilient Distributed Graph System on Spark.
In First International Workshop on Graph Data
Management Experiences and Systems, GRADES. ACM,
2013.

[38] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica. Shark: SQL and Rich Analytics at Scale. In
SIGMOD, 2013.

[39] M. Yakout, L. Berti-Equille, and A. K. Elmagarmid. Don’t
be SCAREd: use SCalable Automatic REpairing with
maximal likelihood and bounded changes. In SIGMOD,
2013.

[40] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and
I. F. Ilyas. Guided data repair. PVLDB, 2011.

[41] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
HotCloud, 2010.

APPENDIX
A. JOB EXAMPLE
1 BigDansing job = new BigDansing(”Example Job” );
2 String schema = ”name,zipcode,city, state , salary , rate ”;
3 job .addInputPath(schema,”D1”, ”S”, ”T”);
4 job .addInputPath(schema,”D2”, ”W”);
5 job .addScope(Scope, ”S”);
6 job .addBlock(Block1, ”S”) ;
7 job .addBlock(Block2, ”T”);
8 job . addIterate (”M”, Iterate1 , ”S”, ”T”);
9 job . addIterate (”V”, Iterate2 , ”W”, ”M”);
10 job .addDetect(Detect, ”V”);
11 job .addGenFix(GenFix,”V”);
12 job .run() ;
}

Listing 3: Example of a user’s BigDansing job.
Let us explain with a BigDansing job example how users

can specify to BigDansing in which sequence to run their
logical operators. Users can fully control the execution flow
of their logical operators via data labels, which in other words
represent the data flow of a specific input dataset. For ex-
ample, users would write the BigDansing job in Listing 3
to generate the logical plan in Section 3.2. First of all, users
create a job instance to specify BigDansing their require-
ments (Line 1). Users specify the input datasets they want

13



to process by optionally providing their schema (Line 2) and
their path (D1 and D2 in Lines 3 & 4). Additionally, users
label input datasets to defines the number data flows they
desire to have (S and T for D1 and W for D2). Notice that, in
this example, the job creates a copy of D1. Then, users spec-
ify the sequence of logical operations they want to perform
to each data flow (Lines 5-11). BigDansing respect the or-
der in which users specify their logical operators, e.g., Big-
Dansing will first perform Scope and then Block1. Users
can also specify arbitrary number of inputs and outputs.
For instance, in Iterate1 get data flows S and T as input and
outputs a signal data flow M. As last step, users run their
job as in Line 12.

B. LOGICAL OPERATORS LISTINGS
We show in Listing 4 the code for Scope, Listing 5 the code

for Block and in Listing 6 the code for Iterate in rule φF .

public Tuple scope(Tuple in) {
1 Tuple t = new Tuple(in.getID());
2 t . addCell( in . getCellValue (1)) ;// zipcode
3 t . addCell( in . getCellValue (2)) ;// city
4 return t ; }

Listing 4: Code example for the Scope operator.

public String block(Tuple t) {
1 return t . getCellValue (0) ;// zipcode }

Listing 5: Code example for the Block operator.

public Iterable <TuplePair> iterator( ListTupleList <String> in) {
1 ArrayList<TuplePair> tp = new ArrayList<TuplePair>();
2 List<Tuple> inList = in. getIterator () .next() .getValue() ;
3 for ( int i = 0; i < inList . size () ; i++) {
4 for ( int j = i + 1; j < inList . size () ; j++) {
5 tp.add(new TuplePair( inList .get( i ) , inList .get( j ))) ;
6 }
7 }
8 return tp; }

Listing 6: Code example for the Iterate operator.

C. RDF DATA REPAIR
Let us explain how BigDansing works for RDF data

cleansing with an example. Consider an RDF dataset con-
taining students, professors, and universities, where each
student is enrolled in one university and has one professor
as advisor. The top-left side of Figure 13 shows this RDF
dataset as set of triples (RDF input) and Figure 14 shows
the graph representation of such an RDF dataset. Let’s as-
sume that there cannot exist two graduate students in two
different universities and have the same professor as advisor.
According to this rule, there are two violations in this RDF
dataset: (Paul, John) and (Paul, Sally).

