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Executive Summary 
 
The Algorand blockchain is widely considered among the best blockchains in terms of scalability, 
security, and speed. With its low network costs and quick transaction times, Algorand is one of the most 
appealing blockchain for new decentralized Applications. However, to support these new application 
developments, it is essential for the blockchain to have at least one or more robust, secure, and fast 
Oracle services to provide outside data to Algorand smart contracts.  
 
Algoracle proposes the building of such an Oracle service, and this whitepaper lays out the structure of 
the application, and the economics and architecture that will be used to both secure the service and 
maintain appropriate incentives to power the application. Algoracle works by having distributed nodes 
call API endpoints submitted by Feed Providers. These distributed nodes may then aggregate the values 
provided by the endpoints, and place the aggregated values (or raw values, depending on the feed) onto 
a smart contract, where Algorand applications can subscribe to the feeds for a fee.  
 
This whitepaper is composed of two parts. In the first part, a high-level overview of the network 
architecture, its tokenomics and governance is provided. This part is aimed at non-technical users and 
primes technical users for Part II. In the second part, a technical analysis is provided into how Oracles 
may be secured, and how Algoracle plans to do so.  
 
  



Introduction 
 
Algorand is a high quality blockchain that is very attractive to app developers, especially compared to its 
largest competitor, Ethereum, which has high transaction fees and low transaction speed. As nearly 
every industry and hundreds of millions of people adopt blockchain technology in the coming decade1, 
we believe the first mover advantage will quickly be reduced once people become more experienced 
using different wallets for different use cases. With corporations and government entities preferring to 
build on Algorand, we are already seeing greater adoption among technical users23, and we expect a 
significant uptick in Algorand based dApps once a functioning and secure oracle has been implemented 
(considering the amount of capital being committed to developing to the ecosystem45). 
 
The Oracle Problem 
 
The oracle problem, at its core, means having to trust an entity in a world that should be 
considered trust less. It could be argued that the only real solution to this problem would be to 
conduct all activities that an oracle provides onto the blockchain. For example, if ALGOs were 
only ever exchanged for USDC on-chain, and USDC was only ever spent by individuals on chain, 
the exchange price of USDC/Algo may be determined on the blockchain, hence solving the 
oracle problem. However, this preferred state is nowhere close to being realized. Furthermore, 
basketball cannot be played on the blockchain, nor does the blockchain have a weather system, 
therefore some external data may never be able to be brought on chain naturally, and instead 
rely on external sensors for that initial input. 
 
One possible solution might be having everyone watching the game input the score on the 
blockchain, but what if the loser of a match has more fans, and feel like they deserved a 
penalty? With the advent of social media, coordinated social ‘spamming’ a system can and does 
go viral such as the ‘Bum rush the charts’ campaign to influence iTunes charts6, or meme-fueled 
GameStop buying frenzy meant mainly to bankrupt large hedge funds7. 
 
By such definitions, the oracle problem may be considered unsolvable. While a detailed analysis 
of the oracle problem is outside the scope of this whitepaper, an alternative to such a strict 
definition is that as long as data is sourced from multiple reliable sources, and poor quality or 
malicious participants stand to lose much more than they gain (in addition to having some 

 
1 Global Blockchain Business Council. (2020). Chain reaction: Blockchain enters the mainstream. Chain Reaction: 
Blockchain Enters Mainstream. Retrieved November 1, 2021, from https://www.lw.com/thoughtLeadership/gbbc-
report-blockchain-enters-mainstream. 
2 https://www.algorand.com/empowering-national-initiatives 
3 https://www.algorand.com/ecosystem/use-cases 
4 https://cointelegraph.com/news/borderless-capital-launches-half-billion-dollar-fund-for-algorand-projects 
5 https://cointelegraph.com/news/former-citi-banker-launches-1-5b-crypto-fund-taps-algorand-as-first-partner 
6 Gilliatt, N., & Gilliatt, N. (2007, March 21). Distributed viral social media spam. Social Media Today. 
https://www.socialmediatoday.com/content/distributed-viral-social-media-spam 
7 Darbyshire, M. (2021, October 18). Almost 900,000 accounts traded GameStop at peak of meme stock craze. 
Financial Times. https://www.ft.com/content/df758a2a-6caf-4d5f-ab70-bb5815922b91 



barrier to entry), the system can remain secure. In fact, almost all major blockchains are 
designed as such. 
 
Design Considerations 
 
Layer   1 vs Layer 2 
 
Oracle services tend to generally build out co-chains or blockchains to be able to handle requests, and 
then interface onto one or more blockchains. While this method allows for growth beyond a single 
blockchain, the technical infrastructure required is greater than building specifically for a single 
blockchain. Furthermore, once implemented, it becomes rigid and hard to change (since major changes 
in a blockchain typically require a fork). 
 
When designing Algoracle, the choice was made to focus on building for the Algorand network. 
Therefore, Algoracle may be categorized as a decentralized application, although it has a distributed set 
of nodes (so in reality, somewhere in between). This means a much faster time to market as the only 
necessary development is the Algorand smart contracts, and the implementation of Algorand’s open-
source consensus protocols (more on this later). This also means greater focus on security by reducing 
the number of attack vectors, since there is less code to audit, and tried and tested code is being used 
for the nodes. 
 
This does not truly limit Algoracle, as the research that has been done as part of building the service has 
provided great insight into what makes a successful oracle, and the distributed nodes that feed Algorand 
network can be made to interface onto other blockchains if necessary, in the future. In fact, the name 
Algoracle is not derived simply by being an oracle for the Algorand network, but rather the fact that the 
design of the node’s consensus mechanism is inspired by the architecture of Algorand; namely, how 
nodes are selected to propose the next value to put on the smart contract, and how that value is voted 
on and certified by other nodes in extremely quick timelines.   
 
True Decentralization 
 
Another consideration in the level of decentralization (aka permission to participate). Although 
Algoracle is not in and of itself a blockchain, it is very similar in that it is a distributed system of nodes 
and data providers, working together to affect the blockchain state - and as such, a level of permission, 
if any, needs to be determined.  
 
