2006.00888v2 [cs.DB] 22 Feb 2021

arxXiv

ValueNet: A Natural Language-to-SQL System
that Learns from Database Information

Ursin Brunner
ZHAW Zurich University of Applied Sciences
Winterthur, Switzerland
Ursin.Brunner @ zhaw.ch

Abstract—Building natural language (NL) interfaces for
databases has been a long-standing challenge for several decades.
The major advantage of these so-called NL-to-SQL systems
is that end-users can query complex databases without the
need to know SQL or the underlying database schema. Due to
significant advancements in machine learning, the recent focus of
research has been on neural networks to tackle this challenge on
complex datasets like Spider. Several recent NL-to-SQL systems
achieve promising results on this dataset. However, none of
the published systems, that provide either the source code or
executable binaries, extract and incorporate values from the user
questions for generating SQL statements. Thus, the practical use
of these systems in a real-world scenario has not been sufficiently
demonstrated yet.

In this paper we propose ValueNet light and ValueNet -
two end-to-end NL-to-SQL systems that incorporate values using
the challenging Spider dataset. The main idea of our approach
is to use not only metadata information from the underlying
database but also information on the base data as input for our
neural network architecture. In particular, we propose a novel
architecture sketch to extract values from a user question and
come up with possible value candidates which are not explicitly
mentioned in the question. We then use a neural model based
on an encoder-decoder architecture to synthesize the SQL query.
Finally, we evaluate our model on the Spider challenge using the
Execution Accuracy metric, a more difficult metric than used by
most participants of the challenge. Our experimental evaluation
demonstrates that ValueNet light and ValueNet reach state-of-the-
art results of 67% and 62% accuracy, respectively, for translating
from NL to SQL whilst incorporating values.

Index Terms—NL-to-SQL, natural language interface, neural
networks, transformers

I. INTRODUCTION

Building NL-to-SQL systems is a long-standing challenge
in both the database and the natural language processing
community. Being able to query databases and other structured
data in natural language gives users without knowledge in
a query language access to a large amount of information.
Therefore, a natural language interface has often been regarded
as the most powerful database interface [27].

At the same time proprietary systems such as Google’s
Assistant or Amazon’s Alexa are improving the way users
can access large knowledge bases with natural language. It
is therefore an integral focus of any open data effort to offer
users a similarly convenient interface to query data by natural
language.

Kurt Stockinger
ZHAW Zurich University of Applied Sciences
Winterthur, Switzerland
Kurt.Stockinger @zhaw.ch

Question:
How many pets are owned by French students that are older than 207
Schema:

Pet Has_Pet Student

pet_id stu_id
1 0..% 0..*
age 1 pet_id

weight ‘

stu_id

name
purchasing_date

age

home_country

Query: Result: 3

SELECT count(T2.%)
FROM student AS T1
JOIN has_pet AS T2 ON T1.stuid = T2.stuid
WHERE T1.home_country = ‘France’
AND T1.age > 20

Fig. 1. A typical NL-to-SQL system synthesizes and executes a SQL query
given a natural language question and a database schema. Besides synthesizing
a valid SQL sketch (non-highlighted words), the system has to select the
correct tables (green), columns (red) and values (blue)

In Figure [I] we see the typical NL-to-SQL flow: Given a
natural language question and a database schema, the system
has to synthesize a valid SQL query. Once executed, this
query should return the answer the user was looking for. Let
us consider the query How many pets are owned by French
students that are older than 20?. This example shows some
of the challenges that such a system is confronted with. The
fact that “older” is most probably referring to the column
age (in the Student table rather than in the Pet table!) cannot
be directly extracted from the question. The same principle
applies to the fact that ”French students” most probably refers
to an entry of the column home_country containing the value
”France”. In other words, the token “French” of the natural
language question does not directly map to a value in the
base data of the underlying database. The latter challenge is
the focus of our paper, i.e. how to build an end-to-end neural
architecture that takes values into account.

The goal is to generate complex, nested SP SQL state-
ments including WHERE-clauses. The WHERE-clauses are
constructed by predicting the correct table, column and base

ISelect-Project-Join

data value (e.g. student.home_country = ’France’) that corre-
spond to the respective value in the natural language question
(e.g. "French students”). We will see below that taking values
into account has so far received little attention from the current
state-of-the-art of neural network-based NL-to-SQL systems.

The release of Spider dataset motivated several research
groups to provide contributions in 2019/2020 and has be-
come the de-facto standard for evaluating NL-to-SQL systems.
While classical neural architectures [[13]], [39]] achieved rather
low accuracy scores on the Spider leaderboar(ﬂ (4.8%, 12.4%),
more advanced approaches like IRNet [16] and RAT-SQL [36]]
score significantly higher with accuracies over 60%.

The Spider challenge was released with two evaluation
metrics and leaderboards:

o Exact Matching Accuracy: The metric measures if a
predicted query is equivalent to the gold query. Thanks
to its smart component matching, this metric is tolerant
towards ordering issues (e.g. SELECT A, B vsSELECT
B, 2).Unfortunately though the metric does not evaluate
values such as “French” or 20 in Figure [T - which
is essential in real-world scenarios. In other words, this
metric only considers the schema of the database and not
the base data. The reason is that queries do not need to
be executed against a database for this type of evaluation.

o Execution Accuracy: Measures if the results of both
predicted and gold query are the same by executing them
against a real database. To pass this evaluation, a NL-
to-SQL system not only has to predict the correct SQL
sketch and select the right tables/columns, but has also
to identify the correct values and place them in the right
order.

As of today, most Spider contributions focus on the Exact
Matching Accuracy evaluation (see “Leaderboard - Exact Set
Match without Values). While a good score on this leader-
board is definitely an achievement (it requires a system to
predict a complex SQL-sketch and select the right tables and
columns), it is still a simplification of a fully fledged NL-to-
SQL system. It does not address the challenging task of gen-
erating and selecting values and it still abstracts from several
other difficulties addressed throughout this paper. Although
there are a few contributions on the Spider leaderboard that
evaluate their systems based on the more complex Execution
Accuracy (see “Leaderboard - Execution with Values™?), there
is currently no published paper or published source code avail-
able. Hence, there is currently no description and systematic
evaluation of a neural network-based system for the Spider
dataset that translates natural language to SQL and takes values
into account.

In this paper we make the following contributions:

« To the best of our knowledge, we provide the first detailed
discussion as well as the source code of an NL-to-SQL
system to synthesize a full SQL query including values on
the challenging Spider dataset using Execution Accuracy.

Zhttps://yale-lily.github.io/spider (last accessed on Oct 8, 2020)

Our approach is thus a step forward in building an end-
to-end-system to generate complex, nested SPJ-queries
that are typical of real-world scenarios. By providing the
source code, our approach is also reproducible - which is
often difficult to achieve when systems do neither provide
the source code nor executable binaries. We achieve a
state-of-the-art accuracy of up to 67% on the Spider
dataset using the more challenging Execution Accuracy
metric.

o We provide two novel NL-to-SQL architectures: (1) Val-
ueNet light - A system which selects the correct values
from a given list of possible ground truth values and then
synthesizes a full query including the chosen values. (2)
ValueNet - An end-to-end architecture which extracts and
generates value candidates given only natural language
questions and the database content. ValueNet then uses
these value candidates to synthesize a full query including
values equivalent to ValueNet light.

e We show that the difference in performance between
ValueNet and ValueNet light is relatively small given a
strong generative approach for the candidate generation.
This indicates that if we come up with the right value
candidates, the neural model is capable of selecting them
correctly.