Figure 15 illustrates the logical plan generated by Big-
Dansing to clean this RDF dataset while the rest of Fig-
ure 14 explains the role of each logical operator on the RDF
data. The plan starts with the Scope operator where it re-
moves unwanted RDF projects on attributes Subject and
Object and passes only those triples with advised by and
study in predicates to the next operator. After that, we ap-
ply the first Block to group triples based on student name
(i.e., Paul) followed by Iterate operator to join the triples

(3) Iterate
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Figure 13: Logical operators execution for the RDF
rule example.
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Figure 14: Example of an RDF graph.
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Figure 15: An RDF logical plan in BigDansing.

in each group. The output of this Iterate is passed to the
second Block and Iterate operators to group incoming triples
based on advisor name (i.e., William). The Detect operator
generates violations based on incoming triples with differ-
ent university names. Finally, the GenFix operator suggests
fixing the university names in incoming violations.

D. SPARK CODE FOR φF IN EXAMPLE 1
We show in Listing 7 an example of the physical transla-

tion of the logical plan for rule φF in Spark. Lines 3 to 7
in Listing 7 handles the processing of the UDF operators in
Listings 4, 5, 6, 1 and 2. Lines 8 to 16 implement the re-
pair algorithm in Section 5.2. The repair algorithm invokes
Listing 8 in line 9 to build the graph of possible fixes and
finds the graph’s connected components through GraphX.
Finally, lines 17 to 19 in Listing 7 applies the selected can-
didate fixes to the input dataset. Note that the Spark plan
translation in Listing 7 is specific to rule φF , where lines 3
to 16 changes according the the input rule or UDF. The re-
pair algorithm in Listing 7 seems far complex than the rule
engine. However, as the number of violations in a dataset
does not usually exceeds 10% of the input dataset size, the
rule engine dominates the execution runtime because it has
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//Input
1 JavaPairRDD<LongWritable,Text> inputData =

sc.hadoopFile(InputPath,
org.apache.hadoop.mapred.TextInputFormat.class,
LongWritable.class , Text. class , minPartitions ) ;

2 JavaRDD<Tuple> tupleData = tmpLogData.map(new
StringToTuples());

//−−−−Rule Engine−−−−
3 JavaRDD<Tuple> scopeData = tupleData.map(new fdScope());
4 JavaPairRDD<Key,Iterable<Tupke>> blockData =

scopedData.groupByKey(new
fdBlock()) ;

5 JavaRDD<TuplePair> iterateData = blockingData.map(new
fdIterate());

6 JavaRDD<Violation> detectData = iterateData.map(new fdDetect());
7 JavaRDD<Fix> genFixData = detectData.map(new fdGenFix());

//−−−−Repair Algorithm−−−−
8 JavaRDD<Edge<Fix>> edges = genFixData.map(new extractEdges());
9 JavaRDD<EdgeTriplet<Object, Fix>> ccRDD = new

RDDGraphBuilder(edges.rdd()).buildGraphRDD();
10 JavaPairRDD<Integer, Fix> groupedFix = ccRDD.mapToPair(new

extractCC());
11 JavaPairRDD<Integer, Tuple4<Integer, Integer, String , String>>

stringFixUniqueKeys = groupedFix .flatMapToPair(new
extractStringFixUniqueKey()) ;

12 JavaPairRDD<Integer, Tuple4<Integer, Integer, String , String>>
countStringFixes = stringFixUniqueKeys .reduceByKey(new

countFixes());
13 JavaPairRDD<Integer, Tuple4<Integer, Integer, String , String>>

newUniqueKeysStringFix = countStringFixes .mapToPair(new
extractReducedCellValuesKey()) ;

14 JavaPairRDD<Integer, Tuple4<Integer, Integer, String , String>>
reducedStringFixes = newUniqueKeysStringFix .reduceByKey(new
reduceStringFixes ()) ;

15 JavaPairRDD<Integer,Fix> uniqueKeysFix =
groupedFix.flatMapToPair(new
extractFixUniqueKey()) ;

16 JavaRDD<Fix> candidateFixes candidateFixes =
uniqueKeysFix. join ( reducedStringFixes ) . values () .flatMap(new

getFixValues()) ;
//−−−−Apply results to input−−−−

17 JavaPairRDD<Long, Iterable<Fix>> fixRDD = candidateFixes.keyBy(
new getFixTupleID()).groupByKey();

18 JavaPairRDD<Long, Tuple> dataRDD = tupleData.keyBy(new
getTupleID());

19 JavaRDD<Tuple> newtupleData =
dataRDD.leftOuterJoin(fixRDD).map(
new ApplyFixes());

Listing 7: Spark code for rule φF

more data to process compared to the repair algorithm.

