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1 Introduction

Over the years, the so-called gravity model – derived from Newton’s law of universal gravita-

tion ([1713] 1999) – has become the workhorse model of economists and political scientists alike

when analyzing volumes of trade, migration or capital flows based on two countries’ factor en-

dowments and transaction costs. Despite its robustness and wide applicability, researchers still

face multiple methodological and empirical challenges when applying the gravity equation to

model interaction flows. While issues such as an enhanced consistency between formal theoret-

ical frameworks and empirical strategies or endogeneity bias in the econometric specification of

the gravity equation are discussed widely (see De Benedictis & Taglioni, 2011 for an overview),

one pivotal methodological issue has received little attention to date: spatial dependence.1 The

notion of spatial dependence – sometimes referred to as Galton’s problem in political science –

builds on Tobler’s (1970, p. 236) first law of geography which posits that “[e]verything is related

to everything else, but near things are more related than distant things.” Put more formally,

spatial dependence occurs whenever the observed values of social or economic phenomena at

one location depend on the values observed at nearby locations.

Although both spatial econometricians (e.g., Curry, 1972; Griffith & Jones, 1980; Fother-

ingham, 1981; Anselin, 1988; LeSage & Pace 2008, 2009) and political economists (e.g., Beck,

Gleditsch, & Beardsley; Ward & Gleditsch, 2008; Neumayer & Plümper, 2010) alike emphasize

the importance of spatial dependence among observations, only few dyadic data analyses explic-

itly account for the role of spatial processes, whereas the bulk of articles (implicitly) assumes

independence of observations.2 Since gravity equations explain economic or social interactions

between two countries, they are interdependent by construction and, thus, the assumption of

independence among observations will not hold. Conventional gravity models in economics ad-

dress this concern by either controlling for geodesic distances between the two trading partners

or, following the seminal work of Anderson & van Wincoop (2003), by including unit fixed

1
Spatial dependence is not to be confused with spatial heterogeneity. While both concepts can be subsumed
under the more general term spatial effects, spatial dependence refers to spatial interactions between nearby
geographical units, whereas spatial heterogeneity refers to the unequal distribution of spatial processes across
space (Anselin, 1988).

2 Notable exceptions are, among others, the articles by Baltagi, Egger, & Pfaffermayr (2007) and LeSage &
Llano-Verduras (2014) on third-country effects in foreign direct investment and commodity flows, respectively.
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effects.

LeSage & Pace (2008, 2009) and Behrens, Ertur, & Koch (2012), however, argue that rely-

ing on great-circle distances or fixed effects estimators for capturing spatial dependence does

not suffice for unbiased point estimates as both approaches disregard multilateral dependence

structures between each dyad and third countries. Consequently, ignoring spatial dependence

when modeling interaction flows will lead to either inefficient or biased and inconsistent OLS es-

timates, depending on whether incorporating spatial error autocorrelation or a spatially lagged

dependent variable captures the data-generating spatial process properly.3

Controlling for spatial dependence is particularly important when assessing the effects of

regional trade agreements (hereafter: RTAs) as the formation of trade agreements tends to be

geographically clustered by nature. Hence, if spatial mechanisms such as spatial competition

or spillover processes are at work and not explicitly accounted for in the econometric model,

causal inferences on the effects of trade agreements are invalid.

Despite this substantial importance of spatial processes, to date there are – to the best of the

author’s knowledge – only two cross-sectional analyses accounting for spatial dependence when

estimating the effects of EU-NAFTA bloc membership on trade flows among OECD member

states (Porojan, 2001) and, more recently, the effects of free trade agreements on global trade

flows (Krisztin & Fischer, 2015). One reason for this is the complex spatial dependence structure

when dealing with dyadic data as both origin- and destination-based spatial effects are present.

Thus, estimating the effects of trade agreements – or, for that matter, policy interventions in

general – requires modeling multiple types of spatial dependence structures within a unified

framework.

Bringing together research methods from spatial econometrics and political economy, this

paper attempts to fill the aforementioned gap by modeling the effects of multilateral spatial

dependence within a theoretically grounded gravity framework. In doing so, the paper serves

two purposes. Methodologically, it introduces the notion of cross-sectional spatial autoregressive

dependence to longitudinal gravity models using origin- and destination-specific connectivity

3 Put simply, the main difference between these two types of spatial dependence is the respective conceptu-
alization of spatial dependence as either a statistical nuisance in the error term in the presence of spatial
error autocorrelation or substantively as an explanatory variable reflecting some kind of spatial mechanism
in terms of spatially lagged dependent and/or independent variables.
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matrices as initially proposed by LeSage & Pace (2008, 2009). In other words, bilateral trade

flows are modeled as a function of both two countries’ bilateral trading characteristics and

trading volumes of neighboring countries to account for omitted variable bias resulting from

the omission of spatial lags. Empirically, the paper reestimates the effects of trade-enhancing

and trade-reducing factors on aggregate trade flows among countries located in the Americas

and Europe for a five year time period (2002-2006) when controlling for the underlying spatial

mechanisms.

The remainder of the paper is organized as follows. Section 2 outlines the theoretical founda-

tions of the gravity equation derived from international trade theory and introduces a spatially

augmented equation which captures both origin- and destination-based dependence among

neighboring countries to account for the hypothesized spatial competition effects. Section 3

then describes data sources, the use of graph-based connectivity matrices for capturing de-

pendence structures and specifications for the spatial autoregressive panel models employed in

this paper. After presenting the preliminary empirical results of the spatial analyses in section

4, section 5 discusses implications as well as limitations of the empirical findings, followed by

concluding remarks.

2 Theoretical framework

2.1 The gravity equation in international trade theory

As already mentioned, the workhorse model for explaining bilateral trade flows is referred to

as gravity equation for its analogy with Newton’s law of universal gravitation (1)

F

ij

= G

(M
i

⇥M

j

)

D

ij

(1)

which postulates that the force F
ij

between two objects i and j is proportional to their masses

M

i

and M

j

and inversely proportional to the square of distance D

ij

between them. G denotes

the gravitational constant.

