
SMART CONTRACT AUDIT

Sep 21st, 2021 | v.	1.0



99
Score

PASS
Zokyo Security team has 
concluded that the given smart 
contracts passed security audit 
and are fully production-ready



This document outlines the overall security of the Quadency smart contracts, evaluated by 
Zokyo's Blockchain Security team.

Technical Summary

The scope of this audit was to analyze and document the Quadency smart contract codebase 
for quality, security, and correctness.

. . .

1

Quadency Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

Testable Code

The testable code is 100%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of 
the contract, rather limited to an assessment of the logic and implementation. In order to 
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and 
rapidly changing environment, we at Zokyo recommend that the Quadency team put in place 
a bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD



Table of Contents

. . .

2

Quadency Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure and Organization of Document

7Complete Analysis

13Code Coverage and Test Results for all files

13Tests written by Quadency team

15Tests written by Zokyo Secured team



3

Quadency Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract's source code was taken from the Quadency repository.

. . .

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Repository:
https://github.com/quadency/quad-token-contracts/commit/
a86f4d1b051fcdff215b9e9c14717728b2224449

Last commit:
5c4b20ec01e0487307c4478b1820818a4cc6e9a9

Contracts under the scope:

Migrations;
MultiSigWallet;
QUAD;
TokenVesting;
VestingFactory;
WalletFactory.

https://github.com/quadency/quad-token-contracts/commit/a86f4d1b051fcdff215b9e9c14717728b2224449
https://github.com/quadency/quad-token-contracts/commit/a86f4d1b051fcdff215b9e9c14717728b2224449
https://github.com/quadency/quad-token-contracts/commit/5c4b20ec01e0487307c4478b1820818a4cc6e9a9


4

Quadency Contract Audit

. . .

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify 
the implementation of smart contracts. To do so, the code is reviewed line-by-line by our 
smart contract developers, documenting any issues as they are discovered. Part of this work 
includes writing a unit test suite using the Truffle testing framework. In summary, our 
strategies consist largely of manual collaboration between multiple team members at each 
stage of the review:

1
Due diligence in assessing the overall 
code quality of the codebase.

2
Cross-comparison with other, similar 
smart contracts by industry leaders.

3
Testing contract logic against common 
and uncommon attack vectors.

4
Thorough, manual review of the 
codebase, line-by-line.



Summary

. . .

5

Quadency Contract Audit

Zokyo team has conducted a smart contract audit for the given codebase. The scope of work 
and the contracts that are under the audit are presented in Auditing Strategy and Techniques 
Applied section. 

During the auditing process, Zokyo auditing team has found informational issues and issues 
with the low severity level. No critical issues were spotted. It is worth mentioning that most of 
them are fixed by the Quadency team.

The contracts are in good condition. Based on the fixes provided by the Quadency team and 
on the quality and security of the codebase provided, Zokyo team can give a score of 99 to the 
audited smart contracts.

We can state that the contracts bear no security or operational risk to the end-user or contract 
owner, so they are fully production-ready.



Structure and Organization of Document

. . .

6

Quadency Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are 
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed. 
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or 
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the 
contract’s ability to operate.

Low

The issue has no impact on the contract’s 
ability to operate.

Informational

The issue affects the ability of the contract 
to compile or operate in a significant way.

High

The issue affects the ability of the contract 
to operate in a way that doesn’t significantly 
hinder its behavior.

Medium

The issue affects the ability of the contract 
to compile or operate in a significant way.

Critical



Complete Analysis

. . .

7

Quadency Contract Audit

Additional check is required for the constructor of QUAD.sol

LOW

There is no verification for array length.

Recommendation:
Add check for arrays length:

require(

        wallets.length == amounts.length,

        "QUAD: wallets and amounts mismatch"

);

Additional check is required at TokenVesting.sol

LOW

In function releaseVestedTokens() there is no verification for the zero address of the recipient.

Recommendation:
Add an additional check.



. . .

8

Quadency Contract Audit

Order of Functions

Informational

The functions in contract TokenVesting and MultiSigWallet are not grouped according to their 
visibility and order.

Functions should be grouped according to their visibility and ordered in the following way:

Constructor;
Receive function (if exists);
Fallback function (if exists);
External;
Public;
Internal;
Private.

Ordering helps readers identify which functions they can call and find the constructor and 
fallback definitions easier.

Recommendation:
Consider changing functions order according to solidity documentation: . Order of Functions

https://docs.soliditylang.org/en/v0.8.6/style-guide.html#order-of-functions


. . .

9

Quadency Contract Audit

Order of Layout

Informational

Layout contract elements in TokenVesting and MultiSigWallet contracts are not logically 
grouped.

The contract elements should be grouped and ordered in the following way:

Pragma statements;
Import statements;
Interfaces;
Libraries;
Contract.