On one spectrum, a permissioned Oracle service can require knowledge the feed provider is, and only a 
select number of these known feed providers to submit feeds. On the other end of the spectrum, a 
permissionless service will neither require nor care who signs up to provide feeds or run nodes.  
 
In their article “When Permissioned Blockchains Deliver More Decentralization Than Permissionless” 
(Bakos et al.)8, the authors make a compelling argument that “while distributed architectures may 

 
8 Bakos, Yannis and Halaburda, Hanna and Mueller-Bloch, Christoph, When Permissioned Blockchains Deliver 
More Decentralization Than Permissionless (September 25, 2019). Communications of the ACM, Available at 
SSRN: https://ssrn.com/abstract=3715596 or http://dx.doi.org/10.2139/ssrn.3715596  



enable open access and decentralized control, they do not preordain these outcomes…permissionless 
access may result in essentially centralized control, while permissioned systems may be able to better 
support decentralized control.”  What this means is just because a system is built to be decentralized 
and distributed, doesn’t mean it will be, largely due to malicious forces or large actors with economies 
of scale taking over.  For example, in the case of the DAO, a project build on Ethereum that allowed 
anyone to participate, hackers were able to call code open to anyone and drained funds from a wallet. 
As for economies of scale, how bitcoin miners concentrated in a specific region dominated the hash rate 
(although this has since been improved).  
 
The Algoracle team believes that decentralizing as much as possible is essential but agrees with the 
authors above that some form of permission is necessary. This is implemented via a deposit mechanism, 
where Feed Providers and Node runners must stake and deposit a certain amount of network tokens to 
participate. This raises the barrier to entry, with the goal being to make being a malicious actor or a 
poor-quality provider as unattractive as possible.  
 
However, while this model will work for majority of feeds, Algoracle also need to consider the fact that 
not all data providers are created equal, and the requirements of certain applications require no 
compromise in speed and security, while other applications require access to data that is exclusive.  
While all feeds will have the same architecture, Algoracle also proposes the creation of ‘Institutional 
grade feeds. These feeds have higher subscription costs which go to fund institutional grade data 
providers, in addition to higher requirements to run nodes. These feeds may also choose to restrict 
feeds to certain customer based on pre-existing conditions.  



Part I 
In the first part, a high-level overview of the network architecture, its tokenomics and 
governance is provided. This part is aimed at non-technical users and sets the overview for 
technical users for Part II. 
  



Algoracle Overview 
 
Algoracle hyper focuses on keeping accurate and up to date real-world data on a smart contract 
with as little infrastructure as possible (enough to move data and secure the system). To ensure 
the data is fully decentralized, Algoracle keeps the collection and aggregation mechanisms as 
decentralized as possible. To better explain how Algoracle’s proposed architecture will work, 
we start with the different stakeholders of the system, and its components. 
 
System Stakeholders 
 
Feed providers (FPs) 
 
Feed Providers (FPs) are the backbone of the Algoracle system. They provide the data, sourced 
from any ideally trusted sources off chain. Algoracle makes it as easy as possible for FPs to 
contribute to the system. They simply need to input their API endpoint and respond to verified 
nodes with their values (Vs). There are two types of FPs: Institutional grade FPs and FPs (more 
details on this distinction to come).The main difference is that Institutional grade FPs generally 
exercise greater control on the requirements to read from their data sources, and whether that 
data is aggregated. 
 
Node runners (NRs) 
 
Node runners (NRs) call the APIs provided by the feed providers. Using a cryptographic sortition 
protocol, the cluster of nodes selects members of the node to propose, vote on and certify the 
next value(s) to be added to the feed smart contract (FSC). NRs can either aggregate the data or 
provide the raw values for the smart contracts reading the data to aggregate themselves. There 
are two types of NRs: Institutional Grade NRs and NRs (more details on this distinction to 
come). Institutional Grade NRs typically meet greater requirements such as having a licence to 
read from Institutional grade FPs 
 
Feed Consumers (FC) 
 
Feed consumers (FCs) are the smart contracts that will be using the Vs submitted by FPs. FCs 
simply call the FSC in the time interval they wish, pay the required fee, and get the data from 
the contract’s global state.  Depending on the data feed, FCs fees may come in the form of 
periodic subscriptions, or charge per requests. Some feeds are open and can be read from the 
global state of the feed contract.  
 
Algoracle Community (AC) 
 
The public (AC) can view live feeds and report poor quality or malicious FPs to get rewards.  
They can also vote on previous reports, and once certain thresholds are met, individuals who 



voted and reported get paid bounties for correct reports (or lose their stake for incorrect 
reports).  
 
 
System Components 
 
The following system components are all decentralized and on either the  blockchain or a P2P 
database.. 
 
Algoracle website 
 
The Algoracle website was built with react and hosted on a P2P hosting service. It is a front-end 
website with the backend being either an Algorand smart contract or a P2P database. ACs can 
vote/report feeds through here and see historical feed Vs. The front-end is decentralized using 
Skynet’s Homescreen, which means the front end can be loaded from users’ storage in addition 
to the P2P option.  
 
Algoracle Nodes 
 
Algoracle nodes are software scripts that run pre-specified code. This code adds the NRs to 
clusters, and calls the FP’s APIs in order to aggregate the data (or pass through the raw data). 
Once the data is ready, the node software uses the same cryptographic sortition protocol that 
the Algorand blockchain uses9 to select which nodes will “propose” the next value to add to the 
relevant data feed. The protocol also selects voters to vote on proposed value, and certifiers to 
confirm the vote. Nodes also perform validation checks to ensure valid messages are 
transmitted through the network.  
 
Nodes will continually pull data from the APIs every few minutes. The specific time is different 
for each feed; crypto currencies may refresh every 10 seconds, while event dates may only 
need to be updated once per hour. A historical analysis of each proposed feed is done to 
determine how often feeds should be polled. 
 
Feed Smart Contract (FSCs) 
 
Feed smart contracts are collectively the contracts that handle the Algoracle ecosystem on 
chain. They consist of:  
 

a) Index Contracts: store the addresses of the various available feeds. 
b) Reputation Contracts: stores the nodes who have staked a deposit to run nodes (it does 

not track reputation in the traditional sense, but rather its reputation can be discerned 
from its history of penalties/rewards). 