Initially set forth by Tinbergen (1962) and Pöyhönen (1963) to explain patterns of interna-
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tional bilateral trade between two countries i and j, Anderson (1979) was the first to provide

formal theoretical foundations for the empirical gravity equation based on similar trade prefer-

ences and transport cost structures within preferential trade groups.

Hence, building on equation (1), the empirical gravity equation in its most basic form can

be written as

X

ij

= C

(Y
i

⇥ Y

j

)

D

ij

(2)

where X

ij

denotes the volume of aggregate trade flows from an exporter i to an importer j

and the mass coefficients Y
i

and Y

j

, respectively, reflect both countries’ trade-generating factors.

In other words, (2) states that trade flows between two countries are directly proportional to

the product of their trade potentials, proxied by GDP, and negatively related to the distance

and further restrictions to spatial interaction D

ij

between them, i.e., trade will decrease as

distance – or, more generally, resistance to cross-border interaction flows – increases.

Transforming (2) into its conventionally applied log-linear form for any time period t and

replacing Y

i

(Y
j

) with GDP

i

(GDP

j

), (3) is obtained

lnX
ijt

= �0 + �1 lnGDP

it

+ �2 lnGDP

jt

+ �3 lnDijt

+ "

ijt

(3)

with "

ijt

as an i.i.d. error term. In applied econometrics and international political economy

alike, this traditional gravity equation is augmented with (usually binary) measures accounting

for the similarity of two trading partners, reflecting the idea that sharing a common border or

having a common official language increases interaction flows.

Similar reasoning applies when controlling for the effects of regional trade agreements. Gen-

erally speaking, RTAs are either bi- or multilateral reciprocal trade agreements which reduce

or even eliminate tariffs among signatory states while, at the same time, maintaining tariffs on

trade flows to and from non-member third countries. Following the theoretical argumentation

of Viner (1950), the removal of internal barriers to cross-border economic interaction leads to

trade creation, that is, increased volumes of trade flows within trading blocs. Thus, including

the notion of trade-creating effects evoked by the similarity S

ij

of two trading partners i and j
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yields (4).

lnX
ijt

= �0 + �1 lnGDP

it

+ �2 lnGDP

jt

+ �3 lnDijt

+ �4Sijt

+ "

ijt

(4)

Recent advances in international trade theory, however, suggest that trade volumes between

two countries are not only influenced by trade-generating factors and bilateral resistance to

cross-border economic interactions – as implied in (4) – but by multilateral resistance as well

(Anderson & van Wincoop, 2003). Put simply, the concept of multilateral trade resistance

posits that flows between two trading partners depend on the relative size of their bilateral

trade resistance compared to the average trade resistance among trading partners and third

countries.

Augmenting the empirical gravity equation in (4) by allowing for multilateral trade resistance

as proposed by Anderson & van Wincoop (2003) and, subsequently, Baier & Bergstrand (2007),

yields an adapted version of the theoretically grounded gravity equation

ln

X

ijt

GDP

it

⇥GDP

jt

= �0 + �3 lnDijt

+ �4Sijt

� lnP 1��

it

� lnP 1��

jt

+ "

ijt

(5)

with

P

1��

Nt

=
NtX

i=1

P

1��

i

✓
GDP

Nt

GWP

t

◆
e

�3 lnD

iNt

+�4S
iNt (6)

where GWP

t

denotes the gross world product at time t and P

1��

it

and P

1��

jt

, respectively,

denote price indices capturing multilateral resistance among countries.

2.2 Spatial gravity equations for international trade flows

4

As can be seen in (5) and (6), multilateral resistance implies that international trade patterns

exhibit spatial dependence structures linking both trading partners to third countries. Conse-

quently, bilateral trade flows cannot be explained by means of two countries’ factor endowments

and political or cultural (dis-)similarities only without explicitly accounting for these spatial

4 In line with the state-of-the-art literature, this section adopts the conventional spatial econometrics notation
while maintaining the standard gravity notation introduced in the preceding section.
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structures.

In a similar manner, Behrens et al. (2012) argue that dyadic trade flows are affected by third

country pairs’ trading levels due to spatial competition effects. The theoretical rationale is that

spatial competition evokes patterns of dependence across space because of larger externalities

among geographically proximate countries (cf., e.g., Krugman, 1991; Porojan, 2001; Anselin,

2003).

Taking the traditional gravity equation as a point of departure, (4) can be rewritten as

X

ijt

= ↵◆

N

+ Y

t

� + "

ijt

(7)

with Y

t

being a vector of all (log-transformed) explanatory factors introduced in the preceding

section, i.e., Y
t

= (GDP

i

, GDP

j

, D

ij

, S

ij

), at time t. For brevity, the subscript t is omitted here-

inafter. Accounting for multilateral spatial dependence structures among countries resulting

from spatial competition then yields (8)

X

ij

= ↵◆

N

+ ⇢WX

ij

+ Y � + "

ij

(8)

where W denotes an N ⇥N spatial weights matrix capturing spatially defined connectivities

among country pairs. As Neumayer & Plümper (2013) point out, W reflects the underlying

causal mechanism evoking multilateral dependence between trading partners and third coun-

tries. Thus, the scalar parameter ⇢ serves as a proxy for the hypothesized spatial competition

mechanism.

Given the dyadic nature of trade flows, however, both competing markets located close to

the country of origin (A) and markets nearby the country of destination (B) cause patterns of

spatial dependence. This theoretical reasoning is in line with LeSage & Pace (2008) who argue

that increased trade flows between any origin A to any destination B are associated with three

types of spatial effects, namely, (1) origin-dependence, i.e., increased trade flows from countries

C located nearby country A to B, (2) destination-dependence, i.e., increased trade flows from A

to countries D located nearby country B and, (3) origin-destination dependence, i.e., increased

trade flows from neighboring countries C to neighboring countries D. Including the notion of
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LeSage & Pace’s origin-, destination- and origin-destination-based spatial dependence in (8),

(9) is obtained.

X

ij

= ↵◆

N

+ ⇢

o

W

o

X

ij

+ ⇢

d

W

d

X

ij

+ ⇢

od

W

od

X

ij

+ Y � + "

ij

(9)

Put less formally, (9) states that determinants causing trade flows from country A to country

B evoke similar levels of trade from third countries C located nearby country A to country

B (W
o

), determinants causing trade flows from A to B evoke similar levels of trade to third

countries D located nearby B (W
d

) as well as similar levels of trade flows among third countries

C and D themselves (W
od

).

