Decarbonising hydrogen in a net zero economy

27 September 2021
Contents

I. Executive summary

II. The need for H₂ in reaching net-zero

III. How is this study different?

IV. Overview of modelled scenarios with H₂, RES and nuclear

V. The impact of differing levels of RES and nuclear on power and H₂ markets

VI. Risks to the transition

VII. Policy implications

VIII. Appendix
Aurora Energy Research has been commissioned by Urenco to investigate the benefits of the deployment of both Renewable Energy Sources (RES) and nuclear to support decarbonisation and reduce reliance on fossil fuels as a transitional fuel source in GB.

The scenarios presented in this report are not Aurora forecasts but exploratory scenarios to assess a wider range of technology mixes.

In addition to integrated modelling of power and hydrogen markets, this report also discusses potential risks to the transition and policy implications of modelled technology pathways.

Additional input has been provided by LucidCatalyst, the International Atomic Energy Agency (IAEA), and EDF.
The majority of studies on the future of the hydrogen sector in GB focus electrolytic H\textsubscript{2} from RES and fossil based H\textsubscript{2} with CCS. The potential for nuclear to participate in the H\textsubscript{2} economy is often not considered due to high costs of recent assets and lack of clear policy direction leading to planned projects being put on hold. This study investigates how policy support for new nuclear technologies and business models to provide low carbon electrolytic H\textsubscript{2} could reduce nuclear and system costs whilst reducing reliance on fossil fuels when deployed alongside RES on the path to net-zero.

Research questions

1. Routes to decarbonise
 Can total system costs and emissions be reduced by including nuclear in a net-zero strategy?

2. The hydrogen economy
 How could renewables and new nuclear technologies influence the hydrogen economy?

3. The role of nuclear
 Can new nuclear business models and technologies with co-located H\textsubscript{2} production provide flexibility to the grid, displace reliance on fossil fuels and improve nuclear economics?

Modelling approach

1. Integrated in-house modelling simultaneously solves for supply mixes in power and hydrogen markets

2. Use of a capacity market with a high carbon price to incentivise economic entry of low carbon capacity

3. Modelling new nuclear technologies and business models in the power sector

4. Economic entry of hydrogen supply from nuclear

5. Discussion of the implications of each modelled scenario for policy and consumers in addition to the risks associated with achieving net-zero
Executive summary

Key insights

1. Deploying renewables and nuclear for power and hydrogen is required to ensure rapid decarbonisation and reduced reliance on fossil fuels. Cumulative emissions from 2021-2050 can be reduced by 80 MtCO2e and gas usage in power and H2 by 8k TWh in our core scenarios.

2. Achieving H2 volumes required for net-zero without fossil fuels will be challenging without support for electrolytic H2 from RES and nuclear. The high share of virtually baseload H2 demand from transport and industry results in a high dependence on fossil based blue H2, comprising over 35% of demand in 2050 in all scenarios that exclude a “Gigafactory” for nuclear derived H2. Clear support for electrolytic H2 is required to reduce costs relative to fossil based blue H2.

3. Including nuclear with co-located electrolysers alongside high RES is economically efficient, reducing total system spending by 6-9% (NPV from 2021 – 2050). Co-locating electrolysers with nuclear enables nuclear plants to provide additional flexibility to the power grid to match fluctuations in RES supply by diverting electricity output to or away from electrolysers for H2 production.

4. Novel business models for nuclear energy can provide cost competitive and scalable sources of zero carbon electricity and hydrogen. There are opportunities for existing and new nuclear co-located with H2 electrolysers to produce cost competitive electricity and H2. In addition, a new generation of nuclear reactors (i.e., small modular reactors and Gen IV reactors) can potentially speed up decarbonisation and reduce use of fossil fuels. Utilising new high temperature nuclear as a source of heat can further increase efficiency of hydrogen production.

5. Careful market design and policy support structures are required to get to net-zero. Systems with large volumes of RES and nuclear but limited fossil fuels result in many hours of very low power prices. This leads to an increased need for either support payments or new market designs to bring forward low carbon supply. The continuation of direct support for RES and nuclear (i.e., via CfDs or RABs) and changes to the Capacity Market (CM) are key tools to ensure sufficient low carbon capacity is built. Nuclear can play a key role in decarbonising power and H2 but clear policy intention is required to lower the financing cost of nuclear and deploy a pipeline of identical projects at low cost.