 
9 Algorand’s Cyrptographic sortition algorithm- https://www.youtube.com/watch?v=XfP862hCrDM 



c) Payment contracts: pays out rewards, collects penalties, and handles staked deposits 
and withdrawals and fees. 

d) Data contract: where the actual feed data is stored. 
 
P2P database (P2PDB) 
 
Algoracle uses a P2P database to store historical information about the data submitted by FPs 
and NRs. 
 
 
Table 1 The different stakeholders of the system and the components they generally interact with. 

 Website FSC P2PDB Algoracle nodes 
Feed Providers • • •  
Node Runners  •  • 
Feed Contracts  •   
Algoracle 
Community 

• • •  

 
 
Algoracle System Life cycle 
 
FP add data feed 
 
FPs signs up to provide data feeds via the Algoracle website and pay a deposit. The deposit is 
handled by the payment smart contract, and once confirmed, the API of the provider is added 
to the indexing list. The FP also would need to setup a webhook or script that will be used to 
determine the list of authorized NRs, then store the public keys of these nodes, as these nodes 
will use their digital signatures when calling the API.  Permissioned feed providers may limit 
consumers and node runners based on some pre-existing conditions. 
 
NRs sign up to become node runners 
 
NRs are required to sign up and pay a deposit to join the node cluster and begin pulling Data. 
NRs communicate via gossip protocols, which are fast, and use extremely quick algorithms to 
determine the proposers, voters, and certifiers. The message sizes between nodes are kept low, 
and messages from unauthorized or malicious nodes are discarded rather than propagated. 
With the simplicity of running a node, we except thousands of nodes to operational per feed, 
and a limit of 4,096 feeds may be set. Permissioned feed providers that guarantee a certain 
quality of their feed would naturally limit the number of NRs to a likely maximum of around 30. 
These permissioned FPs may require that these NRs purchase licenses to further restrict access 
and add another layer of security to protect the exclusivity of their data.  

 



 
NRs pull data from FPs 
 
With the API information in place, NRs can begin calling the API endpoints. Nodes also 
communicate with each other to determine the proposers, certifiers, and voters. Then a set of 
authorized nodes will sign the transactions together to put the data on chain, and the payment 
contract pays out Algoracle tokens to honest participants and penalizes poor quality/malicious 
actors, respectively.  NRs are considered poor or malicious if they execute code that is not 
recognized.  The Data from non-permissioned FPs may also be stored on a P2P database.  
 
AC participate in bounty hunting 
 
The AC can view the live data or the historical data submissions and stake their tokens to report 
obviously incorrect feeds. This program is simply an additional layer of penalties on top of the 
slashing penalties applied to poor quality or malicious feeds (more details on these in the 
economic and security section in part II).  
 

 
 
 
  



Tokenomics 
 
Note: this section is constantly being updated, and we are looking for advisors who have 
experience in this space to help with the tokenomics design strategy.  
 
Using a native token GORA creates greater incentive for honest and reliable participation. 
Honest early adopters stand to profit from the appreciation of the token an initial low cost, 
while the Algoracle system will benefit from having high quality and honest providers to anchor 
the system. In the economic simulations done in part two, we conclude that having a large 
group of early honest participants results in a system that gets harder and more expensive to 
attack. These early adopters need a sufficient promise of ROI for early participation, especially 
while Algorand dApps are being built to use Algoracle during the first several months after 
launch. 
 
Implicit Incentives 
 
On top of the explicit incentives for good behavior, nodes will also operate on implicit ones. 
Good and accurate performance of nodes means they will remain on the network, giving them 
future economic opportunities. Strong performance by the network creates greater trust in it, 
which will likely result in greater use, and greater future economic opportunities. Nodes will, as 
a result, have an incentive for the network to perform well and accurately. Undermining trust in 
the network would undermine confidence and threaten future use and economic returns in the 
future. There will also be an incentive to provide affordable prices since lower fees will mean 
more users on the network. While fees from dApp users will be a source of income, the 
appreciation of the GORA token will provide additional long-term benefits. 
 
 
Token Distribution 
 
Under construction 
 
Algoracle is currently working with BrightNode Tokenomics consulting firm to determine the 
optimal number of tokens to launch with, the initial distribution and other considerations such 
as whether to have an initial supply or mint based on activities on the network. Algoracle 
understand the importance of tokenomics to any project, and therefore are interested in 
getting this right by bringing in consultants with deep expertise in this field.  
Governance 
 
This section is under construction 
 
All systems generally need to evolve as the number users, FPs, and NRs increase and their motivations 
change. As a decentralized system, Algoracle will need a way to allow a way for these changes to happen 
transparently way, that benefits the stakeholders. The main stake holders, in order of importance, are: 
 



1 - Feed consumers 
2 - Feed providers 
3 - Node runners  
 
The users who consume the feed the most are the most sensitive to changes. Trusted feed providers 
and node runners are also affected. The governance is being worked on with consulting firms to 
determine the most sustainable and fair method. 
 
  



 Part II 
This part explores:  
The technical architectures of the application – how it will be built 
A methodology for creating a self-sustaining economy 
  



Introduction 
 
Oracle services provide blockchains with off-chain data, and in the process introduce an 
additional vulnerability into the blockchain system. Since any system’s security is as good as its 
weakest link, a well-designed oracle system should not contribute to security flaws. On 
Algorand, one of the most secure blockchains, a proper design is even more crucial.  
 
As such, the research and methodology used to determine the implementation of security 
features in this paper assumes that Algoracle will live in harsh, hostile environment, where 
attackers will persistently try to manipulate the system. In such an environment, the security is 
guaranteed when most participants are honest and the system has great uptime, while the 
system should be able to ring the alarm bells and/or shutdown when an attack is successful, 
and possibly even compensate victims. 
 
There are two main points of attack that need to be guarded against.  
 
A) The data that is provided by Feed Providers (FPs) needs to be valid and correct data.  
B) The Nodes must honestly aggregate and report the correct value. 
 