Substantively, the spatial lag vectors W
o

X

ij

, W
d

X

ij

and W

od

X

ij

then measure (1) the average

of aggregate trade flows from countries C (neighbors to A) to each destination B (W
o

X

ij

), (2)

the average of trade flows from each origin A to countries D (neighbors to B) (W
d

X

ij

) and

(3) the average of trade flows from countries C (neighbors to A) to countries D (neighbors

to B) (W
od

X

ij

). In other words, W
o

X

ij

captures dependence structures between each origin’s

neighbors and each destination, W

d

X

ij

the dependence structures between each origin and

each destination’s neighbors and W

od

X

ij

, in turn, describes dependence structures among each

origin’s and each destination’s neighbors.

Bringing together the main theoretical arguments of sections 2.1 and 2.2, the working hy-

potheses adopted in this paper are as follows:

Hypothesis 1. Trade-generating potentials (proxied by each country’s GDP) as well as

cultural and political similarities between trading partners increase bilateral trade volumes,

whereas geographic distance exerts a negative effect on cross-border trade flows.

Hypothesis 2. Spatial competition mechanisms affect trade flows among geographically

proximate countries which, as a result, evoke complex pattern of origin, destination and origin-

destination spatial dependence.
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3 Methods

3.1 Data and sample selection

The spatial analysis in this paper originally relies on a balanced panel dataset consisting of

63.585 dyadic observations from n = 161 countries for the years 2002-2006.5 Given the direc-

tional nature of bilateral trade flows, each pair of countries (N) yields two observations, that

is, i ! j and j ! i.6 The comparatively short time period of only five consecutive years was

chosen to prevent biased estimates resulting from serial correlation in the data. Consequently,

extending the time period would require controlling for temporal dynamics by, e.g., including

a temporally lagged dependent variable.7

For computational reasons, however, the subsequent analyses need to be restricted to a

smaller subset of n = 42 countries. While drawing a random sample of units from the population

under scrutiny is a promising approach in many empirical applications, it is not advisable for

spatial analyses relying on connectivity specifications as randomizing will lead to arbitrary

and, thus, substantively meaningless connections among countries (cf., section 3.2). Therefore,

and in line with traditional spatial research, the subset of countries was chosen based on the

countries’ geographical locations.

Taking the seminal work of Baier & Bergstrand (2007) as a point of departure, the spatial

analyses in section 4 build on a subsample of Baier & Bergstrand’s sample restricted to countries

located in the Americas and Europe. Figure 1 depicts both the full set of countries for which

balanced dyadic trade and gravity data is available (grey) as well as the subset for the spatial

analyses conducted in this paper (red). Countries coloured in black are excluded due to missing

data for the years 2002-2006.

Data on trade-generating factors come from the CEPII Gravity dataset which covers all

country pairs in the world for the years 1948-2006 (Head, Mayer, & Ries, 2010; Head & Mayer,

5 The full (unbalanced) dyadic dataset including directed aggregate trade flows, gravity variables and geographic
information consists of 2.960.384 observations for all country pairs for the years 1948-2006.

6 Working with directed data yields, among other reasons, the advantage that asymmetric observations with
missing data on either direction, i.e., i ! j or its reverse counterpart j ! i, are still included in the sample as
is the case in this paper.

7 Unfortunately, estimating dynamic spatial panel models is not implemented in R yet.
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Figure 1: Unprojected map of countries in sample

2013).8 The CEPII, short for Centre d’études prospectives et d’informations internationales,

provides an extensive dataset with data on common borders, official languages, nominal GDP in

current millions of USD compiled from the World Bank’s World Development Indicators as well

as information on RTAs in force obtained from Baier & Bergstrand (2007) and supplemented

with information from the WTO, Frankel (1997) and Glick & Rose (2002). Geodesic distances

between capital cities were retrieved from the CEPII GeoDist dataset as the Gravity dataset

only contains population-weighted distances between countries.9

Aggregate trade data in millions of USD were obtained from the Correlates of War dataset

by Barbieri, Keskh, & Pollins (2009) and Barbieri & Keshk (2012) which contains data on both

bilateral trade flows and total national imports and exports for the years 1870-2009, compiled

from the International Monetary Fund’s Direction of Trade Statistics.10

Lastly, cartographic boundary shapefiles for creating the spatial connectivity matrices and

information on geographical locations were extracted from the R rworldmap package (South,

2011) which contains a vector map of state boundaries for 244 countries. Geographic locations

obtained from rworldmap are, by default, described by latitude and longitude coordinates

8 The Gravity dataset provided by CEPII can be accessed online at http://www.cepii.fr/cepii/en/bdd_

modele/presentation.asp?id=8 (last accessed on 04-07-2016).
9 The GeoDist dataset can be accessed online at http://www.cepii.fr/CEPII/en/bdd_modele/

presentation.asp?id=6 (last accessed on 04-07-2016).
10 The Correlates of War trade data can be accessed online at http://correlatesofwar.org/data-sets/

bilateral-trade (last accessed on 04-07-2016). Note that all Correlates of War datasets use COW codes
as country identifiers instead of conventional ISO codes.
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in WGS84 datum format as commonly used for global GIS data. All data contained in the

rworldmap package were originally derived from version 1.4.0 of the Natural Earth data.11

3.2 Modeling dyadic spatial dependence structures

12

The biggest challenge when dealing with spatial dependence structures for either monadic or,

even more complex, dyadic data is how to operationalize and, subsequently, model connectivity

among spatial units.

The point of departure for capturing spatial relationships between two countries i and j is

a n ⇥ n connectivity matrix C with elements i = {1, 2..., n} and j = {1, 2..., n} representing

the countries in the sample. If two countries are connected, C
ij

= 1 and C

ij

= 0 otherwise. As

discussed in section 2.2, the resulting binary connectivity matrix C approximates the hypothe-

sized causal mechanism. Thus, the definition of when two countries are considered neighbors of

each other is not an arbitrary choice but should rather be guided by theoretical considerations.