6. Broader potential benefits of technology mixes should be considered. Deploying RES alongside nuclear can facilitate low carbon systems and those with minimal reliance on fossil fuels are found to have the lowest costs. However, the ability of technologies to drive deeper decarbonisation should be considered such as the potential for nuclear gigafactories for H2 production to decarbonise hard to abate sectors like aviation and shipping via H2 directly or H2 derived synthetic fuels.

Source: Aurora Energy Research
Hydrogen has the potential to decarbonise multiple sectors

Executive summary

Sectors considered in report

<table>
<thead>
<tr>
<th>Power</th>
<th>Heat</th>
<th>Road transport</th>
<th>Aviation</th>
<th>Shipping</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ease of abatement

- Power: 2
- Heat: 1
- Road transport: 1
- Aviation: 2
- Shipping: 1
- Industry: 2

The challenge

- **Many low carbon technologies are available; the key challenge is coping with variable RES output without relying on fossil fuels.**
- **The majority of UK homes are fitted with gas boilers, with many too inefficient to be compatible with electric heat pumps.**
- **Costs of electric cars have plunged but uncertainties remain for road freight. H₂ fuel cells/or H₂ derived synfuels are an alternative but yet to be deployed at scale.**
- **Orders for current models until the mid 2020s, combined with aircraft lifetimes of 20-30 years could lock-in reliance on fossil fuels for decades.**
- **Electric vessels could decarbonise short-haul routes but sustainable alternative fuels (SAF) are needed for long-haul routes. Long vessel lifetimes require entry by 2030.**
- **Many industrial processes (i.e. steel, cement, chemicals and synfuel manufacture) rely on fossil feedstock with complete overhaul of systems and processes required to decarbonise.**

Low carbon solutions available

- **H₂ combustion plants**
 - RES, Nuclear
 - Gas-CCS
 - Batteries, DSR
- **H₂ boilers**
 - District heating (incl. nuclear waste heat)\(^1\)
 - Electricity (via heat pumps)
 - Alternative thermal energy storage
- **H₂ fuel cell vehicles**
 - Synfuels (via H₂)
 - Electric vehicles
- **H₂**
 - Synfuels (via H₂)
 - Electricity (batteries)
- **H₂**
 - Synfuels (via H₂)
 - Electricity (batteries)
- **H₂**
 - Synfuels (via H₂)
 - Electricity (batteries)

\(^1\) District heating using waste heat from nuclear has not been considered in this report.

Source: Aurora Energy Research
The majority of hydrogen is currently derived from fossil fuels but can be produced by a range of low carbon methods

<table>
<thead>
<tr>
<th>Conversion method</th>
<th>Primary energy source</th>
<th>Technologies modelled in report</th>
<th>Emissions intensity, kgCO₂/kgH₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam reformation</td>
<td>Natural gas</td>
<td>Steam methane reformation (SMR)</td>
<td>8 - 12</td>
</tr>
<tr>
<td>Steam/autothermal reformation</td>
<td>Natural gas</td>
<td>Steam methane reformation with CCS (SMR+CCS)</td>
<td>0.6 - 1</td>
</tr>
<tr>
<td>Electrolysis</td>
<td>Nuclear electricity and waste heat</td>
<td>Autothermal reformation with CCS (ATR+CCS)</td>
<td>0</td>
</tr>
<tr>
<td>Electrolysis</td>
<td>Zero carbon grid electricity from RES and nuclear</td>
<td>High temperature solid oxide electrolysis (SOE)</td>
<td>0</td>
</tr>
<tr>
<td>Electrolysis</td>
<td>Non-zero carbon grid electricity</td>
<td>Alkaline electrolyte membrane (ALK)</td>
<td>0 - 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymer electrolyte membrane (PEM)</td>
<td></td>
</tr>
</tbody>
</table>

1) Note that the current European Commission definition of green H₂ differs to that used in this report. The EU states that H₂ can only be considered green if created using electricity from new, H₂ production dedicated RES assets that do not provide electricity to the grid 2) No ‘yellow’ electrolysis is seen in the core scenarios and electrolysers only produce when power prices are low.