Inside each contract, library or interface, use the following order:

Library declarations (using statements);
Constant variables;
Type declarations;
State variables;
Events;
Modifiers;
Functions.
token contract is not set to Bond & Unbond contracts

Ordering helps readers to navigate the code and find the elements more quickly.

Recommendation:
Consider changing the order of layout according to solidity documentation: .Order of Layout

https://docs.soliditylang.org/en/v0.8.6/style-guide.html#order-of-layout


. . .

10

Quadency Contract Audit

Unnecessary require at MultiSigWallet.sol

Informational

In the function tryInsertSequenceId() you require onlySigner. This function is private and can be 
called only with functions that already have this requirement.

Recommendation:
Remove the unnecessary requirements.

Unnecessary check at TokenVesting.sol

INFORMATIONAL

In function addRecipient (at line 114) and function addRecipientBatch (at line 170) of 
TokenVesting.sol you have check for parameter _startTime:

startTime: _startTime == 0 ? block.timestamp : _startTime,

But you already checked this parameter in lines 108, 109 (for function addRecipient) and in 
lines 157,158 (for function addRecipientBatch) according to them it should be greater than 
zero so it will always return false and will use _startTime.

Recommendation:
Remove unnecessary check:

startTime: _startTime,



. . .

11

Quadency Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Migrations

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

MultiSigWallet

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

QUAD



. . .

12

Quadency Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

VestingFactory

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

TokenVesting

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

WalletFactory



. . .

Tests written by Quadency team

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

13

Quadency Contract Audit

Contract: MultiSigWalletUnitTest

✓ should send single token transactions correctly
✓ should send batch token transactions correctly
✓ should fail when other signer same as sender
✓ should fail when unauthorized sender but valid other signature
✓ should fail when invalid signature but authorized sender

Contract: TokenVestingUnitTest

✓ should set the Token correctly
✓ should set the MultiSig correctly

Test Results 

Code Coverage and Test Results for all files

FILE

contracts\

MultiSigWallet.sol

UNCOVERED LINES

QUAD.sol

87.26

75.32

% STMTS

100.00

60.71

46.67

% BRANCH

50.00

86.11

73.68

% FUNCS

100.00

86.14

75.00

74.39

13

... 484, 485, 512

TokenVesting.sol

VestingFactory.sol

98.51

100.00

78.00

100.00

100.00

100.00 100.00

98.57

WalletFactory.sol 100.00 100.00 100.00 100.00

% LINES

All files 87.26 60.71 86.11 86.14

204



. . .

14

Quadency Contract Audit

✓ should fail with 0 address for Token
✓ should fail with 0 address for MultiSig
✓ should fail when initialized second time

✓ should add new recipient correctly
✓ should add new recipient batch correctly
✓ should fail when recipient batch mismatched
✓ should fail when recipient already has vesting schedule
✓ should fail when vesting duration zero
✓ should fail when vesting cliff longer than vesting duration
✓ should fail when vesting duration longer than 100 months
✓ should fail when vested amount per month zero
✓ should fail when start time is more than a year in past 
✓ should fail when start time is more than a year in future
✓ should fail when called by address other than multisig

✓ should fail when releasing tokens before cliff reached
✓ should fail when releasing tokens before first month
✓ 6 months after vesting start date, user should be able to claim 6/24 of their total tokens
✓ 7 months after vesting start date, user should be able to claim 7/24 of their total tokens
✓ 8 months after vesting start date, user should be able to claim 8/24 of their total tokens
✓ 12 months after vesting start date, user should be able to claim 12/24 of their total tokens
✓ 18 months after vesting start date, user should be able to claim 18/24 of their total tokens
✓ 24 months after vesting start date, user should be able to claim 24/24 of their total tokens
✓ 1 months after vesting start date, user should be able to claim 1/6 of their total tokens
✓ 2 months after vesting start date, user should be able to claim 2/6 of their total tokens
✓ 3 months after vesting start date, user should be able to claim 3/6 of their total tokens
✓ 4 months after vesting start date, user should be able to claim 4/6 of their total tokens
✓ 5 months after vesting start date, user should be able to claim 5/6 of their total tokens
✓ 6 months after vesting start date, user should be able to claim 6/6 of their total tokens
✓ 1 months after vesting start date, user should be able to claim 1/16 of their total tokens
✓ 10 months after vesting start date, user should be able to claim 10/21 of their total tokens
✓ 21 months after vesting start date, user should be able to claim 21/26 of their total tokens
✓ 26 months after vesting start date, user should be able to claim 26/35 of their total tokens
✓ 29 months after vesting start date, user should be able to claim 29/38 of their total tokens
✓ 25 months after vesting start date, user should be able to claim 25/49 of their total tokens
✓ should successfully release batches of vested tokens

42 passing (2m)



. . .