While the notion of connectivity is not necessarily limited to geographic proximity per se

(see, e.g., Beck et al., 2006 or Neumayer & Plümper, 2013 for further information), resorting to

geographical characteristics such as areal contiguity or great-circle distances between countries

exploits the advantage of geography being exogenous to economic or social interaction flows. On

this account, spatial competition is subsequently captured through geographic connectivities

among neighboring countries.

Broadly speaking, three distinct measures of geographic connectivity are commonly applied

in spatial analyses: (1) areal contiguity, (2) distance-based and (3) graph-based connectivity.

Areal contiguity, in its simplest form, states that C

ij

= 1 if countries i and j share a common

border and C

ij

= 0 otherwise. Distance-based connectivity, on the other hand, comes in two

forms. One option is to define countries as minimum distance neighbors if the interpoint

distance between two points representing each country’s polygon centroid (i.e., the center of a

polygon) or capital lies within a specificed distance band. Another approach, which is more

commonly applied in spatial econometrics, is to consider two countries as k nearest neighbors

11 The original dataset can be accessed online at http://www.naturalearthdata.com/downloads/

110m-cultural-vectors/110m-admin-0-countries/ (last accessed on 04-07-2016).
12 For brevity, the subscript t is omitted in this section as both the connectivity matrix and the resulting spatial

weights matrices are time-invariant.

11
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of each other with k being a user-defined parameter.13

Contrary to most empirical applications in spatial econometrics or political economy, however,

this paper operationalizes spatial dependence among countries as graph-based connectivities

building on Euclidean instead of great-circle distances (as is the case when computing minimum

distances or k nearest neighbors). While this so-called sphere of influence approach to modeling

geographic connectivity is less intuitive than areal contiguity or distance bands, it yields the

advantage of minimizing the number of substantively irrelevant connections (as is the weak

point of minimum distance relationships) and is less arbitrary than specifying adjacency based

on a user-defined number of k nearest neighbors (cf., Stewart & Zhukov, 2010).14

Adapted from Avis & Horton (1985), the rationale behind the sphere of influence graph can

be expressed as follows. As a starting point, let S be a finite set of points in a plane representing

each country’s polygon centroid. For each x 2 S, let r

x

be the minimum (Euclidean) distance

to any other point in the set and let D

x

be a circle of radius r

x

, centered at x. Two points x

i

and x

j

are considered sphere of influence neighbors when D

i

and D

j

intersect in two points. In

other words, two points representing geographically proximate countries are considered graph-

based neighbors if the respective circles centered around the two points – with the size of the

radii determined by the points’ nearest neighbor distances – overlap twice.15 Implementing this

sphere of influence connectivity specification then yields an n ⇥ n square connectivity matrix

with the n columns (rows) corresponding to each country i (j ). By convention, countries are

not considered neighbors of themselves (i.e., C
ii

= C

jj

= 0).

The resulting connectivity matrix, which describes the spatial relations among all countries

in the sample, can then be visualized as a simple map-based network graph with the centroids

representing the nodes (figure 2).

13 Bivand, Pebesma, & Gómez-Rubin, 2008 or Stewart & Zhukov, 2010 provide further information on this
topic.

14 Another, and often overlooked, specification issue concerns the representation of spatial units in the study
area, that is, how to choose the respective points – informally defined as spatial objects located at specified
coordinates within each country – for computing interpoint relationships between these points. By construc-
tion, graph-based connectivity measures compute Euclidean distances between two points representing each
country’s polygon centroid. However, when using interpoint distances based on great-circle distances, points
can represent specific locations such as capitals reflecting political power for traditional political analyses or
cities with large airports when analyzing transportation flows.

15 See the appendix for a visualization and Bivand et al. (2008) or Stewart & Zhukov (2010) for further
information.
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Figure 2: Network graph of centroidal sphere of influence connectivities

When working with dyadic data, however, the n⇥ n connectivity matrix needs to be trans-

formed into two distinct N ⇥ N country pair spatial weights matrices W

o

and W

d

, capturing

both origin- (W
o

) and destination-specific (W
d

) dependence structures.

In order to better illustrate the construction of the two spatial weights matrices, (11) provides

an oversimplified example for obtaining W

o

from a binary n⇥ n connectivity matrix C and its

corresponding identity matrix I

n

.

Consider the case of n = 2 countries A and B with

C =

0

B@

A B

A 0 1

B 1 0

1

CA and I

n

=

0

B@

A B

A 1 0

B 0 1

1

CA (10)

Following the approach of LeSage & Pace (2008, 2009) for spatial interaction models intro-

duced in section 2.2, W

o

can be obtained via W

o

= C ⌦ I

n

with ⌦ denoting the Kronecker

product and I

n

denoting the n⇥ n identity matrix, that is,

13



W

o

=

0

B@

A B

A 0 1

B 1 0

1

CA ⌦

0

B@

A B

A 1 0

B 0 1

1

CA =

0

BBBBBBBBB@

A : A A : B B : A B : B

A : A 0 · 1 0 · 0 1 · 1 1 · 0

A : B 0 · 0 0 · 1 1 · 0 1 · 1

B : A 1 · 1 1 · 0 0 · 1 0 · 0

B : B 1 · 0 1 · 1 0 · 0 0 · 1

1

CCCCCCCCCA

=

0

BBBBBBBBB@

A : A A : B B : A B : B

A : A 0 0 1 0

A : B 0 0 0 1

B : A 1 0 0 0

B : B 0 1 0 0

1

CCCCCCCCCA

(11)

Correspondingly, W
d

can be obtained via W

d

= I

n

⌦ C as exemplified below (12).