Sources: Aurora Energy Research, IEA, CE Delft, NREL, NETL, EC JRC-IE
A range of scenarios have been modelled to investigate the impacts of differing levels of nuclear advancement on achieving net-zero.

Modelled GB market scenarios

1. No new nuclear
2. Existing nuclear techs
3. New nuclear techs
4. Strong nuclear strategy

Core scenarios assume all technologies to compete for economic entry from 2030, with emissions reductions driven by carbon prices and restrictions on unabated thermal in the capacity market.

Weather year sensitivities: Redispatch of 2040 only against 10 additional historic weather year profiles using the power and hydrogen market supply mix under the High H₂ demand scenarios.

Hydrogen storage sensitivities: Full scenario sensitivities testing 3x hydrogen storage infrastructure capacities.

Continued RES support sensitivities: Full scenario sensitivities using the same methodology but more closely aligned with policy intention. This is captured via higher levels of assumed offshore wind deployment. All other assumptions held equal.

The scenarios that follow are exploratory scenarios to investigate the role of nuclear and H₂ in reaching net-zero and are not forecasts.

1) Core scenario modelling results are explored in detail in Section V; 2) Sensitivity analysis is presented in Section VI.

Source: Aurora Energy Research
Two hydrogen demand scenarios reflecting differing levels of ambition are modelled in this report

Overview of Aurora's GB H₂ demand scenarios – scrutinised by over 18 market participants

<table>
<thead>
<tr>
<th></th>
<th>Low Hydrogen</th>
<th>High Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>Low penetration of FCEVs for private transport with moderate use of Hydrogen for in freight and public transport, where use of natural gas prevails.</td>
<td>Moderate presence of H₂ in private transport, with higher uptake in public transport and freight. Adoption of H₂ for maritime and rail transport.</td>
</tr>
<tr>
<td></td>
<td>18 TWh H₂ in 2050</td>
<td>162 TWh H₂ in 2050</td>
</tr>
<tr>
<td>Heating</td>
<td>H₂ serves certain areas in the country with advantageous conditions, but use is not widespread.</td>
<td>Gas networks are converted to hydrogen with 14 million H₂ boilers present in 2050.</td>
</tr>
<tr>
<td></td>
<td>110 TWh H₂ in 2050</td>
<td>230 TWh in 2050</td>
</tr>
<tr>
<td>Industry</td>
<td>H₂ use for high-grade heat applications along with CCS, electricity serving with low-grade heat requirements. Use as feedstock remains.</td>
<td>H₂ used for both high and low-grade heat applications, as well as for industrial feedstock.</td>
</tr>
<tr>
<td></td>
<td>82 TWh by 2050</td>
<td>114 TWh by 2050</td>
</tr>
</tbody>
</table>

Source: Aurora Energy Research
Other transport segments were considered only in our High H₂ scenario, but likelihood of uptake is still uncertain

<table>
<thead>
<tr>
<th>GB outlook for H₂ Adoption</th>
<th>Likelihood</th>
<th>GB High H₂ Scenario Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Most promising options for rail decarbonisation include electrification and fuel switching to biofuels or H₂.</td>
<td></td>
<td>29 TWh by 2050 Equivalent to a third of all trains in the UK switching fuel use to H₂</td>
</tr>
<tr>
<td>▪ There are concerns on supply limitations for biofuels and, in some areas, cost and infrastructure disruption could make electrification prohibitive, making a case for H₂ adoption.</td>
<td></td>
<td>No demand was assumed for this sector in the high H₂ scenario, however higher H₂ demand scenarios could see adoption in aviation</td>
</tr>
<tr>
<td>Aviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Prospective measures include increasing efficiency, reducing allowed cargo and using alternative fuels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Even with all these measures, the sector will likely face disruption or high abatement needs in order to reach Net Zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Although small demonstration projects seek to prove feasibility, H₂ uptake in the sector is highly uncertain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ International Maritime Organisation has enacted a mandate to cut the sector’s CO₂ emissions by 50% (relative to 2008 levels) by 2050.</td>
<td></td>
<td>11 TWh by 2050 Equivalent to the forecasted fuel demand for the sector²</td>
</tr>
<tr>
<td>▪ Organisations have stated that without the use of alternative fuels this is likely to be missed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Despite technical and financial challenges, potential for H₂ uptake in the sector is considered high, either through direct use or as ammonia.¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) ICCT; 2) BEIS’ forecast extrapolated to 2050; 3) None of these segments were considered in our Low H₂ scenarios.

