
Main Street

Smart Contract Audit Report

July 30, 2021



Introduction 3
About Main Street 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5
High severity issues 6
Medium severity issues 6
Low severity issues 7

Recommendations 9

Automated Audit Result 10

Concluding Remarks 11

Disclaimer 11

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2



Introduction

1. About Main Street
Main Street ($MAINst) is a deflationary token offered on the Binance Smart Chain. The goal of Main
Street is to answer the question so often asked, "Why should we hold?". Main Street provides its
holders the opportunity to find new tokens in our Neighborhood and Alley, featuring tokens ranging from
high use case, to newly listed and unvetted. Combined with the addition of our Main Street shops which
will provide entertainment and games, we have created a hub that brings reason and fun to trading
cryptocurrency.

Visit https://www.buymainstreet.com/ to know more about.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 15+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-up with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The Main Street team has provided the following doc for the purpose of audit:

1. Audit document.docx

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

https://www.buymainstreet.com/
http://immunebytes.com/


Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: Main Street
● Contracts Name: BuyMainStreet
● Languages: Solidity(Smart contract)
● Github commit/Smart Contract Address for audit: 0x8fc1a944c149762b6b578a06c0de2abd6b7d2b89
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck, Fuzz

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4

https://bscscan.com/address/0x8fc1a944c149762b6b578a06c0de2abd6b7d2b89#code


Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include:
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open - 2 4

Closed - - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5



High severity issues

No issues found.

Medium severity issues

1. _getTaxFee function does not hold any significance.
Line no - 830-832

Description:
The protocol includes a function called _getTaxFee that returns the _TAX_FEE state variable in the
protocol.

However, the function has been marked as private but never called from within the contract at any
instance. Moreover, since the visibility specifier is private the function cannot be called from outside the
contract as well.

Recommendation:
If the getTaxFee doesn’t hold any significance in the protocol, it should be removed to save space and
gas.
However, if it's a necessary function, the Function should either be marked as External or be called
from within the contract at some instance to ensure that it is used adequately.

2. Loops are extremely costly
Line no -615, 795

Description:
The BuyMainStreetToken contract has some for loops in the contract that include state variables like
.length of a non-memory array, in the condition of the for loops.

As a result, these state variables consume a lot more extra gas for every iteration of the for loop. The
following function includes such loops at the above-mentioned lines:

● includeAccount
● _getCurrentSupply

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6



Recommendation:
It's quite effective to use a local variable instead of a state variable like .length in a loop. This will be a
significant step in optimizing gas usage.

For instance,
function includeAccount(address account) external onlyOwner() {

require(_isExcluded[account], "Account is already included");

uint256 local_variable = _excluded.length; // Storing Length in a local Variable
for (uint256 i = 0; i < local_variable; i++) {

if (_excluded[i] == account) {
_excluded[i] = _excluded[_excluded.length - 1];
_tOwned[account] = 0;
_isExcluded[account] = false;
_excluded.pop();
break;

}
}
}

Low severity issues

1. Absence of Error messages in Require Statements
Line no - 632

Description:
The BuyMainStreetToken contract includes a require statement in functions(at the above-mentioned
lines) that doesn’t contain any error message.

While this makes it troublesome to detect the reason behind a particular function revert, it also reduces
the readability of the code.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7



Recommendation:
Error Messages must be included in every require statement in the contract

2. Absence of Zero Address Validation

Description:
During the automated testing, it was found that the contract includes quite a few functions that update
an imperative address in the contract like FeeAddress.

However, no Zero Address Validation is implemented on the following function while updating such
state variables of the contract:

● setAsmarketingAccount

Recommendation:
A require statement should be included in such functions to ensure no zero address is passed in the
arguments.

3. External Visibility should be preferred

Description:
Those functions that are never called throughout the contract should be marked as external visibility
instead of public visibility.
This will effectively result in Gas Optimization as well.

Therefore, the following function must be marked as external within the contract:
● isExcluded()
● totalFees()
● deliver()
● reflectionFromToken()
● totalBurn()
● totalmarketing()
● updateFee()

Recommendation:
If the PUBLIC visibility of the above-mentioned functions is not intended, then the EXTERNAL Visibility
keyword should be preferred.

4. Constant declaration should be preferred
Line no- 469, 471

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8



Description:
State variables that are not supposed to change throughout the contract should be declared as
constant.

Recommendation:
The following state variables need to be declared as constant, unless the current contract design is
intended.

● _GRANULARITY
● _MAX

Recommendations
1. Coding Style Issues in the Contract

Description:
Code readability of a Smart Contract is largely influenced by the Coding Style issues and in some
specific scenarios may lead to bugs in the future.

During the automated testing, it was found that the BuyMainStreetToken contract had quite a few code
style issues.

Recommendation:
Therefore, it is highly recommended to fix the issues like naming convention, indentation, and code
layout issues in a smart contract.

2. NatSpec Annotations must be included

Description:
The smart contracts do not include the NatSpec annotations adequately.

Recommendation:
Cover by NatSpec all Contract methods.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9



Automated Audit Result

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

10



Concluding Remarks
While conducting the audits of the Main Street smart contract, it was observed that the contracts contain
Medium and Low severity issues along with a few areas of recommendations.

Our auditors suggest that Medium and Low severity issues should be resolved by the developers.The
recommendations given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the Main Street platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11


