

Lesson C4: Tricky Hangers

Warm Up

Inverse operations undo each other.

Addition and _____ are inverse operations.
____ and division are inverse operations.

Example

1. For the hanger model and its code, describe what happens in each step. (Notice this is 12 is the same as **half** a smiley face). We are trying to find the weight of one whole smiley face.

Solution: _____

- 2. How is this hanger model different from prior hanger models and equations we have seen?
- 3. The equation for the original hanger is $12 = \frac{1}{2} s$. Let's solve this using inverse equations:

$$12 = \frac{1}{2} s$$
 original

$$24 = s$$
 double both sides (also known as _____ by 2)

Check:

$$12 = \frac{1}{2}$$
 (24) multiply 24 and one half

4. Set up a hanger model for the equation $\frac{1}{4}c = 5$. Show your work to solve for c by finding out how much one c weighs.

5. What do you notice about the hanger below?

6		
6		
	-	

6. Describe what is happening in each step.

7. The equation for the hanger above is 6 = s - 4. Let's solve using inverse equations:

$$6 = s - 4$$

original

$$6 = s - 4$$

____ four on both sides to remove the helium balloon

$$6 + 4 = s - 4 + 4$$
 Simplify

$$10 = s$$

Check:

$$6 = 10 - 4$$

$$6 = 6$$

8. Set up a hanger model for the equation p-10=2. Show your work to solve for p.

9. Problem set, use whichever method you wish to solve.

a)
$$\frac{2}{3}m = 4$$

b)
$$6 + r = 4$$

c)
$$\frac{b}{7} = 5$$

d)
$$x - 7 = 5$$

e)
$$9 = \frac{3}{5}n$$

f)
$$2 = r - 6$$