The following research does not assume its 100% possible to build such a permissionless 
system, but rather sets out to prove whether this is possible, and if so, under what conditions, 
and what trade-offs (if any) is required considering the byzantine nature of Oracles. And within 
the context of those findings, to build a secure, fast, and scalable oracle solution. 
 
  



Economic Simulation 
 
To Solve the oracle problem, smart contracts applications generally depend on data from 
multiple sources. An Oracle takes data from multiple sources and selects the median value. If all 
providers were always honest, this method would work great to smooth out variations in 
differences between sources. However, an oracle system must account for malicious and poor-
quality feeds. This section will first provide the background on why this is needed, before 
describing the methodology used to come up with the simulation algorithm to both: 
 
A - test the hypothesis that it is indeed possible to have a self-sustaining oracle system that can 
ward off attacks and rid the system of poor-quality feeds over time, and 
B – it can provide an incentive great enough for node operators and feed providers to profit 
from honest contribution to the system. 
 
Background 
 
Let’s take the example of the current temperature of a city, for example Toronto. Different data 
providers may report slightly different values. The table below shows the values at a point in 
time taken from various endpoints. 
  

Data Provider Submitted Value 

#1 12.3 

#2 12.5 

#3 12 

#4 12 

#5 12.5 

#6 11.2 

#7 11 

#8 14 

#9 12.3 



#10 11.9 

#11 12 

#12 20 

#13 12 

#14 13 

#15 12.5 

#16 11.7 

#17 12 

#18 1 

#19 12.1 

#20 10 

 
In the table above the median is 12 degrees, while the average/mean is 11.9. Generally, Oracles 
take the median value, to prevent outliers from influencing the data heavily. 
  
A smart contract relying on only one of the sources above may have gotten values from #8, #12, 
#18 or #20, and that data would have been considered incorrect, as these data points are 
outliers. But by relying on an Oracle that aggregates data from all twenty sources, a smart 
contract can be as safe as possible. 
 
In the scenario below for sports feeds, the number must be exact, unlike temperature. Feed 
providers #M & #G have provided a value that doesn’t match. Regardless how close the values 
are to the median; sport scores should have no deviation whatsoever. 
  
Therefore, an acceptable median absolute deviation for sport scores may be 0 goals, while for 
temperature, it may be 0.4 degrees. 
 
 



Data 
Provider 

Submitted Home score Value Submitted Away score Value 

#A 2 1 

#B 2 1 

#C 2 1 

#D 2 1 

#E 2 1 

#F 2 1 

#G 2 3 

#H 2 1 

#J 2 1 

#K 2 1 

#L 2 1 

#M 3 1 

#N 2 1 

#O 2 1 

#P 2 1 

#Q 2 1 

#R 2 1 



#S 2 1 

#T 2 1 

#U 2 1 

  
In the temperature example table above, feed providers #12 and #18 should be considered as 
malicious as the data is extremely incorrect. Feed providers #8 and #20 can be considered poor 
quality sources, but not malicious. The remaining feed providers are considered honest, and 
good quality. The closer to the median value, the higher the quality of the feed. 
 
A decentralized system does not have a central authority to punish bad actors, nor can it 
prevent anyone who wants to submit a value to do so. However, there must be a mechanism to 
punish bad actors, eliminate poor quality sources, and reward the highest quality sources to 
keep the system self-sustaining. 
  
Oracles can solve this by requiring a deposit of funds to be able to submit feeds. Smart 
contracts that use these oracles pay a fee to use the values submitted. 
 
·      When a bad actor submits a bad value (a value considered to be an extreme outlier), they 
are penalized with some or all their funds. A feed provider whose funds fall below a threshold is 
removed from the system. 
·      When a value submitted is considered poor quality (i.e. outside the acceptable median 
deviation), the penalty may be soft. 
·      When a feed provider submits a value that is acceptable, they are rewarded. 
·      It’s possible a feed provider is not rewarded or penalized for submissions that are within 
the acceptable MAD but still far from the median. 
 
  



Research Methodology 
 
Data sources may be malicious, or they may be poor quality. It’s hard to tell from just one submission. 
However, since data providers submit values every few minutes, using rewards and penalties 
appropriately can create a picture of the reliability of each feed. 
 
To do so, the following are the inputs that need to be considered: 
 

· Deposit amount 
· The number of feeds 
· An acceptable median absolute deviation for the submitted values 
· The number of simulations (one round of submissions is considered one simulations) to run. 
· The Total Value* depending on the data (aka TVL, total value locked). 

 
The goal is (these are not final numbers, and are flexible): 
  
·      Feed providers should earn between 10%-50% profit on their deposit annually. 
·       Poor quality sources should lose 5-15% of their deposits annually. 
·      Malicious sources should face heavy penalties of up to 100% 
·      The deposit/reward/penalty system should be self-sustainable after any number of simulations. 
·      The total value should not be more than 2-3% less 
 
*The total value locked is a unique input, which is subjective, that was introduced. This value represent 
the most money a single dApp could lose in the event of a successful attack. For example, if the largest 
dApp using Algoracle stands to lose 1 Million, that number would be used. If the system is secured 
against the highest loss, it should be secure for everyone else.  
 
This value would go down when the absolute median deviation of the combined feed providers is 
greater than the acceptable median deviation for that data feed. 
  
For example, if the Total Value Locked depending on the sports scores is $100,000, then every time the 
group of submissions is highly variable, this number would go down, eventually reaching 0 if the MAD of 
the data the feed providers submit is consistently higher than the acceptable MAD. The higher the 
difference, the faster the TVL would go to 0. 
 
Note: while the TVL will be used to determine starting deposits, the current draft of this research omits 
TVL and will introduce this value in the second draft of this paper in the coming weeks  



 
Research Results 
 
Before looking at the simulation results, we establish a baseline to understand how to best 
validate incoming data, based on historical data points.  
 