1 class RDDGraphBuilder(var edgeRDD: RDD[Edge[Fix]]) {
2 def buildGraphRDD:JavaRDD[EdgeTriplet[VertexId, Fix]] = {
3 var g: Graph[Integer , Fix ] = Graph.fromEdges(edgeRDD, 0)
4 new JavaRDD[EdgeTriplet[VertexId,Fix ]](

g.connectedComponents().triplets )
}

}

Listing 8: Scala code for GraphX to find connected
components of fixes

E. BUSHY PLAN EXAMPLE
We show a bushy plan example in Figure 16 based on the

following two tables and DC rules from [6]:

Table Global (G): GID, FN, LN, Role, City, AC, ST, SAL

Table Local (L): LID, FN, LN, RNK, DO, Y, City, MID, SAL

(c1) : ∀t1, t2 ∈ G,¬(t1.City = t2.City ∧ t1.ST 6= t2.ST)

(c2) : ∀t1, t2 ∈ G,¬(t1.Role = t2.Role ∧ t1.City = ”NY C” ∧
t2.City 6= ”NY C” ∧ t2.SAL > t1.SAL)

(c3) : ∀t1, t2 ∈ L, t3 ∈ G,¬(t1.LID 6= t2.LID ∧ t1.LID = t2.MID ∧
t1.FN ≈ t3.FN∧t1.LN ≈ t3.LN∧t1.City = t3.City∧t3.Role 6= ”M”)
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Figure 16: Example of bushy plan

The plan starts with applying the Scope operator. Instead
of calling Scope for each rule, we only invoke Scope for each
relation. Next we apply the Block operator as follows: block
on “City” for c1, on “Role” for c2, and on “LID” and “MID”
for c3. Thereafter, for c1 and c2, we proceed to iterate
candidate tuples with violations (Iterate) and feed them to
Detect and GenFix operators respectively. For c3, we iterate
over all employees who are managers combine them with
data units from the global table G and then finally feed
them to the Detect and GenFix operators.

The key thing to note in the above bushy data cleaning
plan is that while each rule has its own Detect/GenFix oper-
ator, the plan shares many of the other operators in order
to reduce: (1) the number of times data is read from the
base relations, and (2) the number of duplicate data units
generated and processed in the dataflow.

F. DATA STORAGE MANAGER
BigDansing applies three different data storage optimiza-

tions: (i) data partitioning to avoid shuffling large amounts
of data; (ii) data replication to efficiently support a large va-
riety of data quality rules; and (iii) data layouts to improve
I/O operations. We describe them below.

(1) Partitioning. Typically, distributed data storage sys-
tems split data files into smaller chunks based on size. In
contrast, BigDansing partitions a dataset based on its con-
tent, i.e., based on attribute values. Such a logical partition-
ing allows to co-locate data based on a given blocking key.
As a result, BigDansing can push down the Block operator
to the storage manager. This allows avoiding to co-locate
datasets while detecting violations and hence to significantly
reduce the network costs.

(2) Replication. A single data partitioning, however,
might not be useful for mutliple data cleansing tasks. In
practice, we may need to run several data cleansing jobs as
data cleansing tasks do not share the same blocking key. To
handle such a case, we replicate a dataset in a heterogenous
manner. In other words, BigDansing logically partitions
(i.e., based on values) each replica on a different attribute.
As a result, we can again push down the Block operator for
multiple data cleansing tasks.

(3) Layout. BigDansing converts a dataset to binary for-
mat when storing it in the underlying data storage frame-
work. This helps avoid expensive string parsing operations.
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Also, in most cases, binary format ends up reducing the file
size and hence I/Os. Additionally, we store a dataset in
a column-oriented fashion. This enables pushing down the
Scope operator to the storage manager and hence reduces
I/O costs significantly.

As underlying data storage layer, we use Cartilage [21] to
store data to and access data from HDFS. Cartilage works
both with Hadoop and Spark and uses HDFS as the under-
lying distributed file system. Using Cartilage, the storage
manager essentially translates BigDansing data access op-
erations (including the operator pushdowns) to three basic
HDFS data access operations: (i) Path Filter, to filter the
input file paths; (ii) Input Format, to assign input files to
workers; and (iii) Record Reader, to parse the files into tu-
ples. In Spark, this means that we specify these three UDFs
when creating RDDs. As a result, we can manipulate the
data access right from HDFS so that this data access is in-
visible and completely non-invasive to Spark. To leverage
all the data storage optimizations done by BigDansing, we
indeed need to know how the data was uploaded in the first
place, e.g., in which layout and sort order the data is stored.
To allow BigDansing to know so, in addition to datasets,
we store the upload plan of each uploaded dataset, which is
essentially the upload metadata. At query time, BigDans-
ing uses this metadata to decide how to access an input
dataset, e.g., if it performs a full scan or an index scan, us-
ing the right UDF (path filter, input format, record reader)
implementation.