Tests written by Zokyo Security team

As part of our work assisting Quadency in verifying the correctness of their contract code, our 
team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the Quadency 
contract requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

15

Quadency Contract Audit

Test Results 

Contract: Migrations

✓ should set completed correctly
✓ shouldn't set completed if msg.sender isn't owner

Contract: WalletFactory

✓ should create wallet correctly

FILE

contracts\

MultiSigWallet.sol

UNCOVERED LINES

QUAD.sol

100.00

100.00

% STMTS

100.00

100.00

100.00

% BRANCH

100.00

100.00

100.00

% FUNCS

100.00

100.00

100.00

100.00

TokenVesting.sol

VestingFactory.sol

100.00

100.00

100.00

100.00

100.00

100.00 100.00

100.00

WalletFactory.sol 100.00 100.00 100.00 100.00

% LINES

All files 100.00 100.00 100.00 100.00



. . .

16

Quadency Contract Audit

✓ shouldn't create wallet if count of signers less than 3
✓ shouldn't create wallet if one of the signers has zero's address

Contract: QUAD/VestingFactory

✓ should create vesting contract correctly

✓ should get token's name correctly
✓ should get token's symbol correctly
✓ shouldn't deploy if wallets and amounts mismatch
✓ shouldn't mint on more than 10 wallets

Contract: TokenVesting

✓ should init correctly
✓ shouldn't init if address of token or address of multiSigContract is zero
✓ shouldn't init if contract already initialized
✓ should add recipient correctly
✓ shouldn't add recipient if msg.sender is unauthorized address
✓ shouldn't add recipient if recipient already added
✓ shouldn't add recipient if vesting duration is zero
✓ shouldn't add recipient if vesting duration more than 100
✓ shouldn't add recipient if vesting cliff more than vesting duration
✓ shouldn't add recipient if start time more than a year in future
✓ shouldn't add recipient if start time more than a year in past
✓ shouldn't add recipient if amount is zero
✓ should get vesting schedule correctly
✓ should add recipient's batch correctly
✓ shouldn't add recipient's batch if recipients and amounts mismatch
✓ shouldn't add recipient's batch if vesting duration is zero
✓ shouldn't add recipient's batch if vesting duration more than 100
✓ shouldn't add recipient's batch if vesting duration less than vesting cliff
✓ shouldn't add recipient's batch if start time more than a year in future
✓ shouldn't add recipient's batch if start time more than a year in past
✓ shouldn't add recipient's batch if one's of recipients address is zero
✓ shouldn't add recipient's batch if recipient already added
✓ shouldn't add recipient's batch if amount is zero
✓ should return as result '0, 0' if startTime has passed



. . .

17

Quadency Contract Audit

✓ should return as result '0, 0' if cliff was reached
✓ should return as result 'monthsVested, amountVested' if over vesting duration
✓ should return as result 'vestingDuration, amount' if over vesting duration
✓ should transfers vested tokens correctly
✓ shouldn't transfer vested tokens if vested tokens are zero
✓ shouldn't transfer vested tokens if not enough recipients
✓ shouldn't transfer vested tokens if recipients more than 255

Contract: MultiSigWallet

✓ should init correctly
✓ shouldn't init if contract already initialized
✓ should send with multi-signature correctly
✓ shouldn't send with multi-signature if invalid signature 's' value
✓ shouldn't send with multi-signature correctly if expire time less than current time
✓ shouldn't send with multi-signature correctly if msg.sender is non-signer
✓ shouldn't send with multi-signature correctly if we aren't in safe mode
✓ shouldn't send with multi-signature if signature haven't correct size
✓ shouldn't send with multi-signature if transaction execution failed
✓ shouldn't send with multi-signature if id more than maximum
✓ shouldn't send with multi-signature if id already used
✓ shouldn't send with multi-signature if sequence id below window
✓ shouldn't send with multi-signature if signature isn't sign of signer
✓ shouldn't send with multi-signature if signers can't be equal
✓ should send multiSig batch correctly
✓ shouldn't send multiSig batch if not enough recipients
✓ shouldn't send multiSig batch if size of arrays is unequal
✓ shouldn't send multiSig batch if recipients more than 255
✓ shouldn't send multiSig batch if we aren't in safe mode
✓ shouldn't send multiSig batch if insufficient funds
✓ shouldn't send multiSig batch if call failed
✓ should send token with multiSig correctly
✓ should send token batch with multiSig correctly
✓ shouldn't send token batch with multiSig if not enough recipients
✓ shouldn't send token batch with multiSig if size of arrays is unequal
✓ shouldn't send token batch with multiSig if recipients more than 255
✓ shouldn't send token batch with multiSig if we aren't in safe mode
✓ shouldn't send token batch with multiSig if insufficient funds



. . .

18

Quadency Contract Audit

✓ get call receive function correctly
✓ get call fallback function correctly

71 passing (8m)



We are grateful to have been given the opportunity to work 
with the Quadency team.



The statements made in this document should not be 
interpreted as investment or legal advice, nor should its 
authors be held accountable for decisions made based 
on them.



Zokyo's Security Team recommends that the Quadency team 
put in place a bug bounty program to encourage further 
analysis of the smart contract by third parties.