W

d

=

0

B@
1 0

0 1

1

CA ⌦

0

B@
0 1

1 0

1

CA =

0

BBBBBBB@

1 · 0 1 · 1 0 · 0 0 · 1

1 · 1 1 · 0 0 · 1 0 · 0

0 · 0 0 · 1 1 · 0 1 · 1

0 · 1 0 · 0 1 · 1 1 · 0

1

CCCCCCCA

=

0

BBBBBBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1

CCCCCCCA

(12)

After obtaining the required N ⇥N connectivity matrices W
o

and W

d

, a third matrix W

od

–

reflecting origin-destination dependence structures – can be created via C ⌦ C. Subsequently,

all matrices are standardized by dividing the elements of each row of the respective matrix by

its row sum so that the weights in each row sum to unity. As a result, all weights range from 0

to 1 and the point estimates for the spatial lags can be interpreted as an average of the lagged

dependent variables of neighboring countries (cf., Elhorst, 2014, p. 12; Ward & Gleditsch, 2008,

p. 80).16

16 While row-standardizing spatial weight matrices is common practice in spatial econometrics, this standardiz-
ing procedure is accompanied by (rarely discussed) theoretical implications. Plümper & Neumayer (2010) and
Neumayer & Plümper (2013) point out that row-standardizing any spatial weights matrix W yields substan-
tively different conceptualizations of the underlying spatial mechanism compared to non-standardized weight
matrices as row-standardizing implies that, for instance, connections from any country A to any neighboring

14



3.3 Analytical procedure and model specifications

The spatial analysis in this paper is conducted in two steps. In the first step, it is tested whether

spatial autocorrelation is present in dyadic trade flows by calculating Moran’s autocorrelation

coefficient, denoted by I, which gauges the extent to which the phenomenon under scrutiny is

correlated to itself in space (Moran, 1950). Thus, when testing for global spatial autocorrelation

in trade flows, it is examined whether observed values of directed trade flows between two trad-

ing partners at one location are independent from values of trade flows observed at neighboring

locations with neighbors being defined by the respective connectivity matrix. In a second step,

spatial autoregressive panel models (SAR) containing a spatially lagged dependent variable are

employed to explicitly account for the hypothesized spatial competition mechanism.

As discussed by Elhorst (2014, pp. 53-57), longitudinal spatial regression analyses often

rely on random effects models (RE) rather than fixed effects specifications (FE) due to known

reasons such as the loss of degrees of freedom when N is large or the omission of time-invariant

variables in FE models.

In this paper, however, there are two main objections against relying solely on RE specifica-

tions. First and foremost, spatial RE models do – anagolous to non-spatial panel models – not

account for spatial heterogeneity which is critical given that spatial units will most likely differ in

terms of geographic characteristics resulting from the units’ respective locations. Consequently,

the omission of these spatial effects will lead to biased estimates. Second, the theoretical frame-

work as outlined in section 2 calls for a FE specification. Feenstra (2002, 2004) and Anderson

& van Wincoop (2003, p. 180) argue that when estimating the theoretically grounded gravity

equation with FE specifications, consistent parameter estimates are obtained (cf., De Benedic-

tis & Taglioni, 2011 for a discussion). In other words, an RE model specification reflects the

empirical gravity equation, whereas FE models approximate – at least to a certain degree – the

notion of multilateral resistance as formally modeled by Anderson & van Wincoop (2003).

Accounting for these time-invariant unit-specific factors implied by the theoretical framework,

FE model specifications with dyadic fixed effects for each country pair ij are employed (µ
ij

) to

capture time-invariant spatial effects (e.g., common borders or great-circle distances between

country B receive greater weight if A has fewer connections to other countries C.

15



trading partners).

Moreover, all models control for unit-invariant time-varying effects (�
t

) affecting all coun-

try pairs likewise. Prominent examples for time period effects in international trade are, for

instance, common shocks or decreasing transportation costs.

In sum, the aforementioned specifications result in the following baseline models for the

subsequent spatial regression analyses

lnTRADE

ijt

= ↵

ij

+ ⇢

o

W

o

lnTRADE

ijt

+ ⇢

d

W

d

lnTRADE

ijt

+ ⇢

od

W

od

lnTRADE

ijt

+

�1 lnGDP

it

+ �2 lnGDP

jt

+ �3 lnDIST

ijt

+ �4ADJ

ijt

+ �5LANG

ijt

+ �6RTA

ijt

+ �

t

+ "

ijt

(13.1)
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o
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ijt

+ ⇢

d

W

d

lnTRADE

ijt

+ ⇢

od

W

od

lnTRADE

ijt

+

�1 lnGDP

it

+�2 lnGDP

jt

+�3 lnDIST

ijt

+�4ADJ

ijt

+�5LANG

ijt

+�6RTA

ijt

+µ

ij

+�

t

+"

ijt

(13.2)

with (13.1) being the baseline RE specification and (13.2) being the baseline FE specification,

respectively. In line with the spatially augmented gravity equation discussed in section 2,

TRADE

ijt

, denoting aggregate bilateral trade flows, serves as the dependent variable, while the

proxies for the two countries’ market potentials (GDP

i,j

) and great-circle distances (DIST

ijt

)

– the latter reflecting bilateral trading costs – serve as explanatory variables. Furthermore,

the three binary dummy variables accounting for the similarity between trading partners are

included, which take the value of 1 if two countries i and j share either a common border

(ADJ

ijt

), a common official language (LANG

ijt

) or membership in a regional trade agreement

(RTA

ijt

).

Adapted from LeSage & Pace (2008), the following restrictions are then imposed which yields

four distinct model specifications, depending on the included spatial weights matrix:17

17 Note that all model specifications assume �
o

= �
d

= �
od

= 0 with � conventionally denoting spatial depen-
dence in the disturbance terms (not to be confused with the standard econometric notation for time period
effects �

t

). In other words, all spatial regression models in section 4.2 build on the assumption that the

16



Model (1). ⇢

d

= ⇢

od

= 0 obtains the spatial gravity model with a single weights matrix W

o

for capturing origin-based spatial dependence.

Model (2). ⇢

o

= ⇢

od

= 0, in turn, obtains the spatial gravity model with a single weights

matrix W

d

for capturing destination-based spatial dependence.

Model (3). ⇢

o

= ⇢

d

and ⇢

od

= 0 yields a spatial gravity model with a single weights

matrix W

o+d

, constructed via 1
2(Wo

+W

d

), which captures the cumulative effect of origin- and

destination-based spatial dependence.

Model (4). ⇢

o

= ⇢

d

= 0 yields a spatial gravity model with a single weights matrix

W

od

capturing spatial dependence structures resulting from interactions between neighboring

countries of both the country of origin and destination.