The paper is organized as follows. In Section 2 we define
the problem of NL-to-SQL in more detail. In Section 3 we in
describe the high-level architecture of our NL-to-SQL system.
In Section 4 we discuss the detailed architecture with focus
on ValueNet light and ValueNet. Our experimental results are
given in Section 5. In Section 6 we review the related work.
Finally, we draw conclusions in Section 7.

II. PROBLEM DEFINITION

A. Intermediate Representation via Abstract Syntax Tree

Before we introduce our end-to-end architecture for trans-
lating from natural language to SQL, we describe the concept
of Abstract Syntax Trees (AST). The idea is to use ASTs as an
intermediate representation in the overall translation process -
rather than translating directly to SQL. The advantage of using
an AST as an immediate representation is to overcome the so-
called mismatch problem [16], where end-users rarely pose a
question as detailed as necessary in order to directly synthesize
a SQL query. Therefore, abstracting the details of SQL enables
the system to understand the question/SQL query pairs more
reliably as shown previously [7]], [17]. Another advantage is
that an intermediate representation enables the system to be
independent of a specific query language.

For our approach we do not create a grammar for such
a representation from scratch, but extend the context-free
grammar SemQL of IRnet [|16]. We call our extended version
SemQL 2.0.

Figure [2] shows the complete grammar for SemQL 2.0
that can handle the major relational operators such as select,
project, join, union, intersect as well as aggregations and
complex, nested queries. We extend the grammar introduced in

IRnet [|16] mainly by the value representation V - highlighted
in the figure in green.

Z ::= intersect R R | union R R |
except RR | R

R ::= Select | Select Filter
Select Order | Select Superlative |
Select Order Filter
Select Superlative Filter
Select ::= distinct N | N
N::=A | AA|AAA | AAAA | AAAAA
Order ::= asc A | desc A
Superlative ::= most V A | least V A
Filter ::= and Filter Filter | or Filter Filter
=AV | =AR | =AV | AR
<AV | <AR|>AV | >AR
sAV | AR | 2AV | 2AR
between A V V | between A R
in AR | not in AR
A ::=max CT | min CT | count CT | sum C T |
avg C T | CT
C ::= column
T ::= table
V ::= value

Fig. 2. SemQL 2.0 Grammar. Our contributions to the previously published
SemQL 1.0 grammar are highlighted in green. The identifiers to the left of the
::= represent all possible actions in the grammar. Italic tokens represent SQL
operators or references to tables/columns/values. The pipe separates different
implementations of an action.

B. Problem Statements: NL to AST to SQL

Given the grammar of SemQL 2.0, we will now describe the
problem statements for translating a natural language question
(NLQ) to SQL using a supervised machine learning approach
such as neural networks. In particular, we can distinguish
between two types of sub problems: (a) NLQs that require
synthesizing a SQL-statement by predicting only information
that is contained in the database schema, i.e. tables and
columns. (b) NLQs that require synthesizing a SQL-statement
by predicting also values that are contained in the base data.
In summary, the set of options for prediction in problem (b)
is much larger than in problem (a).

Let us define the term set of options for predicting matching
tables, columns and values using our running example query
How many pets are owned by French students that are older
than 20?. The set of options for predicting tables corresponds
to the total number of tables contained in the database schema.
For instance, in our example shown in Figure[I| we have three
tables. The set of options for predicting columns is the total
number columns of the database schema — which is 10 in our
example. However, the set of options for predicting values
cannot just be looked up in the database schema. Here, we
potentially require an inverted index over each column of the
entire database. Since the number of values is far greater than
the number of tables and columns, predicting the right value
is a computationally more complex problem than predicting
the right table or column.

1) Predicting Columns, Tables and SQL-Sketches: For
predicting columns and tables, the set of options is given by
the database schema. In principle, one can simply provide all
table names and column names as input to a neural network
such that it can learn the mapping between the question tokens
and the database schema. As an example, have a look again at
Figure [I] During the training phase, the neural network learns
that the question tokens “older than” should be mapped to
column age rather than e.g. to stu_id.

After predicting tables and columns, the next step is to
predict a SQL-sketch which works slightly differently than
predicting tables and columns. Although the neural network
chooses from a finite set of options, this set changes dynami-
cally. As an example, assume that the last chosen action in the
SQL-sketch is an Order action. By definition of the SemQL
2.0 grammar (see Figure [2), the only possible options now
are action asc A and desc A. The neural network can therefore
only choose from options given by the SemQL 2.0 grammar.
These options dynamically change depending on the preceding
node in the SemQL 2.0 tree.

“How many pets are owned by French students that are older than 20?”
“Find all female students who study ‘biology’ as their major.”
“Report the total number of students for each fourth-grade classroom.”

@ =

Fig. 3. Three examples of values (blue) which are typically not directly
derivable from the text. The yellow values, on the contrary, are directly
derivable from the text.

2) Predicting Values: In contrast to predicting columns,
tables, and SQL-sketches, no fixed set of options exists for
values. While one could assume that all possible values are
contained in the question, this is not always the case. In Figure
we see three examples of values which are not typically
directly derivable from the text. The terms French students are
most probably referring to a student with the home country
France. The term female might refer to students whose gender
is equal to 'F’ and the fourth-grade classroom might refer to
a table classroom with grade 4.

1. “Find all routes that have destination John F Kennedy International
Airport with a duration of more than 6 hours.”

2. “Which start station had the most trips starting from the 9th of August
20107 Give me the name and id of the station.”

Fig. 4. Examples of values which result in a large number of possible value
candidates.

Even in cases where all information is available in the
question, there is often a large number of possible candidates
for a given value. In Figure 4] we see two such examples
where a natural language question can have a large number of
possible value candidates contained in the base data. While
John F Kennedy International Airport definitely refers to a
column containing airports, we have no idea how this value
is stored in the database. It could be anything from JFK over

John F Kennedy to the full term John F Kennedy International
Airport. Similarly, we do not know how the date in the second
example, i.e. 9th of August 2010, needs to be formatted to
match the given value in the database, which could be stored
as 72010-08-09".

The challenge in all these examples can be reduced to one
single problem: unlike columns, tables, and SQL sketches, we
do not know the set of options for a given value.

III. VALUENET: HIGH LEVEL ARCHITECTURE

In this section we describe the high level architecture of
ValueNet to translate a natural language question to SQL.

[Database SchemaJ [Database ContentJ

¥ A 4

Pre-Processing ‘

Question

Encoder

¥

[SemQL (SQL Sketch, chosen Columns/Tables/Values) }

Neural Architecture
21Nj09)1Y0lY [BINBN

1 1
1 1
1 1
1 1
1 1
1 1
1 Decoder !
1 1
1 1
1 1
1 1
1 1
1 1
1

‘ Post-Processing ‘

[e)

‘ Query-Execution ‘

(]

Fig. 5. ValueNet Architecture Overview.