Robustness of the oracle 

When data is fed into the oracle by providers - several situations can occur. One can be 
categorized as the ideal scenario where all providers are honest. This would indicate that the 
rewards and penalty mechanisms alongside a high but reasonable deposit is excellently 
incentivizing good behavior. In such a situation, the median is more than robust in providing 
oracle users with accurate data. With increasing numbers of feed providers, one can expect 
robust data to consistently be provided even when some feed providers input wrong data.  

However as evident by famous cases of DeFi hacks and malicious attacks - such negative 
behaviors are possible and it is important to be able to categorize them and find solutions to 
develop a robust Oracle service. We can start to slowly look at the increase of malicious attacks 
in terms of percentages (i.e. 10%, 20%, etc), and understand the difference between several 
attacks with exact alignment in values and those without alignment in prices. 

The oracle will require tools, or tests, to be able to deal with these situations while also 
recognizing good data. In the following subsection we will start to understand the impact of 
malicious inputs on the median, the spread around the median and the characteristics of 
exchange data which we can categorize as honest feed providers. 

How malicious scenarios affect oracle data aggregation 

To demonstrate the robustness of the median for most scenarios it will encounter, we conduct 
a simulation study to understand at what point can the aggregated prices start to become 
dissimilar to market prices. Below we will see results from such a simulation where values from 
the uniform distribution replace a random subset of exchanges where each percentage 
indicates the number of exchanges taking in the simulated value 

(𝑓𝑙𝑜𝑜𝑟(𝑝 ∗ 𝑁)) 

This is run for three cryptocurrency coin data - Bitcoin, Litecoin and AAVE. The range of values 
being simulated differs for bitcoin and the other two where reasonable and intuitive ranges are 
chosen that can help differentiate the malicious effects without unrealistic extreme outcomes. 

𝑏𝑖𝑡𝑐𝑜𝑖𝑛𝑒𝑥𝑐ℎ! ∼ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(10000,150000) 

𝑙𝑖𝑡𝑒𝑐𝑜𝑖𝑛𝑒𝑥𝑐ℎ! ∼ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1000) 

𝐴𝐴𝑉𝐸𝑒𝑥𝑐ℎ! ∼ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1000) 



This will help in simulating an in-discriminant attack where the distribution will choose which 
side of the price it wishes to attack. This will be an assumption for the research methodology 
chapter. 

The numbers 1-6 below indicate 6 consecutive time points 

Bitcoin 
 

##   Good_data X10_per_Malicious_data X25_per_Malicious_data 
## 1  60597.06               60597.06               60592.44 
## 2  60858.67               60858.67               60862.96 
## 3  60804.61               60821.68               60829.05 
## 4  61026.20               61026.20               61026.20 
## 5  61704.20               61704.20               61716.72 
## 6  63038.00               63038.00               62989.24 
##   X50_per_Malicious_data X90_per_Malicious_data 
## 1               60596.27               60575.04 
## 2               60861.78              104821.94 
## 3               60828.78               91060.16 
## 4               61035.64               73215.59 
## 5               61704.20               67722.08 
## 6               62989.24               62926.35 

Litecoin 
 

##   Good_data X10_per_Malicious_data X25_per_Malicious_data 
## 1    189.24                 189.25                 189.29 
## 2    190.20                 190.17                 190.24 
## 3    189.35                 189.35                 189.35 
## 4    189.72                 189.72                 189.72 
## 5    190.80                 190.79                 190.80 
## 6    191.27                 191.27                 191.30 
##   X50_per_Malicious_data X90_per_Malicious_data 
## 1                 189.29                 478.32 
## 2                 190.24                 364.39 
## 3                 189.34                 391.25 
## 4                 189.71                 413.90 
## 5                 190.82                 464.25 
## 6                 191.30                 256.01 

AAVE 
 

##   Good_data X10_per_Malicious_data X25_per_Malicious_data 
## 1    309.62                 309.62                 309.62 
## 2    312.40                 312.73                 312.73 
## 3    310.79                 311.05                 310.72 
## 4    310.87                 310.87                 310.87 
## 5    312.75                 312.75                 312.75 



## 6    315.68                 315.78                 315.65 
##   X50_per_Malicious_data X90_per_Malicious_data 
## 1                 309.80                 567.85 
## 2                 312.77                 311.65 
## 3                 311.05                 310.72 
## 4                 310.87                 310.87 
## 5                 312.75                 675.24 
## 6                 315.78                 851.83 

Overall, we see a clear robust outcome from this study where the median can be relied on for 
the data aggregation process for a wide range of scenarios. A takeover can be considered to be 
when over 60% of the data are malicious and at this point, we observe significant differences 
between market prices and the simulated malicious aggregated value. To tackle such a 
situation, we must begin to understand statistically what characteristics constitutes “Good 
data”. 

Characteristics of cryptocurrency feed data 
 
MAD 

We will now start to calculate Median Absolute deviance (MAD) of inputs for each time point 
for Bitcoin data and plot the density plot to observe the distribution of the MAD to understand 
how the spread around the median changes over a reasonable time period. 

Below we see the spread of the real MAD values for several time points of Bitcoin exchange 
data. 

 



##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   9.414  23.261  36.816  45.223  54.661 173.030 

Bitcoin - 10% Malicious providers 

What does the distribution look like if three of providers are malicious? For a random subset of 
3 providers in the data, we will replace exchange data with a simulated value from the uniform 
distribution between 10000 and 100000 - all values equally likely to occur. 

 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   7.834  25.105  40.423  48.448  57.034 173.030 

The distribution is wider with a longer right tail with much more MAD values possible. 

Bitcoin - 25% Malicious providers 

What would the spread of the MAD values look like if we have 25% of the providers as 
malicious? As before - we simulate values from a uniform distribution and replace the values of 
the exchanges. In this scenario we have 7 random malicious providers. 



 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   7.834  25.105  40.423  48.448  57.034 173.030 

Bitcoin - 50% Malicious providers 

What would the spread of the MAD values look like if we have 50% of the providers as 
malicious? In this scenario we have 13 random malicious providers. 



 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   295.5  1135.6  1816.5  2907.2  3848.1 15969.4 

At 50% malicious providers - the effect is clear to see. Large uncertainty with a distribution that 
includes extremely large MAD values. 

