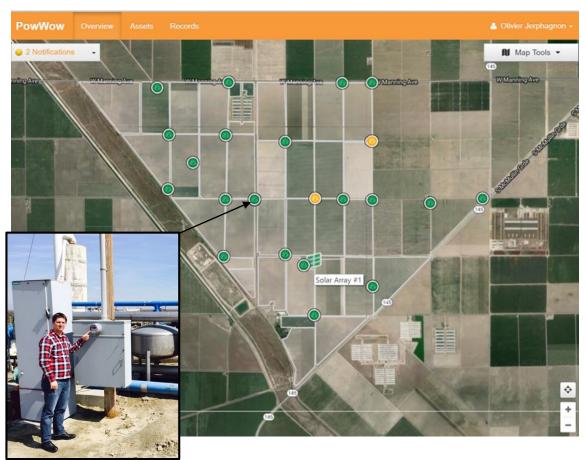

Groundwater management using a combination of supply pump data and demand ET data

Olivier Jerphagnon, PowWow Energy
Don Cameron, Terranova Ranch
Dr. George Paul, Formation Environmental

Challenge: managing supply and demand



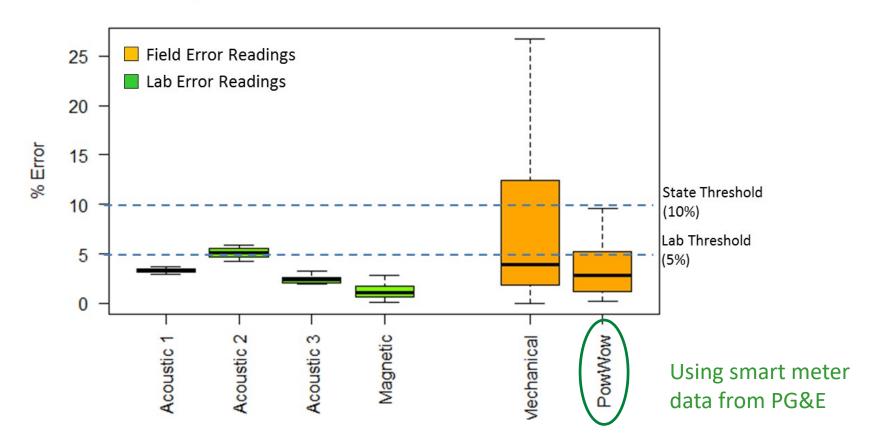
Solution: integrating existing data-sets


- Pump energy records from utility (PG&E)
- Weather (NWS, DTN)
- Crop rotation for 2016 (farm) and ETc (CIMIS)
- Actual ET from satellite images (Formation Env)

Testing part of project funded by CEC

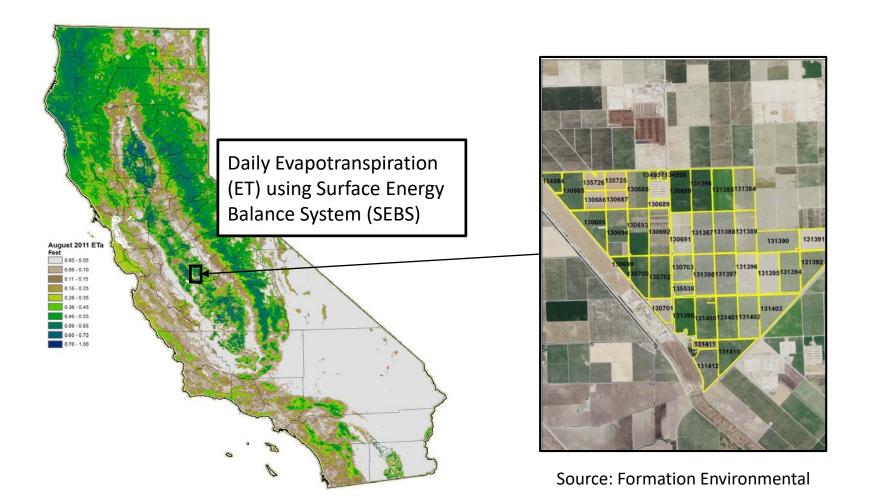
- Project funded by California Energy Commission (CEC)
- Study from 2015 to 2017 across six sites in 4 counties
- One of the sites is Terranova Ranch:
 - On-farm groundwater recharge project near Helm along Kings River
 - Collaboration with Kings RCD
- We look at different methods to measure water:
 - Water meters and power meters
 - Crop ET from CIMIS and crop model
 - Actual ET from aerial imagery
 - Weather: NWS and DTN data services

Water supply: ground water extraction



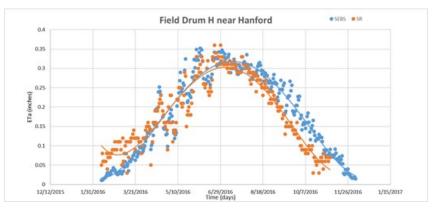
- Sources of water:
 - Groundwater:22 pumps
 - Rainfall
 - No surface water
- Daily water records using smart meters powering pumps