Sources: Aurora Energy Research, ICCT
Final energy demand across scenarios is held constant, with deviations in system size driven by electrification and electrolysers

GB annual power demand by sector¹
TWh electricity

GB annual hydrogen demand by sector
TWh H₂

¹ Excludes power demand from electrolysers for H₂ production as this is a model output. Total power demand therefore varies in each market scenario.

Source: Aurora Energy Research
Adopting a strong nuclear strategy could reduce power system reliance on fossil fuels to just 3% of generation

The four core scenarios show an increasing prevalence of nuclear power, with most of the demand in 4H met by nuclear sources by 2050 facilitated by low nuclear costs. The bulk of this generation comes from small modular and Gen IV reactors, which are expected to come online from the 2030s onwards. 4H sees less economic deployment of large nuclear reactors as they are displaced by small and Gen IV reactors which see lower costs in this scenario.

Higher levels of cheap electricity from RES and nuclear lead to greater overall electricity demand, due to increased demand for electrolytic H₂ which benefits from low electricity prices.

The 1H RES and 3H RES sensitivities assume more support for renewables than their core scenario counterparts. This leads to a RES-dominated supply mix and lower levels of nuclear buildout. It also creates a larger system in terms of installed capacity, due to the lower load factors of RES relative to nuclear.
Low nuclear costs and economic entry of a hydrogen Gigafactory enable reliance on fossil H_2 to drop to 6% by 2050

All scenarios with the exception of 4H have a high reliance on blue H_2 made from fossil gas with CCS. This is responsible for 73% of supply in 2050 in 1H and remains a significant source of H_2 in 2H and 3H. Variability in RES output, combined with low levels of excess RES lead to unfavourable economics for non-nuclear derived green H_2 relative to fossil based blue H_2.

Indeed, in 1H RES and 3H RES, the greater levels of intermittent, cheap renewable generation create more periods of low power prices, enabling more grid connected electrolysers to enter profitably.

Scenario 4H outlines that strong support for a nuclear construction pipeline could establish a nuclear gigafactory consisting of many small nuclear reactors dedicated to H_2 production via SOEs. This enables almost all 2050 H_2 demand to be met via zero-carbon electrolysis and reduces reliance on fossil fuels for H_2 production to just 6%.

The “negative carbon emissions” associated with BECCS are expected to be highly valuable and attributed to hard to abate sectors. This capacity is therefore assumed in model as it is likely to be driven by policy or valuable carbon credits.

GB installed capacity in 2050

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Core scenarios</th>
<th>High RES scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>$GW H_2$</td>
<td>83</td>
<td>92</td>
</tr>
<tr>
<td>$GW H_2</td>
<td>59</td>
<td>50</td>
</tr>
<tr>
<td>$GW H_2</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>$GW H_2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$GW H_2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$GW H_2</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

1H. No new nuclear | 2H. Existing nuclear techs | 3H. New nuclear techs | 4H. Strong nuclear strategy | 1H. RES. No new nuclear | 3H. RES. New nuclear techs

GB gross H_2 production in 2050

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Core scenarios</th>
<th>High RES scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWh H_2</td>
<td>508</td>
<td>508</td>
</tr>
<tr>
<td>TWh $H_2</td>
<td>371</td>
<td>318</td>
</tr>
<tr>
<td>TWh $H_2</td>
<td>293</td>
<td>141</td>
</tr>
<tr>
<td>TWh $H_2</td>
<td>239</td>
<td>148</td>
</tr>
<tr>
<td>TWh $H_2</td>
<td>116</td>
<td>42</td>
</tr>
<tr>
<td>TWh $H_2</td>
<td>323</td>
<td>42</td>
</tr>
<tr>
<td>TWh $H_2</td>
<td>112</td>
<td>42</td>
</tr>
<tr>
<td>TWh $H_2</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