G. EXECUTION LAYER

G.1 Translation to Spark Execution Plans
Spark represents datasets as a set of Resilient Distributed

Datasets (RDDs), where each RDD stores all Us of an in-
put dataset in sequence. Thus, the Executor represents each
physical operator as a RDD data transformation.

Spark-PScope. The Executor receives a set of RDDs as
well as a set of PScope operators. It links each RDD with one
or more PScope operators, according to their labels. Then,
it simply translates each PScope to a map() Spark operation
over its RDD. Spark, in turn, takes care of automatically
parallelizing the map() operation over all input Us. As a
PScope might output a null or empty U , the Executor applies
a filter() Spark operation to remove null and empty Us
before passing them to the next operator.

Spark-PBlock. The Executor applies one Spark groupBy()
operation for each PBlock operator over a single RDD. Big-
Dansing automatically extracts the key from each U in par-
allel and passes it to Spark, which in turn uses the extracted
key for its groupBy operation. As a result, Spark generates a
RDDPair (a key-value pair data structure) containing each a
grouping key (the key in the RDDPair) together with the list
of all Us sharing the same key (the value in the RDDPair).

Spark-CoBlock. The Executor receives a set of RDDs and
a set of PBlock operators with matching labels. Similar to
the Spark-PBlock, the Spark-CoBlock groups each input RDD
(with groupBy()) using its corresponding PBlock. In addi-
tion, it performs a join() Spark operation on the keys of the
output produced by groupBy(). Spark-CoBlock also outputs
an RDDPair, but in contrast to Spark-PBlock, the produced
value is a set of lists of Us from all input RDDs sharing the
same extracted key.

Spark-CrossProduct & -UCrossProduct. The
Executor receives two input RDDs and outputs an RDDPair
of the resulting cross product. Notice that we extended
Spark’s Scala code with a new function selfCartesian() in
order to efficiently support the UCrossProduct operator. Ba-
sically, selfCartesian() computes all the possible combina-
tions of pair-tuples in the input RDDs.

Spark-OCJoin. The Executor receives two RDDs and a set
of inequality join conditions as input. The Executor applies
the OCJoin operator on top of Spark as follows. First, it
extracts PartAtt (the attribute on which it has to partition
the two input RDDs) from both RDDs by using the keyBy()
Spark function. Then, the Executor uses the sortByKey()
Spark function to perform a range partitioning of both
RDDs. As a result, the Executor produces a single RDD
containing several data blocks using the mapPartitions()
Spark function. Each data block provides as many lists
as inequality join conditions; each containing all Us sorted
on a different attribute involved in the join conditions. Fi-
nally, the Executor uses the selfCartesian() Spark function
to generate unique sets of paired data blocks.

Spark-PDetect. This operator receives a PIterate opera-
tor, a PDetect operator, and a single RDD as input. The
Executor first applies the PIterate operator and then the
PDetect operator on the output. The Executor implements
this operator using the map() Spark function.

Spark-PGenFix The Executor applies a PGenFix on each
input RDD using spark’s map() function. When processing
multiple rules on the same input dataset, the Executor gen-
erates an independent RDD of fixes for each rule. After that
it combines all RDDs of possible repairs into a single RDD
and pass it to BigDansing’s repair algorithm. This oper-
ator is also implemented by the Executor inside the Detect
operator for performance optimization purposes.

G.2 Translation to MR Execution Plans
We now briefly describe how the Executor runs the four

wrapper physical operators on MapReduce.

MR-PScope. The Executor translates the PScope operator
into a Map task whose map function applies the received
PScope. Null and empty U are discarded within the same
Map task before passing them to the next operator.

MR-PBlock. The Executor translates the PBlock operator
into a Map task whose partitioner function applies the re-
ceived PBlock to set the intermediate key. The MapReduce
framework automatically groups all Us that share the same
key. The Executor does the same for the CoBlock operator,
but it also labels each intermediate key-value pair with the
input dataset label for identification at Reduce tasks.

MR-PIterate. The Executor translates PIterate into a
Reduce task whose reduce function applies the received
PIterate.

MR-PDetect. The Executor translates the PDetect opera-
tor into a Reduce task whose reduce function applies the re-
ceived PDetect. The Executor might also apply the received
PDetect in the reduce function of a Combine task.

MR-PGenFix. The Executor translates the PGenFix op-
erator into a Map task whose map function applies the re-
ceived PRepair. The Executor might also apply the received
PGenFix at the reduce function of PDetect.
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