Figure [5] shows the end-to-end process of our NL-to-SQL
system. As input our system expects a question in natural
language, the schema of the database, and access to the content
of the database, e.g. via an inverted index as used in [4]. The
output is a SQL statement, that once executed, returns the data
the user asked for.

We will elaborate the steps of our architecture based on the
initial example in Figure [T| with the question How many pets
are owned by French students that are older than 20?

Note that previously published systems that were evaluated
against the Spider dataset did not incorporate values such as
“French” or ”20”. However, these systems would simply fill
in a placeholder value (e.g. 'I’) for each value, as the Exact
Matching Accuracy of Spider does not validate values.

A. Pre-Processing

During pre-processing we try to achieve two tasks: The first
task is to come up with good value candidates, which we
describe in detail in Section The second task is to come
up with useful hints for predicting tables, columns and values.
These hints are made available to the neural network, i.e. the

subsequent components of our architecture, as an additional
source of information besides the natural language question
and the database schema. The intuition of this process is
to give the neural network model "hints” which are easy to
establish (e.g. by looking at the database content) and support
it to take the correct decision when predicting SQL columns,
tables, SQL-sketches and values.

1) Question Hints: For each token in the question we try
to figure out if it refers to a table, a column, a value, an
aggregation or a superlative. See Figure [6] for an example on
how we classify the tokens of a question. The intuition behind
this is that those tokens are probably the most important ones
when synthesizing the query.

For now we do not use any advanced NLP methods to find
matches between question tokens and schema information -
we simply apply stemming to all words and look for exact
matches. This process can be improved as part of future work
by using word embeddings and other advanced techniques.
Keep in mind though, that this pre-processing is just a simple
way to provide prior knowledge to the neural model. More
complex relationships, like e.g. the fact that the token older
in Figure [6] refers most probably to the column age in table
Student, are established by the encoder part of our neural
network.

Superlative

Aggregation
Value X X
Column
Table X X

How many pets are owned by French students that are older than 20?

Fig. 6. Classify question tokens by finding matches in the schema (for
columns/tables) or database content (for values).

2) Schema Hints: Schema hints are basically the inverse
version of the Question Hints. We want to know if a column
or table has been mentioned in the natural language question.
Again, the intuition is to give hints to the neural network about
the importance of a column/table. See Figure [7]for an example.
If a table or a column matches exactly with a token in the
question (e.g. in Figure[I|for “pet” and ”student”) we classify
it as an exact match. If it is only a partial match (e.g. for the
token “pet” and table Has_Pet), we classify it as such. A
special case is the class value candidate match: We apply this
class if a value candidate has been found in the database in a
specific column. As an example take the value token ”20” of
our running example. As we found it in column Student.age,
we classify this column as a value candidate match.

B. Neural Architecture

The next two process steps, Encoder and Decoder, are what
we call the Neural Architecture. This component is the core
of our NL-to-SQL system. As input it receives the question,
schema and hints from the pre-processing step and synthesizes
a query represented in SemQL 2.0.

Value Candidate Match X X
Exact match | X X

Partial match X

‘ Pet | Has_Pet | Student | P.age | P.weight | S.age | S.home_country

Fig. 7. Schema Hints, based on matches between tables/columns and the
tokens in the question. This example refers to a subset of the schema in
Figure [T]

In particular, the encoder tries to encode information about
the question and the schema into a low dimensional space.
Based on the encoded information, the decoder then tries to
synthesize a valid query step by step. Applied to our example,
we want the Neural Architecture to learn that e.g. “How
many” should be translated to SELECT count () and that
the word “older” should refer to the column Student.age.

1) Encoder: Our encoder is based on a pre-trained trans-
former architecture [33|] which is used in most recent NL-
to-SQL systems [16], [20], [36]. Transformer architectures
have been used for different tasks such as natural language
translation [33]], natural language generation [28]] and recently
also for entity matching as part of data integration [6]. The
intuition is that such attention-only architectures of trans-
formers generate better representations of natural language
sequences than classical recurrent neural networks (RNN).
Hence, transformer architectures often yield better results on
many natural language processing tasks than conventional
neural networks.

Our encoder is an extension of IRNet’s encoder. The main
difference is that our encoder receives not only information
about the database schema but also value candidates, extracted
from the database content. Hence, our encoder can also learn
correlations between tokens of an NL question and the actual
values in the database.

2) Decoder: The decoder receives the
question/table/column/value-encodings from the encoder
as input and outputs a query represented as an AST. The
decoder consists of an LSTM architecture [18]] in combination
with multiple Pointer Networks [|34]] to choose tables, columns
and values.

C. Post-Processing

The post-processing step is mainly a deterministic
SemQL2.0-to-SQL transformation. We also have to incorpo-
rate the selected values, which we will explain in more detail
in Section [[V1

1) Translating SemQL2.0 to SQL: Transforming
SemQL2.0 to SQL is done by traversing the SemQL2.0
syntax tree from its root to leaf nodes. Most actions of the
SemQL2.0 grammar can be transformed directly to their SQL
equivalent.

2) Handling Relationships: Note that the original SemQL
does not know about relationships but only about tables used
in Filter, Select, Order and Superlative actions. The reason
for this design choice is the fact that users most likely do

not mention all the required tables in their questions. As an
example take the database schema in Figure [I| When a user
poses the question "Give me all student names with pets older
than 14 years”, she mentions the tables Pet and Student as she
needs them for Filtering and Selection. She will though most
likely not mention the bridge table Has_Pet.

However, a proper SQL query needs to join all mentioned
tables by using the bridge tables. A common approach is to
transform the database schema into an undirected graph, where
the vertexes are tables and edges are primary-key/foreign-key
relationships. One can then build up all JOINs deterministi-
cally by finding the shortest path between two known vertices
(tables) by e.g. using the Dijkstra algorithm. As soon as we
deal with more than two tables, an approximation algorithm
for the Steiner tree [44] problem will solve the problem of
connecting all N vertices by the shortest path even more
elegantly.

Unfortunately, we found this approach to be too simplis-
tic when we switched to the Spider Execution Accuracy
metric. Note that the Exact Matching Accuracy does not
validate which columns are used to join two tables. It is
enough to correctly predict the tables of the join without
specifying the ON clause (e.g. A INNER JOIN B instead
of A INNER JOIN B ON A.A = B.A), which is the ap-
proach used by IRNet.

Obviously this does not hold true anymore when executing
queries using the Execution Accuracy metric as we do. Here,
leaving out the join restriction results in a cross join yield-
ing a Cartesian product of all rows. We therefore extended
the schema graph by incorporating the primary/foreign key
columns for each relationship edge.

IV. VALUENET - DETAILED ARCHITECTURE

In this section we introduce ValueNet light and ValueNet
— two novel NL-to-SQL systems which learn from database
information by considering both the database schema and
the base data. While ValueNet light assumes that a set of
value options is provided, ValueNet builds up a set of options
by itself. The main contributions of ValueNet and ValueNet
light are a novel pre-processing approach and an enhanced
encoding step (see architecture in Figure [3).