In conformity with models (1)-(4), ⇢
o

= ⇢

d

= ⇢

od

= 0 reflects the conventional non-spatial

gravity model assuming independence of observations, i.e., no spatial autoregressive dependence

is controlled for.

Contrary to empirical applications of spatial autoregressive models in spatial econometrics

(e.g., Behrens et al., 2012; LeSage & Llano-Verduras, 2014), however, this paper departs from

the common practice of reporting misleading non-spatial ‘benchmark’ models. This is due to

the reason that estimation results obtained from spatial autoregressive models do not conform

to their non-spatial counterparts since parameter estimates reflect spatial feedback structures

among dyadic observations. Section 4.2 discusses the empirical implications in detail.

Given the endogenous spatial lag resulting from these multilateral dependence structures,

maximum likelihood estimation (ML) is employed as OLS estimates will be biased due to the

violation of the independence assumption (see, e.g., Anselin, 1988 and Anselin, Le Gallo &

Jayet, 2008), assuming normality of "
ijt

and µ

ij

.

Since unit fixed effects µ
ij

are included in (13.2), one crucial issue – known as the incidental

parameters problem leading to inconsistent ML estimators in models where the number of

estimated parameters increases with N – needs to be discussed briefly. Without going into

further detail, Elhorst (2014, chapter 3.2.1) points out that despite the inconsistency of the unit

fixed effects, spatial FE models can be estimated consistently after demeaning the regression

respective error terms exhibit no patterns of spatial dependence.

17



equation beforehand since the estimated � coefficients of interest are not a function of the

estimated µ

ij

.18

Data management, mapping and all statistical analyses were carried out in the R software

environment for statistical computing and graphics (R Core Team, 2016). All packages used are

available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.

org/ and are listed in the references.19

4 Preliminary results

4.1 Testing for global spatial autocorrelation

As mentioned in the preceding section, the empirical analysis in this paper begins with exam-

ining if the (log-transformed) bilateral trade flows in the subsample show patterns of spatial

dependence.

By computing Moran’s I, it can be tested whether the observed spatial pattern is the result

of a random spatial process. Accordingly, the null hypothesis posits that no spatial autocor-

relation is present in the data. It is important to note, however, that Moran’s I is sensitive

to the specification of spatial connectivity among countries. Thus, if the corresponding spa-

tial weights matrices do not approximate the underlying spatial mechanism, I will be biased.

Another important issue to consider is that Moran’s I is only reliable for examining spatial

autocorrelation in cross-sectional settings for a univariate series, although the latter is often

ignored in practice (cf., Ward & Gleditsch, 2008, p. 34).

Generally speaking, I ranges from �1 to +1 with significant positive values indicating that

spatial clustering occurs, whereas negative values indicate dispersed spatial patterns. Put

differently, positive (negative) values suggest that neighboring units exhibit similar (dissimilar)

observed values of directed trade flows.

18 See Elhorst (2014, pp. 43-46) for more detailed information on the estimation procedure.
19 Instead of using the splm package for spatial panel models from the CRAN package repository, the regression

analyses in this paper were carried out with a patched version compiled in collaboration with Sebastian
Schutte. Modifications were needed as two internal functions for estimating fixed effects models with spatial
lags (splm:::splaglm) and spatial errors (splm:::sperrorlm), respectively, did not return the log likelihood as
desired. Moreover, the sphtest() function for conducting spatial Hausman tests for comparing random and
fixed effects model specifications needed adjustments as well to run properly.

18

http://CRAN.R-project.org/
http://CRAN.R-project.org/


Table 1: Testing for global spatial autocorrelation
Year Moran’s I

W

o

Moran’s I

W

d

Moran’s I

W

o

+d

Moran’s I

W

od

2002 0.627*** 0.639*** 0.619*** 0.440***
(29.416) (29.923) (41.714) (34.508)

2003 0.625*** 0.637*** 0.616*** 0.434***
(29.355) (29.839) (41.494) (34.047)

2004 0.632*** 0.624*** 0.613*** 0.432***
(29.669) (29.236) (41.277) (33.845)

2005 0.635*** 0.625*** 0.612*** 0.428***
(29.809) (29.252) (41.429) (33.541)

2006 0.623*** 0.632*** 0.614*** 0.425***
(29.257) (29.615) (41.396) (33.353)

Notes: Standard deviates in parentheses. ***
p < 0.01, **

p < 0.05, *
p < 0.1.

The empirical results in table 1 indicate that the null hypothesis of no (global) spatial au-

tocorrelation must be rejected. For all years under scrutiny and all connectivity specifications,

I is highly significant and positive, ranging approximately from 0.4 (I
W

od

) to 0.6 (I
W

o

, I

W

d

and

I

W

o+d

). Therefore, it can be concluded that the observed spatial pattern is not the outcome of a

random spatial process but rather shows patterns of spatial clustering. In other words, spatial

dependence is present in directed trade flows between two trading partners.20

4.2 Spatial autoregressive panel models

Building on the empirical findings of the preceding section, which indicate that trade flows

in the subsample are indeed spatially clustered, this section further examines these spatial

dependence structures by reporting and briefly discussing the preliminary results for both the

random and fixed effects spatial autoregressive panel models in (13.1) and (13.2).2122

20 Additionally, Baltagi, Song, & Koh’s (2003) marginal Lagrange multiplier test for spatial autocorrelation was
carried out, testing the null hypothesis of no spatial autocorrelation, i.e., H0: ⇢

o

= ⇢
d

= ⇢
od

= 0, while
assuming no random effects. In line with Moran’s autocorrelation coefficients, the results confirm that spatial
autocorrelation is present in the data. However, the results obtained from splm’s bsktest() should be treated
with a degree of caution (cf., footnote 21).

21 Pooled model specifications were not employed since the marginal Lagrange multiplier test for random spatial
effects by Baltagi et al. (2003), which tests for H0: �2

µ

= 0 while assuming no spatial autocorrelation, indicated
the presence of random effects. Irrespective of this result, it is important to note that bsktest() apparently
tests for a reverse direction of H0 and the corresponding alternative hypothesis H

a

: �2
µ

> 0 (cf., Millo &
Piras, 2012, p. 23).