Bitcoin - 90% Malicious providers 

We now attempt to modify 23 random providers at each time point into malicious providers. 



 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   24610   38224   42676   43111   49652   66184 

Here the effect is even more defined, we see a rough median of around 3000 with values seen 
in the best-case scenario extremely unlikely to happen. Unlike the median, the MAD becomes 
unusable after 25% takeover. Using thresholds based on historic good data however can help 
detect such behavior as soon as possible keeping the system robust. 

CV 

When looking at the prices at each time point for several exchanges, a pattern emerges that is 
specific for different cryptocurrencies. For example - for bitcoin - there is a known large 
discrepancy between exchanges in terms of prices due to trading volume differences. However, 
for other cryptocurrencies like AAVE and litecoin, prices are almost identical to each other. An 
oracle must be able to assess that both types of variation are acceptable. One metric that helps 
to generalize such a pattern is the coefficient of variation (CV) 

𝑠𝑑(𝑥)
𝑚𝑒𝑎𝑛(𝑥) 

where we look at the spread of the data relative to the average as a percentage. This helps to 
meaningfully compare variability between coins of different sizes and obtain a generalized 
threshold that helps the oracle to interrogate data at each time point. 

What CV value ranges do we get from the case study datasets? For bitcoin we can see values 
between 0.04% to 0.41% based on the exchange data and for Litecoin we observe values 



between 0.01% to 0.44%. Variation within the values at each time point is extremely small and 
similar. This is a useful fact to leverage against malicious data where we observe large increases 
in the variability of the data at 90%. 

Additional areas to pursue 

As part of our research, it is important to utilize the breadth of statistical methods available to 
help refine the oracle’s ability to aggregate good data. 

Another way of leveraging relative variation would be to use standardized scores where we 
scale feed data by centering using the mean and then standardizing so the overall distribution 
parameters for the data is mean 0 and standard deviation 1. This allows the oracle, in addition 
to the above methods to understand which feed input is straying away relative to the others. 
This can help in selecting the appropriate feed data to use as part of the aggregation process. 

Other methods under consideration that may have a big impact depending on the 
computational speed is to use a clustering algorithm such a k-medians with two clusters to help 
detect portions of bad and good data in situations of malicious attacks. Dependent on possible 
back testing to test which group contains the good data in addition to the above proposed tests 
will help the oracle to make good of a bad, but unlikely, situation to its’ advantage. 

  



Simulation 
 
Assumptions 
 
1. There's a true underlying value (say a price or a temperature) which takes a random walk 
with time (minute by minute). 
2. For every submission, an individual feed provider generates a submission by sampling from a 
Gaussian distribution with mean equal to the true underlying value and standard deviation 
depending on the 'quality' of the feed provider. 
3. Feeds providers are of varying 'quality'. A high-quality feed provider has a lower standard 
deviation and hence is more accurate on average compared to a low 'quality' feed provider. 
This quality / standard deviation remains constant for each feed provider with time. 
4. Every feed provider puts up a certain deposit as collateral. Each minute, the true value takes 
a random walk, feeds submit values according to the process described above and then these 
feed providers get rewarded and penalised by the oracle (which is going to be described later).  
5. The process above add maliciousness to the feed. To eliminate maliciousness in the feed, set 
the Acceptable MAD below to 0. 
 
The following parameters are required to run a simulation: 
 
1. nDays = number of days for which one wants to run the simulation (each day consists of 
1,440 data calls, i.e. once per minute). 
2. TVL = total value locked in the system 
3. nFeeds = number of feeds 
4. goalReturns = desired annual returns for a perfect feed provider 
5. acceptableMAD = acceptable mean absolute deviation 
6. nUsers = number of users 
7. badK = multiple of acceptableMAD beyond which a submission is considered poor enough to 
be penalised 
8. bigLossK = standard deviation of feed (as a multiple of the acceptableMAD) that should lose 
100% of its deposit annually 
 
Algorithm 
 
Every minute, all the feed providers submit data (or are queried for data). The median (M) of all 
submissions is computed. The fixed reward for a good submission is $R. The fixed penalty for a 
bad submission is $P. The methodology for calculating R and P is discussed later. 
 
Any submission within M +- acceptableMAD is considered worthy of reward. Each feed provider 
with such a submission is awarded $R. 
 
Any submission outside of M +- (badK * acceptableMAD) is considered worthy of penalty. Each 
feed provider with such a submission is penalised $P. 



All other feed providers get neither rewarded or penalised. This procedure repeats every 
minute with a new set of submissions from each feed provider. 
 
How are R and P calculated? 
 
R and P are calculated using the parameters of the model in such a manner that feed providers 
get annual returns dependent on our requirements.  
 
First, the deposit is calculated by dividing the TVL by nFeeds. Now, we want to set up R and P 
such that a perfect feed provider ends up earning around the specified goalReturns annually 
over the deposit, these returns get worse with declining feed quality and when the feed quality 
is bad enough for its standard deviation to be equal to bigLossK * acceptableMAD the feed 
provider loses 100% of its deposit annually. Using properties of Gaussian distributions for: a) 
goalReturns for perfect feed providers, and b) 100% loss for feed providers with standard 
deviation = bigLossK * acceptableMAD; we get two linear equations in two variables - R and P. 
Solving the two linear equations gives one the values of R and P for the set of parameters used. 
 
Upcoming work includes incorporating historical submission data to decide how much to trust 
each feed provider, and updating the model below to include non-linear equations.  
 
*Note: The simulation below uses a large amount of poor-quality feed providers. As mentioned 
in the introduction to this section, this research is being done with the assumption of a hostile 
environment (i.e. constant attacks on the data feeds). As we’ve seen 50% malicious feeds can 
still result in accurate values, the section below aims to show punishments can still be meted 
out appropriately.  
  



Simulation Scenarios 
 
nFeeds = 30 
Acceptable MAD:  2 
Range of quality/standard deviation of feeds: [0 - 0.5] 
 

 
 
Here we can see that when all the feed providers are honest, feed providers that fall closest to 
the median get rewarded higher, while no feed providers are penalized, although those with 
the further from the median are not rewarded as much.  
 