A. ValueNet light

Let us assume the true values in the database in the first
sample sentence of Figure] are "JFK’ and '6’. If we had
an oracle that provided us a set of options with these values,
our neural model would only have to pick the right value at
the right time when synthesizing a query. This would work
because the encoder most probably establishes more attention
between John F Kennedy International Airport (the tokens in
the natural language question) and JFK (the value option from
the oracle) rather than between John F Kennedy International
Airport and '6’.

This is what we do with ValueNet light. We assume that all
values of a query have been established upfront and are now
available as a set of options. How to establish the values is

not part of ValueNet light. One possible way to accomplish
this, as the authors of Spider suggest [43]], would be to interact
with the user in a question-answer conversation flow in order
to establish all needed information for a query.

For all experiments with ValueNet light we compile the set
of value options from the ground truth for each given example.
This approach complies with the Execution Accuracy metric
of Spider. ValueNet light then encodes all these values as part
of the input as visible in Figure [§] (blue value encodings). For
instance, the (blue) values "JFK”, “Flight”, and “Destination”
have established a strong connection (attention) with the
question tokens “flights”, “destinations” and “kennedy”.

In the next step, the neural model selects the right value
encodings while synthesizing a query.

In the deterministic post-processing step we format the value
given the predicted data type of the column. If the column is,
for example, of the type text, we add quotes to it. If it is of the
type integer, we make sure a floating point is not provided.
In the case that the SQL sketch predicts a Filter action of
type like, we further extend the value with the SQL wildcard
character %.

B. ValueNet

In contrast to ValueNet light we propose with ValueNet
an end-to-end NL-to-SQL system which solves the harder
problem where no value candidates are given upfront. To come
up with value candidates we propose an architecture sketch
consisting of the following steps:

o Value Extraction: Extracting values from the question by
using named entity recognition (NER) and heuristics.

e Value Candidate Generation: Generating value candi-
dates by searching similar values in the database and by
manipulating the extracted values (e.g. n-grams).

o Value Candidate Validation: Reducing the set of value
candidates by looking them up in the database.

e Value Candidate Encoding: Encoding the remaining can-
didates together with information about the tables and
columns they have been found in. This is then the input
for the neural architecture.

o Neural Architecture: Continuing similar to ValueNet light
based on the architecture described in Section

We will now explain these steps in more detail.

1) Value Extraction: Given a natural language question,
we use two different named entity recognition (NER) models
to extract potential values. As a first approach, we implement
a custom NER model based on a transformer [33]] architecture
leveraging the popular Transformers [38] library. As a second
approach we use a commercial NER AP]EI

While a custom NER model has the advantage of being able
to fine tune on specific domains or datasets, this approach
poses the danger of overfitting on certain types of values.
Using a commercial NER API reduces this risk, though
obviously at the danger of worse results, as it is not specifically
trained to the task at hand. Alternatives to this NER API are

3https://cloud.google.com/natural-language/docs/analyzing-entities

other popular off-the-shelf libraries for NER as e.g. the SpaCy
[19] EntityRecognizer.

In addition to a stochastic NER model we suggest deter-
ministic heuristics to extract some types of values. We use
the following three simple heuristics to identify candidate
values: (1) Content in quotes: e.g. Whose head’s name has
the substring 'Ha’?. (2) Capitalized terms: e.g. Show all flight
numbers with aircraft Airbus A340-300. (3) Single letters: e.g.
When is the hire date for those employees whose first name
does not contain the letter M?

While a custom NER model can easily be trained to detect
these types of values, heuristics allow for augmenting the
results of an off-the-shelf solution.

2) Value Candidate Generation: After extracting values
from the question, we need to generate value candidates.
While for numeric values the extracted value itself is most
likely the only necessary candidate, the process of value
candidate generation is essential for all text-based value types.
For ValueNet we implemented three simple methods of value
candidate generation — one based on string similarity, one
based on handcrafted heuristics and one based on n-grams.

Generating value candidates through similarity to existing
values in the database is trivial in theory but challenging to
implement efficiently. To measure similarity between a text
value extracted from the question and values in the database,
one can use either classical text distances [35]] or distances
based on word embeddings [25]. One then only has to scan the
database for values with a similarity above a certain threshold.

The need for an efficient implementation stems from the fact
that this pre-processing step has to be executed at inference
time of each question and its complexity is bound to the size
of the database. As the users are, at that point, actively waiting
for an answer, the generation of candidates should ideally take
less than a second. By using smart indexes and computation-
ally cheap methods for blocking/indexing [8]], this effort can
be optimized. We further use the Damerau—Levenshtein [9]
distance to measure similarity between tokens because of its
good trade-off between accuracy and run time.

A second way to generate value candidates is through
handcrafted heuristics. This is necessary due to the fact
that databases have a specific (but reoccurring) approach to
implement certain data types. We currently use the following
heuristics: (1) Classic gender values, for example, are often
implemented as a VARCHAR(1) column with content 'F’
or 'M’. (2) Boolean data types are often implemented by
a numeric column with value O and 1. (3) Ordinals as e.g.
in ”...fourth-grade students...” are usually implemented as an
integer column. (4) Months (e.g. August) are often part of a
full date column. By using a wildcard (e.g. 8/%) once can find
them.

While such simple handcrafted heuristics do not generalize
to every database, they are a good starting point to bootstrap
a generative model which learns such patterns in a more
dynamic way.

A third approach for value candidate generation is to use n-
grams. We use this technique for all extracted values with

https://cloud.google.com/natural-language/docs/analyzing-entities

Y

T

(om0,)0, |)[e, | o, [) oo) oo)

Encoding V, Encoding V,

111111111[111”1”11

Transformer Encoder (e.g. BERT)

1T 1T 1T T 1T 1T 1 1T 1T 1T 1 1 1

E E E E E E, E,

NN N N

E

E, E, E, E

|

“ |

VA

S C O

(o e 1o o Y o) e) e) B)))) o ()

Fig. 8. Encoding of value candidates and question. The black connectors on top visualize the attention built up during encoding between question tokens and
the actual values in the database. The large blue value encodings at the output of the encoder visualize the summarizing of a value together with its location
(in a certain table column) by an LSTM. The encodings of columns and tables have been omitted for better readability.

more than one token. For example, a value like ’Kennedy
International Airport’ generates one trigram, two bigrams, and
three single words as value candidates.

3) Value Candidate Validation: Depending on the (1)
similarity thresholds, the (2) number of values extracted from
the natural language question, and the (3) total number of
values in the database, candidate generation might result in a
large set of potential candidates. As we see in the experiments
for ValueNet light and ValueNet in Section [V] the number of
candidates has a direct impact on the accuracy of the model -
too many of them makes it harder for the model to choose the
correct one. We therefore use the content of the database again
in order to reduce candidates. In contrast to Value Candidate
Generation we do not use similarity metrics, but rather require
exact matches.