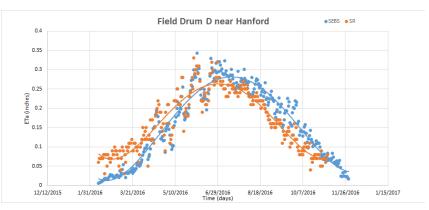
Source: PowWow Energy


Validation with calibrated water meters

Boxplot Distribution Water Measurement Error

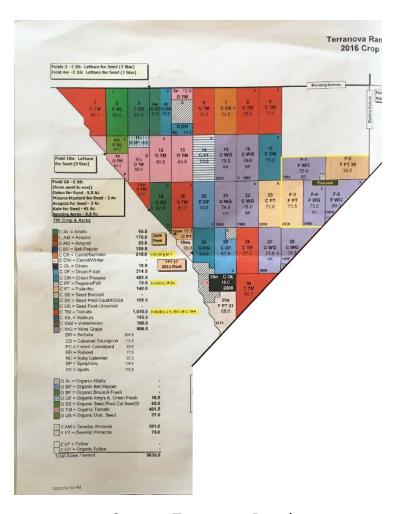
Source: Measurement & Verification by Bren School at UCSB and CIT at Fresno State


Water demand: ET from satellite images


Ground truth testing of actual ET data

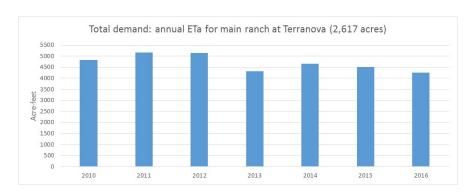
- Testing of SEBS method against Surface Renewal (SR) station from Tule:
 - One field with full ET
 - One field with deficit
- Results are similar and pick up difference in water application:

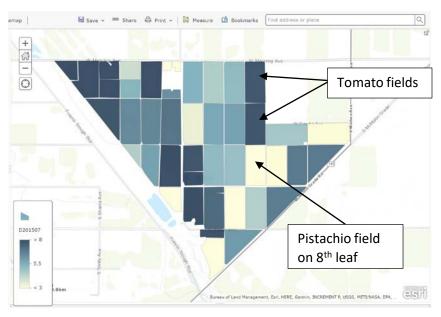
Method	Field Drum D (partial ET)	Field Drum H (full ET)	Difference
Applied water (inches)	34.85	38.34	-4.51
Rainfall (inches)	7.77	7.80	-0.03
Total applied water (inches)	42.6	46.14	-4.54
Actual ET (inches) from SR method	43.8	50.9	-7.1
Actual ET (inches) from SEBS method	40.3	45.3	-5.0


Pistachio field with full ET schedule

Pistachio field with 20% deficit schedule

Water supply and demand at Terranova


- 8 crops in 2016 (2,617 acres):
 - Alfalfa
 - Carrots
 - Peppers
 - Pistachios
 - Onion, onion fresh
 - Olives for oil
 - Seed production
 - Tomatoes (processing)
 - Wine grapes
- Results:
 - ETc from fields: 6,796 ac-ft
 - Groundwater: + 7,110 ac-ft


Difference: 4.4%

Source: Terranova Ranch

Actual ET: zoom on water use efficiency

- Actual usage per data set is 4,263 ac-ft
- Different from 7,031 acft from pump records that are close to ET plan
- What is the difference?

Pump review: zoom on energy efficiency

Pumps	Туре	VFD	NEMA	Energy data since	Pump test		2016 energy (kWh)	2016 water (ac-ft)	93	Energy intensity (MWh/Ac-ft)
2	Well	no		31-Dec-14	3		78,500.04	186.1		0.42
4	Well	no		31-Dec-14	3		41,435.96	82		0.51
7	Well	no		18-Dec-15	1		128,794.72	240.28		0.54
8	Well	no	2) S.	10-Mar-16	3		201,306.84	400.9	5	0.50
9	Well	no	YES	19-Nov-15	1		14,836.12	20.4		0.73
10 N	Well	YES	20	28-May-15	2		351,047.68	589.24	32	
10 S	Well	YES	- M	21-Aug-16	0		2,272.80	3.81		
11	Well	no		19-Jan-15	1		1,826.99	4.3		0.42
12	Well	no	100	5-May-16	3		158,424.04	349.31	32	0.45
14	Well	no	YES	31-Dec-14	1		306,660.96	462.72		0.66
16	Well	no	10	2-Jul-14	1		460,803.84	585.71		0.79
17	Well	no		25-Jul-16	3		98,384.80	184.68	20	0.53
18 N	Well	no	YES	18-Jul-15	1		207,237.89	243.37		0.85
18 S	Well	YES	100	24-Jun-16	3		84,532.96	141.89		
18 W	Well	no	YES	19-Jan-15	1		8,618.49	14.47		
19	Well	YES		31-Dec-13	2		91,917.02	386.94		0.24
20	Well	no	(1) (4)	31-Dec-13	3		406,204.07	555.46	5	0.73
22	Well	no		31-Dec-13	1		0.00	0		
23	Well	no	YES	19-Jan-15	1		165,177.44	160.19	43	1.03
25 N	Well	no	YES	31-Dec-13	1		242,676.15	379.44		0.64
25 S	Well	no	YES	31-Dec-13	1		52,448.48	108.6		0.48
27	Well	no		31-Dec-13	5		433,947.40	772.71		0.56
F4	Well	no			3		590,133.32	1111.47		0.53
F5	Well	no		31-Dec-13	3		88,444.60	126.38		0.70
			2		To	tal	4,215,633	7,110	Average	0.60

Low efficiency

Low efficiency

Low efficiency

Error: add booster Low efficiency

Low efficiency

Summary

- Pump records can provide measurement of groundwater use in complement of water meters
- There is a bid difference between ETc and ETa
- Review of fields and pumps each year can save significant amount of water and energy
 - Maintain pumps: retro-commissioning
 - Know your fields: adjust to canopy cover
- Satellite images are not a way to measure groundwater extraction but useful for demand