22 Lee & Yu (2010) demonstrate that ML estimation can lead to inconsistent parameter estimates in spatial
autoregressive models with fixed effects specifications where the number of time periods T is small as is the
case in this paper. To ensure the consistency of the parameter estimates, the results for the bias correction
proposed by Lee & Yu are reported in the appendix, showing no substantial differences compared to the
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Table 2 lists the regression results obtained with the four different model specifications (1)-

(4) described in section 3.3. In all models, the coefficients for GDP

i

and GDP

j

, reflecting

the two countries’ trade potentials, show the expected positive sign and, thus, suggest that

bilateral trade-generating factors lead to increased volumes of trade. Furthermore, in all four

RE models the two binary similarity measures ADJ

ij

and LANG

ij

– which are omitted in the

FE specifications as they are constant over time – indicate a positive effect of having a common

border or sharing an official language on trade flows. Geodesic distance (DIST

ij

) between

capitals serving as a proxy for bilateral transaction costs, in turn, decreases trade flows as

expected theoretically. All coefficients are highly significant.

By contrast, the policy-based covariate of interest, namely, regional trade agreements being

in force between two trading partners, yields mixed results. While all RE models suggest that

co-membership in regional trading blocs increases bilateral trade flows, the effects of RTAs

are no longer different from zero when controlling for time-invariant fixed effects in the FE

models.23

Since both the dependent and explanatory variables are log-transformed in all models, the

coefficients can, at least in theory (cf., below), be interpreted as elasticities. For binary similarity

variables in log-log-transformed models, the percentage effects can be calculated via (14)

p = 100⇥ (exp(�)� 1) (14)

as suggested by Halvorsen & Palmquist (1980) and Wooldridge (2009, p. 190) with p reflecting

the difference in trade flows of the binary variable taking the value of 1 compared to the binary

variable taking the value of 0, ceteris paribus.

Table 3 reports the corresponding percentage effects of the binary RTA variables accounting

for similarity between trading partners.24 For the sake of completeness, the effects for the

fixed effects models are reported alongside its random effects counterparts, although they are

insignificant.

results for the FE specifications listed in table 2.
23 This empirical finding, however, could – at least potentially – be caused by a lack of spatio-temporal variation

in the data on regional trade agreements covered in the subsample.
24 The percentage effects of sharing a common border or an official language can be calculated analogously.
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Table 3: Effects of regional trade agreements in %
Model specifications (1) (2) (3) (4)

Random effects 20.784%*** 17.978%*** 17.618%*** 17.618%***
Fixed effects �0.854% �3.340% �2.310% �2.752%

***
p < 0.01, **

p < 0.05, *
p < 0.1.

When turning to the parameter estimates of main interest, i.e., ⇢
o

W

o

, ⇢
d

W

d

, ⇢
o+d

W

o+d

and

⇢

od

W

od

measuring the hypothesized spatial dependence structures, it is evident that spatial

mechanisms are at work. All estimated dependence parameters ⇢ in the random and fixed effects

model specifications (1)-(3) are highly significant and show substantial levels of origin- (⇢
o

W

o

),

destination- (⇢
d

W

d

) and cumulative origin- and destination-based dependence (⇢
o+d

W

o+d

).

Substantively, these results suggest (albeit with reservation as is shown below) that, first,

determinants causing trade flows from the country of origin to each destination evoke similar

levels of trade from countries nearby the origin to the same destination (⇢
o

W

o

) and, second,

determinants causing trade flows from each origin to the same destination evoke similar levels

of trade from the origin to countries located nearby the destination country (⇢
d

W

d

). However,

as indicated by the comparatively smaller estimated values for ⇢

od

W

od

in models (4), these

determinants do not evoke trade flows between third countries C and D in a similar magnitude.

While it appears promising to interpret the aforementioned parameter estimates in the same

fashion as if they were obtained by non-spatial regression models, this reasoning is invalid and

will bias causal inferences drawn from the empirical findings.25 As indicated in section 3.3

and demonstrated in detail by, e.g., Kelejian, Tavlas, & Hondroyiannis (2006), LeSage & Pace

(2009) or Elhorst (2014), the interpretation of parameter estimates in spatial and non-spatial

regression models differs substantively.

The (simplified) reason for this is easy to grasp. Recall that in non-spatial regression models,

parameter estimates can be interpreted as the effects of a change in any of the explanatory

variables on the dependent variable. Following the terminology of LeSage & Pace (2009), these

effects are called direct effects, that is, changes in any of the explanatory variables only affect

bilateral trade flows between two trading partners i and j and do not (indirectly) affect trade

25 Moreover, reporting spatial and non-spatial point estimates alongside each other – as is common practice
even in spatial econometrics – reinforces the (false) impression of comparability.
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flows among third countries since dyadic observations are assumed to be independent from

each other. In turn, parameter estimates in spatial autoregressive models reflect dependence

structures and thus, by construction, multilateral feedback effects among observations arise.

Consequently, changes in any of the explanatory variables not only affect bilateral trade flows

between two trading countries i and j directly but trade flows of third country pairs as well.

The latter is what LeSage & Pace term indirect effects. In other words, since bilateral trade

flows are modeled as a function of trading volumes of neighboring countries (cf., equations 13.1

and 13.2 in section 3.3), these multilateral spatial dependence structures must be considered

when interpreting the parameter estimates for models (1)-(4).

Interpreting the resulting parameter estimates, however, is more challenging.26 On this ac-

count, LeSage & Pace (2009; cf., LeSage & Thomas-Agnan, 2015 for dyadic data) propose

summarized scalar measures for ease of interpretation. Put briefly, the basic intuition behind

these scalar measures is to calculate the average of impacts arising from changes in the ex-

planatory variables to allow for a partial derivative interpretation similar to the interpretation

of coefficients in non-spatial models.

For brevity, table 4 only lists the impact estimates for the theoretically grounded fixed effects

model specifications (1)-(4), while the corresponding results for the random effects models are

reported in the appendix.27 For all models, the z-values and significance levels were calculated

from a set of 10.000 simulated parameter values.