It is important to understand that we cannot validate all
candidates in that way. Consider the following two examples:
’List the top 3 albums of Elton John in the Billboard charts’
and 'Find all albums of Elton John starting with ”goodbye”’.
In these cases, we would not find '3’ or “goodbye” in the
database. In the first example, the value 3 is not part of the
database but is used in the SQL query to limit the results. In
the second example the token “goodbye” requires a wildcard
match. Unfortunately, a wildcard match is not sufficient to
validate a candidate, as it will provide too many false positives
due to its flexibility. We therefore exclude numeric values and
values extracted from quotes from the validation against the
database.

During Value Candidate Validation we also register in which
table and column a value candidate is found.

4) Value Candidate Encoding: All steps so far serve the
purpose of establishing a solid set of value candidates as input
to our neural architecture. It is after all the neural network
that decides which value to choose. The pre-processing only
fulfills the purpose of extracting and generating reasonable
candidates.

The candidate encoding works similarly to the encoding of
tables and columns. However, here we encode the location (i.e.
table and column) where we found a candidate together with
the value itself.

As an example consider the question "Show me all flights
with destination Kennedy airport” in Figure [§] The value we
are looking for is "JFK”, which is contained in table Flight,
column Destination. At the same time the term “Kennedy”
also appears in other tables, e.g. in table President, column
Name. Thanks to the additional table/column information, the
encoder has the opportunity to build up attention (visualized
by the black connectors) not only to the value itself, but also to
the location where the value has been found. As this question
contains the tokens "flights” and “destination”, the attention
established with table Flight is higher than to the other value
candidate with table President and column Name.

Each value candidate together with its location, is separated
from the other values by using the designated Separator token
of the encoder. Each value token is further tokenized in word
pieces using the WordPiece [29] segmentation algorithm. The
input for the encoder is then a list of pre-trained embeddings,
one for each word piece.

5) Neural Architecture: After encoding the value candi-
dates we continue similar to ValueNet light in Section
We use the neural architecture explained in Section [[I[-B

V. EXPERIMENTS

In this section, we show the results of the experiments
conducted with ValueNet light and ValueNet for translating
natural language questions to SQL. In particular, we will
address the following research questions with respect to NL-to-
SQL systems: (1) How well do our approaches ValueNet and
ValueNet light perform on the NL-to-SQL task incorporating
values? (2) What is the difference in performance between
ValueNet light which starts with a list of values and ValueNet,
which must come up with a list of value candidates on its
own?

We will also show that both ValueNet light and ValueNet
perform similarly or even better than state-of-the-art systems
that are evaluated on the Execution Accuracy.

A. Dataset

For our experiments we use the Spider [42[] dataset which
contains 10,181 natural language questions and their SQL
equivalents. The queries have four levels of difficulty and con-
tain most SQL operators (ORDER BY/GROUP BY/HAVING
and nested queries). The queries are spread over 200 publicly
available databases from 138 domains. Each database has
multiple tables, with an average of 5.1 tables per database.
The dataset is split into training set, validation (development)
set and test set. The training set contains 8,659 queries, the
validation set 1,034 queries. Note that we do not have access to
the test set. The training set covers 146 databases while the val-
idation set covers 20 different, i.e. unseen, databases. Hence,
this dataset allows us to evaluate how well our two systems
perform transfer learning between queries against databases
in the training set and queries against unseen databases in the
validation set.

We further analyzed the value distribution in the Spider
dataset. We focused on the train split, which contains exactly
7,000 NL questionﬂ for the 10,181 samples. 3,531 of the
7,000 sample questions contain values. Theses 3,531 sample
questions contain a total of 4,690 values. See Figure E] for a
distribution of the values.

3,000 | _
72}
2
=t
o
=
S 2,000 | _
G
o
=
1)
E
S 10001 i
O | S S B—— .
| | | |
1 2 3 4
Number of values per query
Fig. 9. Value distribution in the Spider data set. 3,469 samples contain no

values. 2,494 samples contain one value, 945 two values, 62 three values and
30 samples contain 4 values.

1) Value Difficulty: The creators of the Spider dataset
determined the difficulty level of a query without considering
values. There is, however, a wide range of difficulty when it
comes to extracting the correct values out of a question. We
classify this difficulty into four levels:

4 Although the training set of Spider already contains 7,000 novel questions,
the authors of Spider added further 1,659 questions from existing datasets like
e.g. IMDB adding up to a total of 8,659 question/query pairs to train on.

e Easy: The value is clearly extractable by an NER system
and is contained in the database as extracted. Example:
"How many pets are owned by students that are older
than 20?” where the value is 20.

e Medium: The value is extractable by an NER system but
might appear in a slightly different form in the database.
Example: ”What are the rooms for members of the faculty
who are professors” where the value in the database is
Professor.

e Hard: The value is extractable by an NER system but
domain knowledge is needed to find the correct value.
Example: "Show all flight numbers from Los Angeles.”
where the value in the database is LAX.

e Extra hard: The value is not explicitly recognizable as
value and therefore hard to extract. Example: ”"What are
the names of nations where both English and French are
official languages?” where the values English and French
can be directly extracted, but a third value in the database
is Language.IsOfficial = True.

2) Value Types: We find the Spider dataset to contain a
wide range of different values. The dataset includes but is not
limited to: numeric values, strings and single characters, differ-
ent ways of representing dates, times and duration, locations
(e.g. addresses, countries, airports), specific codes (e.g. Airbus-
A740 or CIS-220), status (e.g. successful or completed) and
Boolean, names and salutations as well as e-mail addresses.
Despite some missing value types (e.g. phone numbers), we
consider the variability of value types to be comparable to a
real-world environment.

B. Evaluation Metrics

The Spider challengeE] comes with two different evaluation
metrics: Exact Matching Accuracy and Execution Accuracy.
As we briefly explained in Section[l} Exact Matching Accuracy
compares the synthesized query to the gold query, while
Execution Accuracy requires executing the synthesized query
against a database and compares if the result is the same as
when executing the gold query.

To the best of our knowledge, we introduce the first NL-
to-SQL system which is evaluated via Execution Accuracy
and whose source code is publicly available. Note that during
the time of writing the paper, there are three systems that
participated in the “Leaderboard - Execution with Values”
with results from May 2020 (AuxNet + BART, BRIDGE +
BERT and GAZP + BERT). However,as of now, these systems
have not been published and the source code is not available,
therefore, we are currently unable to reproduce their results.
For this reason, we only compare our approaches against their
reported accuracy in May 2020.

C. Experimental Setup

Hardware: All experiments were executed on a Tesla V100
GPU (32GB memory) with an Intel(R) Xeon(R) CPU E5-2650
v4 (4 cores) and 16GB memory.

Shttps://yale-lily.github.io/spider

Frameworks: The experiments are implemented using Py-
Torch. We use the code of IRNet [16] as the base for our
implementation. For the encoder model (Section we use
the popular Transformer [[38] library. For validation we use the
official Spider validation scripﬂ

Implementation: In our implementation we provide a trans-
former encoder which can be configured to use any modern
pre-trained transformer model like ROBERTa [24] or XLNet
[40]. To produce comparable results with state-of-the-art sys-
tems, we use the default BERT-Base model for all experiments.