  



nFeeds = 30 
Acceptable MAD: 2 
Range of quality/standard deviation of feeds: 2 
 

  
 
When the range of the deviations of the submitted values is increased from 0.5 to 2, we can see 
those values near the edge of 2 are now being penalized, but up to 5% per year. These feeds at 
the tail end are still acceptable, but relatively poor quality.  
 
  



nFeeds = 30 
Acceptable Deviation: 2 
Range of quality/standard deviation of feeds: [0 – 5] 
 

  
 
Here we see a scenario in which about 40% of feeds are providing values outside the MAD. We 
are now beginning to see the limits of when the oracle can still function while being ‘fair’. Fair 
in this context means rewarding feeds with correct data and penalizing outliers. Poor quality 
values are not penalized as heavily as malicious data providers.  
  



nFeeds = 30 
Acceptable Deviation: 0-2 
Range of quality/standard deviation of feeds: [0 – 10] 
 

 
 
Once the feeds are submitting values falling way outside the acceptable MAD, we begin to see 
much heavier penalizations, but also rewards to very poor-quality data. This should indicate to 
the system that the data is unreliable.  
 
  



Initial Conclusion 
 
We the research above, we begin to get a picture of how a decentralized oracle can operate in 
a decentralized manner. The initial results indicate that with knowledge of a feed’s acceptable 
MAD, the system can tell when it has been corrupted; however, even when the system is 
compromised with up to 20-30% of bad feeds, it can still reliably provide correct data, while 
penalizing bad actors and removing them from participation. Thus, we can hypothesize that not 
only is taking the median value of majority honest feeds likely to produce and accurate value, 
but that using the MAD is a good measure to understand the health of the system. It means 
that an attacker would need to take over enough feeds so that they all provide a value that are 
corrupt, but still very close to each other. With a limit of 60 feed providers per feed, once the 
system is in an optimal state, this would be hard to accomplish.  
 
This research also allows the oracle to determine how much to reward honest users. When the 
arbitrary value of 20% profit of the deposit was chosen, it is clear that good quality feeds can be 
incentivized appropriately over a long time when providing good feeds. This is important 
because it allows the system to not provide excessive rewards, and not provide rewards that 
are not good enough. The profit and rewards may be tied to the value that the feed protect, 
and the value of the data being provided.  
 
Attack Vectors/Downsides 
 
The long con 
 
It’s not impossible that a single entity would choose to become an oracle to eventually defraud 
the system. For example, a sports feed provider might choose to reliably provide feeds all 
season during an NFL, and then provide incorrect values during one of the biggest betting 
events, the superbowl (aka the final game). One of the main defenses against this the 
aggregation feature. Since values such as sports scores have a MAD of 0, the attacker would 
have to first gain a super majority so that not only is the median 0 , but the MAD is also 
practically zero. Otherwise, the system would trigger the alarm by notifying smart contract, and 
possibly leaving it to the community to vote, and possibly slashing a large number of nodes.  
 
Quality feeds mixed with poor quality/malicious feeds. 
 
In a system where institutional grade feed providers are mixed with lower quality feed 
providers, the lower quality feed providers could reach a point where the system is corrupted, 
and institution grade feed providers that guarantee high quality data would be penalized. To 
get around this limitation, and to serve applications that cannot compromised on accuracy or 
speed, an additional layer of permission may be added – restriction access to feed providers of 
a minimum quality. This is discussed in the technical architecture section below.  
 
  



Technical Architecture 
 
To prevent a single point of failure, and to safeguard the system against malicious attackers, it’s 
important to ensure that the system is distributed. This essentially makes Algoracle an Asynchronous 
Byzantine system, and as such requires some form of a consensus protocol to ensure security. 
 
Each node should propose the median value it calculated from the data it aggregated from the feed 
providers, and the honest nodes of the system should agree on the value and assign that value onto the 
relevant smart contract. Certain feeds may not aggregate, and simply pass through the array of data, 
along with the source, and allow the consumer contract to handle their own aggregation. 
 
There are three main types of contracts for each feed. 
 
Feed contract 
 
This contract holds either the raw array values of the submissions, or the aggregated value of 
the submissions (depending on the type of feed). 
 
Reputation contract  
 
This contract holds the acceptable median deviation values for the feed, as well as the list of 
nodes authorized to submit values or run nodes. 
 
Payment contract  
 
This contract facilitates the payment and payouts of rewards, penalties, deposits, withdrawals, 
etc. 
 
Indexing Contract 
 
This contract is simply a map of addresses that points smart contracts to the relevant feeds that 
consumers are interested in.  
  



Decentralized Nodes 
 
Decentralized nodes oversee calling the API, then placing the data onto the smart contract. Essentially, 
they are the interface between FPs and on chain contracts. Each node will run code that will: 
 
A – Join the node cluster 
B - Call all the endpoints on the system, and possibly aggregate the results 
C – Run a VRF function to determine if it is the node selected to update the smart contract 
D – Broadcast the value and the result of whether it was selected to update the contract 
E – Nodes are then selected to vote to confirm the results (a subset of nodes are selected) 
D – The selected node(s) can then update the Smart contract with the agreed-on value 
 
The above methodology was inspired by the way Algorand chooses who commits blocks, and in fact uses 
the same open-source library that Algorand uses to select the ‘lottery winner’ that will propose the 
value, the voters who will vote on the proposal, and the certifiers before the values are written to the 
smart contract. 
 
Joining the node cluster 
 
Algoracle plans to use a tool such as serf for cluster membership and failure detection; a tool that is 
decentralized, fault-tolerant, and highly available. Serf is based on a gossip protocol, like Algorand and 
other blockchains. Nodes are required to pay the deposit, and then use their private keys to sign 
messages. Node members obtain a list of verified members from the reputation smart contract.  
 
Membership 
 
The node cluster members will always be known to each other, and every time the membership 
changes, a custom handles script is executed. This will help keep track of the number of nodes. 
Membership will also include failure detection, as nodes must exit the cluster gracefully (by notifying of 
withdrawal), so the cluster does not reconnect to the node. 
 