Recall that indirect effects measure the impacts of changes in any of the explanatory variables

on bilateral trade flows among third country pairs. Thus, as implied in the explanation on

differing parameter estimates above and explicitly pointed out by Elhorst (2014, p. 24), indirect

effects rather than estimates for ⇢ should be used to assess spatial (spillover) effects. The

indirect effects listed in the middle section of table 4, however, indicate that the spatial effects

of two countries’ trade-generating potentials GDP

i,j

are – compared to the estimates reported

in table 2 – rather small for either origin, destination, or dyadic connectivity specifications

26 LeSage & Pace (2009, chapter 2.7) and Elhorst (2014, chapter 2.7) provide technical details on this topic.
27 In line with the theoretical arguments pointing towards FE specifications, a spatial Hausman test for assessing

the consistency of random vs. fixed effects spatial models using W
o+d

was conducted. The obtained results
(�2 = 133.57, df = 7, p < 0.01) indicate that the spatial RE model must be rejected as the differences between
the two specifications are, at least from a statistical perspective, systematic.
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when simultaneously controlling for unit fixed effects. The reason for this is, again, given by

Elhorst (2014, p. 58) who points out that fixed effects partly absorb interaction effects since

most variables tend to decrease or increase synchronously over time among nearby spatial units

(cf., table 6 in the appendix). Irrespective of this decrease in the magnitude of the presumed

spatial effects, the empirical findings, in sum, strongly suggest that hypothesis 2 is valid.

Without going into further detail, the direct effects of GDP

i,j

are positive and highly sig-

nificant in all fixed effects model specifications (1)-(4), supporting hypothesis 1 in part. The

effects of regional trade agreements (RTA

ij

), in turn, remain insignificant.

5 Concluding remarks, discussion and limitations

The main objective of this paper was to model the effects of multilateral spatial dependence

structures in policy-based gravity equations for dyadic trade flows. In doing so, origin-,

destination- and origin-destination-specific dependence structures among countries, resulting

from the underlying spatial competition mechanisms, were operationalized as graph-based con-

nectivities using Euclidean distances. Empirically, the spatial analysis drew on a subsample of

n = 42 countries covering the years 2002-2006. In a nutshell, the preliminary empirical findings

support the main arguments of this paper, namely, that spatial autocorrelation is, first, present

in bilateral trade flows and, second, the hypothesized spatial competition mechanism evoking

patterns of spatial dependence among neighboring countries is at work. Hence, one can draw

the (preliminary) conclusion that the bulk of econometric articles relying on either the empirical

or the theoretical non-spatial gravity equation yield biased point estimates resulting from the

omission of variables controlling for these spatial competition effects.

Despite these initial findings, the spatial analyses in this paper still face several challenges.

Methodologically, given the limited sample size due to computational limitations, generaliza-

tions of the preliminary results are restricted since randomization is not feasible for geographical

analyses. On a positive note, however, the required data are available in the full dataset. Ad-

ditionally, further computational restrictions are imposed as the spatially lagged dependent

variables W

o

X

ij

and W

d

X

ij

should, ideally, enter the respective spatial panel model simulta-

neously. To date, functions for including two distinct connectivity matrices in the substantive
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part of the model are only implemented in the Spatial Econometrics toolbox for MATLAB by

James P. LeSage. Both R and Stata do not support the inclusion of more than one spatial

weights matrix for modeling spatially lagged dependent variables.

Moreover, recall that from a theoretical perspective, the choice of an appropriate connectivity

specification should – contrary to common practice in spatial econometrics – be theory-driven

as it reflects the notion of (and, thus, proxies) the hypothesized spatial mechanism. While the

operationalization of dyadic spatial dependence structures and the baseline specifications of

the spatial models in this paper build on the theoretical arguments laid out in section 2, they

do not constitute a full-fledged theory. Therefore, an increased consistency between formal

gravity models in international trade theory and the corresponding spatial econometric model

is required in future analyses – particularly with regard to both the lack of (implemention

of) goodness-of-fit measures for spatial panel models and the comparability between spatial

autoregressive models and non-spatial benchmark models, respectively.

Given these aforementioned methodological and theoretical limitations, one solution-oriented

middle ground between computational limitations on the one hand and valid causal inferences

derived from the longitudinal spatial models employed in this paper one the other hand are

robustness checks to assess whether different subsamples and connectivity specifications (e.g.,

for connectivity defined by great-circle distances with and without distance decay) yield similar

empirical results. Additionally, controlling for selection bias due to zero trade flows, which are

omitted when log-transforming the dependent variable, as well as accounting for heterogenous

treatment effects regarding the trade-creating and trade-diverting effects of RTAs are fruitful

directions for future research.
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Appendix

A Sphere of influence (SOI) graph

Figure 3: Sphere of influence graph (source: Stewart & Zhukov, 2010, p. 7)

Adapted from Stewart & Zhukov (2010), countries are considered sphere of influence neigh-

bors whenever the circles around each country’s polygon centroid (i.e., the nodes in the graph)

overlap in two points. In this simplified example, country A is considered a neighbor of coun-

tries B and C, B is a neighbor of countries A and C, C is a neighbor of countries A, B and D,

while D is a neighbor of C.
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B Spatial regression results for Lee & Yu (2010) correction

Table 5: Regression estimates
Dependent variable: Directed trade flows (ln)

Fixed effects: Lee &Yu (2010)

Determinants (1) (2) (3) (4)

lnGDP

i

0.524*** 0.499*** 0.483*** 0.526***
(0.082) (0.083) (0.083) (0.083)

lnGDP

j

0.528*** 0.591*** 0.536*** 0.595***
(0.083) (0.083) (0.082) (0.083)

RTA

ij

�0.009 �0.035 �0.023 �0.028
(0.069) (0.069) (0.069) (0.070)

⇢

o

W

o

0.158***
(0.020)

⇢

d

W

d

0.090***
(0.020)

⇢

o+d

W

o+d

0.218***
(0.027)

⇢

od

W

od

0.043
(0.027)

Notes: Standard errors in parentheses.
Time dummies and intercept not reported.
***

p < 0.01, **
p < 0.05, *

p < 0.1.
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