We further use bi-directional LSTM networks to summa-
rize multi-token columns/tables/values (described in Section
with a dimensionality of 300. We use the same
dimensionality for the decoder-network described in Section
111-B2

Moreover, we use an Adam [22]] optimizer with three
different learning rates: 2e—5 for the encoder, 1le—3 for the
decoder and le—4 for the connection parameters in between.
We further use a dropout of 0.3 and a batch size of 20. The
learning rates for the encoder are the default parameters for
BERT fine-tuning, all other hyperparameters have been set
based on an empirical hyperparameter sweep.

To reproduce our experiments we release all code including
hyperparameters on Githutﬂ

D. Results

In this section we report the results of our two approaches
ValueNet light and ValueNet on the Spider dataset using the
Execution Accuracy metric. This score includes (in contrast to
the Exact Matching Accuracy metric) the proper prediction of
values.

As mentioned previously, there are currently no direct
competitors using the Execution Accuracy metric since neither
the code nor the binaries are available to re-produce their ex-
periments. However, as the Spider leaderboard Execution with
Values though contains three candidates without publications
(GAZP + BERT, BRIDGE + BERT, AuxNet + BART), we add
these experiments as single data points.

As we see in Figure [I0] both ValueNet and ValueNet light
outperform GAZP + BERT and BRIDGE + BERT. The more
advanced model AuxNet + BART levels on score with our
ValueNet implementation. However, ValueNet light also out-
performs AuxNet + BART.

Note that we use the smallest version of BERT [12] as
encoder, whereas AuxNet + BART uses a much more ad-
vanced pretrained language model as encoder, namely BART
[23]]. We therefore expect our results to be even higher when
augmenting the encodings with BART instead of BERT.

Shttps://github.com/taoyds/spider
7https://github.com/brunnurs/valuenet

ValueNet vs. ValueNet light
70 T T T T T T T

60
>
Q
g
=
3 50
< —— ValueNet light
— ValueNet
—&— GAZP + BERT
40 - BRIDGE + BERT | |
—.— AuxNet + BART

| | | | | | | |
0 10 20 30 40 50 60 70 80 90
Number of epochs

Fig. 10. The performance of ValueNet light and ValueNet on the Spider
data set using the Execution Accuracy evaluation metric. We represent our
competitors on the Spider leaderboard with three single values due to their
unpublished papers/code. We only visualize accuracy scores in the range of
35 to 70% to emphasize the difference (see y-axis). The reported numbers
are an average of five runs.

E. ValueNet vs. ValueNet light

As expected there is a performance gap between ValueNet
and ValueNet light of 3%-4%. There are two possible reasons
for this performance gap:

(1) Non-extractable values: While in ValueNet light there is
a list of all used values provided, ValueNet needs to extract
these values first from the question as described in Section
Let us understand how many values we lose during that
process and keep in mind that each value, that we cannot
extract, will result in a failed sample. For the train split of
the Spider dataset, which includes 3,531 samples containing
values (a total of 4,690 values), we manage to extract all
values for 3,200 samples. That means ValueNet is capable of
extracting around 90% of all values. This share of extractable
values stays constant for the validation dataset.

Referring to the value difficulty of Section we found
that almost all of the remaining 10% not found values belong
to the difficulty classes Hard and Extra Hard. For instance,
in the question "What are the full names of all left handed
players?” we failed to extract the value 'L’ which would match
the table/column players.hand.

(2) (Too) Many value candidates: ValueNet light is provided
with a list of exact values for a sample query and then has
to select each of them at the right time when synthesizing
the query. If we revisit Figure [0] we see the distribution of
values for all queries in the dataset. We can observe that the
maximum number of values a sample contains is 4. We also
see that the majority of samples has only 1 or 2 values.

F. Results by Difficulty

The Spider evaluation metric defines the difficulty
based on the number of SQL components, selections,

and conditions, so that queries that contain more SQL
keywords (GROUP BY, ORDER BY, INTERSECT, nested
subqueries, column selections and aggregators, etc) are con-
sidered to be harder. Spider defines 4 levels of difficulty: Easy,
Medium, Hard and Extra hard. Many of the Hard/Extra hard
queries contain multiple SQL keywords in combination with
nested subqueries. We now want to analyze the accuracy of
translating from NL to SQL with respect to the difficulty of
the query.

TABLE I
ACCURACY FOR DIFFERENT TYPES OF QUERIES GROUPED BY DIFFICULTY.
Difficulty | Accuracy
Easy 0.77
Medium 0.62
Hard 0.57
Extra-Hard 0.43

Table [I| shows the translation accuracy of ValueNet grouped
by query difficulty. We can see that for easy queries, ValueNet
achieves an average accuracy of 77%. For extra-hard queries,
the average accuracy drops to 43%.

G. Error Analysis

We analyzed the 352 failed examples of ValueNet on the
development set. For about 50% of all errors (176 samples)
we did a thorough manual analysis and found the following
main causes of errors. Be aware that multiple error causes can
appear per example.

Column and Table Prediction: In 50% of all analyzed errors
ValueNet fails to predict the correct column. In around 25%
it chooses a column from another table, therefore the table
prediction is also incorrect. The main reason for those errors
is that columns across different tables have similar or even
identical names and are thus hard to distinguish. Examples for
such column names are name, id or description, which appear
usually in multiple tables. ValueNet, similar to IRNET [16]],
struggles with such cases. Incorporating a more sophisticated
schema linking approach, as for example proposed by RAT-Sql
[36], might help to prevent such errors.

Errors in the SQL Sketch: In 39% of all analyzed cases
we find errors in the SQL sketch, i.e. the logical form of the
query. It is important to note though that the majority (76%) of
these errors appear in queries classified as Hard or Extra Hard
by the Spider authors. It is further interesting to see that we
did not find a completely incorrect SQL sketch in any of the
analyzed examples. We frequently found that the SQL Sketch
was 80% correct but included a minor mistake.

A clear pattern is hard to establish. Some of the Hard and
Extra Hard examples require advanced common knowledge
which is hard to incorporate into a model. However, some
of the failed examples on lower difficulties could easily be
solved with domain-specific training (e.g. “oldest player”
is incorrectly interpreted as ORDER BY birthdate ASC
rather than DESC).

Value Selection: In 9% of all analyzed errors ValueNet
selects the wrong value. Note that a third of these cases leads

back to one single value — a company name called "JetBlue
Airways”. We assume that domain-specific fine tuning of the
encoder on the database content could avoid such errors.

False Negatives: 9% of all reported errors are false nega-
tives. These examples range from missing or wrong data in
the provided databases to mismatches between the question
and the ground truth query. One common mistake is e.g. a
missing table in the query, even though it is clearly stated in
the question.

In many cases, it is debatable if a question really gives a hint
for a specific SQL clause or not. One example is the keyword
DISTINCT, which is often hard to derive from a question if
not specifically hinted. In this case, a more advanced error
metric might be able to classify the degree of error.

H. End-to-End Performance: Translation Time

An important question to answer is how long it takes
ValueNet to synthesize a query given an question. At inference
time this process happens interactively while the user waits for
a result. The process therefore needs to be performant.