1H. No new nuclear | 2H. Existing nuclear techs | 3H. New nuclear techs | 4H. Strong nuclear strategy | 1H. RES. No new nuclear | 3H. RES. New nuclear techs

Source: Aurora Energy Research
Systems with higher levels of nuclear deployment lead to lower emissions from the power and hydrogen sectors

Systems with higher levels of nuclear deployment lead to lower emissions from the power and hydrogen sectors.

Support for a pipeline of nuclear projects leading to low nuclear costs can lead to:
- 80 MtCO₂e avoided emissions from 2021-2050
- 67% reduction in fossil gas usage from 2021-2050.

1H, 1H RES and 3H RES have the highest fossil fuel use due to the variability in RES output requiring flexible gas plants to ramp up and down to meet demand.

Comparing 1H and 3H to their high RES counterparts highlights that while supporting renewables buildout can help reduce fuel use and emissions, the benefits of doing so are less stark in a high nuclear system (3H) as emissions are already very low.

Source: Aurora Energy Research
Executive summary

Net-zero pathways that adopt RES and nuclear in power and hydrogen markets can reduce total system spending by 6-9% (NPV)

GB NPV total system spend from 2021 - 2050

<table>
<thead>
<tr>
<th>Core scenarios</th>
<th>High RES scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>680 18 113</td>
<td>671 18 112</td>
</tr>
<tr>
<td>642 18 110</td>
<td>638 18 113</td>
</tr>
<tr>
<td>638 18 110</td>
<td>638 18 113</td>
</tr>
<tr>
<td>617 111</td>
<td>617 111</td>
</tr>
<tr>
<td>325 43</td>
<td>325 42</td>
</tr>
<tr>
<td>308 42</td>
<td>308 42</td>
</tr>
<tr>
<td>310 42</td>
<td>310 42</td>
</tr>
<tr>
<td>284 36</td>
<td>284 36</td>
</tr>
<tr>
<td>312 42</td>
<td>312 42</td>
</tr>
<tr>
<td>307 42</td>
<td>307 42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1H. No new nuclear</th>
<th>2H. Existing nuclear techs</th>
<th>3H. New nuclear techs</th>
<th>4H. Strong nuclear strategy</th>
<th>1H RES. No new nuclear</th>
<th>3H RES. New nuclear techs</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 113</td>
<td>18 110</td>
<td>18 110</td>
<td>18 111</td>
<td>18 112</td>
<td>18 113</td>
</tr>
<tr>
<td>43</td>
<td>42</td>
<td>42</td>
<td>36</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>325</td>
<td>308</td>
<td>310</td>
<td>284</td>
<td>312</td>
<td>307</td>
</tr>
<tr>
<td>642</td>
<td>638</td>
<td>617</td>
<td>671</td>
<td>638</td>
<td>638</td>
</tr>
</tbody>
</table>

Electricity market spending is the key driver of total system spend across scenarios and is directly linked to the supply mix. Scenarios with a high share of RES and nuclear dampen electricity prices, whereas scenarios that rely on more expensive fossil based sources for baseload and flexibility see higher electricity prices.

Hydrogen market spending is similar across scenarios as prices are typically set by blue H₂ and strongly correlated with gas prices. Lower costs in 4H are driven by nuclear derived electrolytic H₂ meeting demand in summer.

Support costs are strongly linked to electricity market prices as low wholesale market revenues lead to higher top-ups for existing contracts (CfDs) and higher CM payments for new capacity to break even. The need for higher support costs in 4H due to low electricity prices is counteracted by lower costs for nuclear and a smaller system overall.

Infrastructure costs are similar across all core scenarios as systems are of a similar size and H₂ and CO₂ costs are volumetric. H₂ and CO₂ costs could vary much more depending on proximity of supply to demand.