Custom Event Propagation 
 
Events (aka messages) are broadcast to the cluster whenever a new round begins. A new round begins 
after a predetermined amount of time. When accepting messages from other nodes, there are two 
distinct checks that are done by each node: 
 
1 – Stateless Check: a set of checks on the message to ensure its valid. (e.g., valid hash of aggregated 
values, structure of message, duplicated messages, values aggregated are within the MAD etc.). 
2 – Sortition Proof: a check to confirm that the sender is part of the list of verified nodes allowed to 
gossip on the network. 
 
These two checks are to ensure that nodes have paid the deposit and are propagating valid data.  
 
  



Aggregating the results 
 
Valid nodes will call API endpoints using their signature. API providers documentation will show the 
providers how to validate the signature. This ensures the safety of the provider’s API data source, by 
ensuring only validated nodes can make calls to it. Next, nodes can either aggregate the data, or add the 
raw data into an array for consumers to aggregate themselves (or select from a specific source) 
depending on the feed type.  
 
Selection Proof 
 
Like Algorand, Algoracle nodes run a cryptographic sortition algorithm to determine the nodes that will 
a) propose the value(s) to commit to the smart contract, b) vote that the value is legitimate and c) 
certify the values for addition onto the smart contract.  
 
The sortition algorithm used is the open-source library that Algorand uses10. Each node generates a 
pseudo-random number with their secret key and generates a proof in addition to the random number 
using the previous value of the median for that feed as the seed and propagates that value to other 
nodes. Each node then runs a verification algorithm with the random number, public key, proof, and 
seed to confirm who was selected as proposers, voters, and certifiers. 
 
Nodes will communicate with 30-40 of their peers, and only propagate valid messages. For a price feed 
that gossips every 30 seconds to 4000 nodes, nodes should reach a majority agreement (66.6%) and 
write to the smart contract within 17 seconds, even if 10% of nodes are down and a 25% packet loss. 
97% agreement would be reached in under 30 seconds (see figure below). 
 

 
10 Libsodium - https://github.com/jedisct1/libsodium 



 
 
Updating the value 
 
Once the nodes reach agreement, the value proposer(s) would then be given the rights to 
update the smart contract global state with the agreed-on value.  The smart contracts method 
of Algorand allows for complex functionality by combining the functionalities of Rekeying, Logic 
signatures and multi-signatures. 
 
The process above repeats indefinitely.  
 
 
  



Attack Vectors 
 
Free loading 
 
It’s possible that a node pays the deposit, joins the network, and instead of pulling and 
aggregating from APIs, decides to simply act as a relay node by copying the messages sent to it. 
This would have the effect of at worse, exacerbating bad feeds in a low-quality environment, 
and at best, lowering the MAD of the feeds to slight favor the value replicated (in a situation 
where a subset of APIs are called by the feed providers). Although calling the APIs and 
aggregating the data is computationally trivial task, and there’s little to gain by free loading, it 
should be planned for as attackers may get creative in how the values are free loaded. As such, 
one method is rather than transmitting the raw values, to transmit hashes with cryptographic 
signatures that would be verified by other nodes. This would allow the data to remain only 
known to valid nodes who are authorized to call the APIs with their API keys, until the value is 
written to the smart contract.  
 
Ddos 
 
A distributed denial of service occurs when malicious or unauthorized nodes connect to a 
network and send unauthorized messages in order to slow down the system. Because each 
node’s message would not be passed on, it would take a significantly large number of nodes to 
attack the system. Furthermore, the size of the messages should be limited to 1-2 kb, and 
messages larger than that should automatically be ignored. Nevertheless, it is a real possibility 
of such an attack carrying out in order to delay a feed such as price feed from carrying out their 
duties. This is a common attack vector that even the Algorand blockchain is susceptible to. 
 
In such a situation, a successful attack may bring down 90% of the network, and result in the 
remaining 10% of nodes dropping 50% packets. This would lengthen then time for the majority 
agreement from 17 secs to about 300 secs (about 5 minutes).   



 
 

For a worst-case scenario, this would require significant resources, while delaying feeds that 
report in 30 seconds to around 5 minutes. An attacker might find this useful if they have some 
knowledge about an assets performance in that 5 minute time period, but ultimately, once they 
system figures out who malicious nodes are, the attacker would then have to try again with a 
new set of resources. Ultimately, as any blockchain can attest to, a decentralized system is very 
hard to secure 100%, and the best most can do is require significant resources to corrupt for a 
smaller reward to be gained. 
 
Smart contract hijacking 
 
Because access to sign and update contracts would be granted the certifiers and proposers, a 
malicious node selected would need to both be randomly selected for multiple roles, which is 
improbable with a high number of nodes. Also, because the payment and rewards smart 
contract is a separate and tamperproof contract, when the next round of nodes attempt to 
write to the contract are locked out, this would trigger an immediate forfeit of all the staked 
tokens, and since the attacker would need to be controlling 5-8 malicious nodes, the penalty is 
multiplied. For a node system of several thousand nodes, it would be very costly to hold a large 
enough nodes that all the attacker’s nodes are selected in the proposal, voting and certification 



block, and even larger still to prevent those nodes from getting slashed. And in the event of 
such corruption, the devaluation of the Algoracle token used to stake for the large number of 
nodes they have may be far greater than the value the stand to profit.  
 
Bounty Program 
 
In addition to the security considerations above. Algoracle also proposes a ‘Bounty Program’ as 
an additional layer of security, as well as an element of gamification and source of rewards for 
the community.  
 
We except the bounty program to incentivize non stakeholders, as this adds an element of 
gamification. Members of the crypto community generally participate in staking and reward 
games, and this offers non-technical users a chance to earn rewards generally only available to 
technical people who can run nodes or individuals who can stake large amounts of tokens. It 
may also be possible for technical users being able to build bots to find bad feeds. 
 
Note, we believe the Bounty program to be the ‘last mile’ of security, one where most feeds are 
already honest, and to be used as a deterrent against new feeds who join to slowly corrupt the 
network by modifying the MAD over a period of time without the system noticing.  
  



Updates That will be added in v0.3 
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