TABLE II
TRANSLATION TIME

Step | Average Time [ms] | Standard Deviation [ms]
Pre-Processing 80 5
Value lookup 234 43
Encoder/Decoder 76 14
Post-Processing 13 2
Query-Execution 15 3

In Table |lIf we see the total translation time, split up by the
process steps defined in Figure 5] The duration was measured
over the execution of all 1,034 samples of the validation set.
The overall translation time per query is on average 418 ms
and therefore sufficiently fast for interactive usage. For use in
larger databases, the process can further be improved by using
an advanced inverted index when looking up values, as this
step consumes by far the largest amount of time.

VI. RELATED WORK
A. NL-to-SQL

Since the end of the 1970s, building natural language
interfaces for databases (NLIDBs) has been a significant
challenge. Many of the early work [2], [26], [37] focused
on rule-based approaches with handcrafted features. Later
systems enabled users to query the databases with simple
keywords [3]], [4], [31]. The next step in the development was
to enable processing more complex natural language questions
by applying a pattern-based approach [10], [45]. Moreover,
grammar-based approaches were introduced to improve the
precision of natural language interfaces by restricting users to
formulate queries according to certain pre-defined rules [14],
[32]. Finally, a comprehensive overview of NLIDB systems is
given in [1].

While most of these approaches work well when customized
for a specific database (with a restricted set of keywords or
natural language patterns), they are often not competitive in

a cross-domain setting with complex questions. One of the
most advanced systems is currently Athena++ [30]. However,
neither the source code nor the binaries of that system are
publicly available for reproducing the results.

More recent approaches use advanced neural network ar-
chitectures to synthesize SQL queries given a user question.
The work of [13] uses a classical encoder-decoder architecture
based on Long Short Term Memory (LSTM) networks [[18].
Seq2SQOL [46] adds a reinforcement learning approach to learn
query-generation policies. That system creates a reward signal
by executing queries against the database in-the-loop. SQLova
[20] is the first work to use a transformer-based encoder [33]]
to solve the WikiSQL [46] challenge.

The Spider [42] dataset, which covers 200 databases and
more than 10,0000 training data samples, is currently consid-
ered the de-facto standard for evaluating NLIDBs (or NL-to-
SQL-systems) based on machine learning approaches. A recent
approach [11] introduces a novel framework for generating
training data by inverting the data annotation process. The
advantage of this approach is to generate training data more
quickly and to cover a wider range of queries.

Let us now focus on recent systems that use the Spider
dataset for evaluating the accuracy of generating SQL given
a natural language question. IRNet [[16]], for instance, uses
a transformer encoder and a decoder based on an LSTM
network. It further introduces an intermediate representation
based on an abstract syntax tree as an alternative to directly
synthesizing SQL. The main goal of this intermediate repre-
sentation is the abstraction of SQL-specific implementation
details. In our work we use and extend this approach to
handle natural language queries that incorporate values, i.e.
that require analyzing the base data of the database.

RAT-SQL [36] is another NL-to-SQL system that achieved
state-of-the-art results on the Spider challenge. It focuses on
the problem of schema encoding and schema linking. The work
proposes a new relation-aware self-attention mechanism based
on transformers with promising results on non-trivial database
schemas.

A good overview about the performance of the above-
mentioned systems is given in [21]. The paper conducts a
detailed experimental evaluation of both traditional and neural
network-based systems whose source code or binaries are
available for reproducibility studies. The paper concludes that
there is still significant potential for improving current state-
of-the-art systems to work in real-world environments.

B. Finding Matching Database Values

The importance of values and the idea of finding correct
values through database lookups was already known in works
based on the WikiSQL challenge as the meta paper [41]]
shows. With the Spider [42]] challenge providing values in
around 50% of its training data samples, it is an ideal dataset
to continue working on the challenge of building a real
world NL-to-SQL system incorporating values. Unfortunately
most works [5], [16], [36] on the Spider challenge chose an
evaluation metric that does not consider values. Hence, with

our two approaches presented in this paper, we deliver an end-
to-end NL-to-SQL system incorporating values and hope to
motivate further work to solve this challenge. Moreover, we
provide the source code of our system such that the results
can be reproduced by other researchers.

VII. CONCLUSIONS & FUTURE WORK

In this work we propose ValueNet light and ValueNet —
two end-to-end NL-to-SQL systems incorporating values. We
evaluate them on the Spider dataset and demonstrate that
incorporating values does not affect the accuracy of translating
from natural language to SQL negatively. We achieve state-
of-the-art results and provide, to our knowledge, the first
detailed discussion and source code for an NL-to-SQL system
that synthesizes a full SQL query including values on the
challenging Spider dataset

In particular, with ValueNet we propose an architecture
sketch to come up with good value candidates. These value
candidates are then incorporated into the end-to-end query
translation process through the neural model. Generating good
value candidates is difficult as the values extracted from a
question often differ from the actual values in the database. We
thus use the database content, in combination with a generative
approach, to produce promising value candidates. Finally, the
neural network decides which of these value candidates is the
best match for the intention of the natural language question
from the user.

Moreover, ValueNet is a system that synthesizes complete
queries which can be executed against a database. In contrast
to many recent works, we provide an approach which can be
used in a real-world scenario. We hope to motivate further
papers on solving this challenge to use the Spider Execution
Accuracy metric.

As part of future work, we will further improve the archi-
tecture sketch of how to come up with good value candidates.
One possible avenue of research is to apply a generative
neural network approach (e.g. based on text GANs [15]) in
combination with the available data from the database.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation program un-
der grant agreement No 863410. We thank Kate Kosten for
linguistic improvements of the paper as well as Ana Sima and
Georgia Koutrika for fruitful discussions.

REFERENCES

[1] K. Affolter, K. Stockinger, and A. Bernstein. A comparative survey of
recent natural language interfaces for databases. The VLDB Journal,
28(5):793-819, 2019.

[2] 1. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language
interfaces to databases - an introduction. CoRR, cmp-1g/9503016, 1995.

[3] H. Bast and E. Haussmann. More accurate question answering on
freebase. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, pages 1431-1440. ACM,
2015.

[4] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger. Soda:
Generating sql for business users. Proceedings of the VLDB Endowment,
5(10):932-943, 2012.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

B. Bogin, M. Gardner, and J. Berant. Representing schema structure with
graph neural networks for text-to-sql parsing. CoRR, abs/1905.06241,
2019.

U. Brunner and K. Stockinger. Entity matching with transformer
architectures-a step forward in data integration. In International Con-

ference on Extending Database Technology, Copenhagen, 30 March-2

April 2020, 2020.

J. Cheng, S. Reddy, V. Saraswat, and M. Lapata. Learning an executable
neural semantic parser. Computational Linguistics, 45(1):59-94, 2019.
P. Christen. Data Matching: Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection. Springer Publishing
Company, Incorporated, 2012.

F. J. Damerau. A technique for computer detection and correction of
spelling errors. Commun. ACM, 7(3):171-176, Mar. 1964.

D. Damljanovic, M. Agatonovic, and H. Cunningham. Natural language
interfaces to ontologies: Combining syntactic analysis and ontology-
based lookup through the user interaction. In Extended Semantic Web
Conference, pages 106-120. Springer, 2010.

J. Deriu, K. Mlynchyk, P. Schldpfer, A. Rodrigo, D. von Griinigen,
N. Kaiser, K. Stockinger, E. Agirre, and M. Cieliebak. A methodology
for creating question answering corpora using inverse data annotation.
In Annual Conference of the Association for Computational Linguistics
(ACL 2020), 2020.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

L. Dong and M. Lapata. Language to logical form with neural attention.
CoRR, abs/1601.01280, 2016.

S. Ferré. Sparklis: an expressive query builder for sparql endpoints with
guidance in natural language. Semantic Web, 8(3):405-418, 2017.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 2672-2680. Curran Associates, Inc., 2014.

J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J. Lou, T. Liu, and D. Zhang.
Towards complex text-to-sql in cross-domain database with intermediate
representation. CoRR, abs/1905.08205, 2019.

J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J.-G. Lou, T. Liu, and D. Zhang.
Towards complex text-to-SQL in cross-domain database with interme-
diate representation. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4524-4535, Florence,
Italy, July 2019. Association for Computational Linguistics.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

M. Honnibal and I. Montani. spaCy 2: Natural language understanding
with Bloom embeddings, convolutional neural networks and incremental
parsing. To appear, 2017.

W. Hwang, J. Yim, S. Park, and M. Seo. A comprehensive exploration on
wikisql with table-aware word contextualization. CoRR, abs/1902.01069,
2019.

H. Kim, B.-H. So, W.-S. Han, and H. Lee. Natural language to
sql: Where are we today? Proceedings of the VLDB Endowment,
13(10):1737-1750, 2020.

D. Kingma and J. Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 12 2014.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and compre-
hension, 2019.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692, 2019.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their compositionality.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems
26, pages 3111-3119. Curran Associates, Inc., 2013.

A.-M. Popescu, A. Armanasu, O. Etzioni, D. Ko, and A. Yates. Modern
natural language interfaces to databases: Composing statistical parsing
with semantic tractability. In Proceedings of the 20th International
Conference on Computational Linguistics, COLING ’04, page 141-es,
USA, 2004. Association for Computational Linguistics.

(27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A.-M. Popescu, O. Etzioni, and H. Kautz. Towards a theory of natural
language interfaces to databases. In Proceedings of the 8th International
Conference on Intelligent User Interfaces, IUI *03, page 149-157, New
York, NY, USA, 2003. Association for Computing Machinery.

S. Radford, Narasimhan and Sutskever. Improving language understand-
ing by generative pre-training. Technical report, OpenAl, 2018.

M. Schuster and K. Nakajima. Japanese and korean voice search.
In Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988
International Conference on, pages 5149-5152, 03 2012.

J. Sen, C. Lei, A. Quamar, F. Ozcan, V. Efthymiou, A. Dalmia, G. Stager,
A. Mittal, D. Saha, and K. Sankaranarayanan. Athena++ natural
language querying for complex nested sql queries. Proceedings of the
VLDB Endowment, 13(12):2747-2759, 2020.

A. Simitsis, G. Koutrika, and Y. Ioannidis. Précis: from unstructured
keywords as queries to structured databases as answers. The VLDB Jour-
nal—The International Journal on Very Large Data Bases, 17(1):117—
149, 2008.

D. Song, F. Schilder, C. Smiley, C. Brew, T. Zielund, H. Bretz,
R. Martin, C. Dale, J. Duprey, T. Miller, et al. Tr discover: A natural
language interface for querying and analyzing interlinked datasets. In
International Semantic Web Conference, pages 21-37. Springer, 2015.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 2692—
2700. Curran Associates, Inc., 2015.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem.
J. ACM, 21(1):168-173, Jan. 1974.

B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson. Rat-sql:
Relation-aware schema encoding and linking for text-to-sql parsers.
arXiv preprint arXiv:1911.04942, 2019.

D. H. D. Warren and F. C. N. Pereira. An efficient easily adaptable
system for interpreting natural language queries. Comput. Linguist.,
8(3-4):110-122, July 1982.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, and J. Brew. Hugging-
face’s transformers: State-of-the-art natural language processing. ArXiv,
abs/1910.03771, 2019.

X. Xu, C. Liu, and D. Song. Sqlnet: Generating structured
queries from natural language without reinforcement learning. CoRR,
abs/1711.04436, 2017.

Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le. Xlnet: Generalized autoregressive pretraining for language
understanding. CoRR, abs/1906.08237, 2019.

S. Yavuz, I. Gur, Y. Su, and X. Yan. What it takes to achieve 100%
condition accuracy on WikiSQL. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 1702—
1711, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational
Linguistics.

T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, L. Li,
Q. Yao, S. Roman, Z. Zhang, and D. R. Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing
and text-to-sql task. CoRR, abs/1809.08887, 2018.

T. Yu, R. Zhang, M. Yasunaga, Y. C. Tan, X. V. Lin, S. Li, H. Er, I. Li,
B. Pang, T. Chen, E. Ji, S. Dixit, D. Proctor, S. Shim, J. Kraft, V. Zhang,
C. Xiong, R. Socher, and D. R. Radev. Sparc: Cross-domain semantic
parsing in context. CoRR, abs/1906.02285, 2019.

A. Zelikovsky. An 11/6-approximation algorithm for the network steiner
problem. Algorithmica, 9:463—470, 05 1993.

W. Zheng, H. Cheng, L. Zou, J. X. Yu, and K. Zhao. Natural
language question/answering: Let users talk with the knowledge graph.
In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 217-226. ACM, 2017.

V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating structured
queries from natural language using reinforcement learning. CoRR,
abs/1709.00103, 2017.

	I Introduction
	II Problem Definition
	II-A Intermediate Representation via Abstract Syntax Tree
	II-B Problem Statements: NL to AST to SQL
	II-B1 Predicting Columns, Tables and SQL-Sketches
	II-B2 Predicting Values

	III ValueNet: High Level Architecture
	III-A Pre-Processing
	III-A1 Question Hints
	III-A2 Schema Hints

	III-B Neural Architecture
	III-B1 Encoder
	III-B2 Decoder

	III-C Post-Processing
	III-C1 Translating SemQL2.0 to SQL
	III-C2 Handling Relationships

	IV ValueNet - Detailed Architecture
	IV-A ValueNet light
	IV-B ValueNet
	IV-B1 Value Extraction
	IV-B2 Value Candidate Generation
	IV-B3 Value Candidate Validation
	IV-B4 Value Candidate Encoding
	IV-B5 Neural Architecture

	V Experiments
	V-A Dataset
	V-A1 Value Difficulty
	V-A2 Value Types

	V-B Evaluation Metrics
	V-C Experimental Setup
	V-D Results
	V-E ValueNet vs. ValueNet light
	V-F Results by Difficulty
	V-G Error Analysis
	V-H End-to-End Performance: Translation Time

	VI Related Work
	VI-A NL-to-SQL
	VI-B Finding Matching Database Values

	VII Conclusions & Future Work
	References