1) Costs are discounted using a rate of 5%.

Source: Aurora Energy Research
A series of least regret options can be pursued to minimise risks to the transition towards net-zero

1. **Continued revenue support for low carbon technologies**
 To incentivise deployment of low-carbon capacity despite low wholesale market revenues as a result of high penetrations of low marginal cost supply. A level playing field for all technologies is required.

2. **Limit participation of unabated thermal in the CM**
 To prevent locking in reliance on new unabated thermal assets, that will remain online for 25 years, by only procuring low carbon alternatives.

3. **Studies on the role of green H₂ from RES and nuclear to displace fossil fuels**
 Further investigations of H₂ only business models for RES and nuclear to create low cost H₂ without fossil fuels.

4. **Conduct in depth siting and feasibility studies for nuclear and RES deployment**
 To ensure target deployment can be met.

5. **Assess infrastructure requirements of decarbonisation pathways**
 To assess need, cost, development time and ecological impact for required infrastructure to be deployed in time for assets to online.

6. **Examine the role existing nuclear can play in green H₂ production**
 Co-location of electrolysers with existing nuclear can unlock additional revenue streams whilst providing additional power system flexibility.

7. **Explore support for a construction pipeline of small modular reactors**
 To enable deployment, costs reductions and assess feasibility of large scale deployment.

8. **Explore support options for nuclear business models for power + H₂**
 To compare against other low carbon technologies.

9. **Further investigate the benefits of high temperature nuclear (Gen IV)**
 High temperature reactors could unlock very high H₂ conversion efficiencies using waste heat, with potential for cost reductions.

10. **Development of clear business models for H₂ and CO₂ infrastructure**
 To assess costs and incentivise investment.

Source: Aurora Energy Research
Glossary of terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK-ETS</td>
<td>United Kingdom Emission Trading Scheme</td>
</tr>
<tr>
<td>gCO₂</td>
<td>Gram of carbon dioxide</td>
</tr>
<tr>
<td>GWe</td>
<td>Gigawatt Electricity</td>
</tr>
<tr>
<td>HHV</td>
<td>Higher Heating value</td>
</tr>
<tr>
<td>kWhe</td>
<td>Kilowatt-hour Electricity</td>
</tr>
<tr>
<td>Mt CO₂</td>
<td>Megatonne carbon dioxide</td>
</tr>
<tr>
<td>MWhe</td>
<td>Megawatt-hour Electricity</td>
</tr>
<tr>
<td>TWhe</td>
<td>Terawatt-hour Electricity</td>
</tr>
<tr>
<td>GW H₂</td>
<td>Gigawatt Hydrogen</td>
</tr>
<tr>
<td>kWh H₂</td>
<td>Kilowatt-hour Hydrogen</td>
</tr>
<tr>
<td>MWh H₂</td>
<td>Megawatt-hour Hydrogen</td>
</tr>
<tr>
<td>TWh H₂</td>
<td>Terawatt-hour Hydrogen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCGT</td>
<td>Combined Cycle Gas Turbine</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon capture and storage</td>
</tr>
<tr>
<td>RES</td>
<td>Renewable Energy Sources</td>
</tr>
<tr>
<td>SOE</td>
<td>Solid oxide electrolyser</td>
</tr>
<tr>
<td>Blue H₂</td>
<td>H₂ derived from natural gas with CCS</td>
</tr>
<tr>
<td>Green H₂</td>
<td>H₂ derived from electrolysers</td>
</tr>
<tr>
<td>Hydrogen Gigafactory</td>
<td>Nuclear and electrolysers for dedicated H₂ production with no connection to the electricity grid</td>
</tr>
<tr>
<td>Low-marginal cost</td>
<td>Supply sources with low costs of producing an additional unit of output (i.e. RES and nuclear as they face low fuel costs)</td>
</tr>
<tr>
<td>Capture price</td>
<td>The production weighted average market price achieved</td>
</tr>
<tr>
<td>Merchant</td>
<td>Refers to assets that build without subsidies</td>
</tr>
</tbody>
</table>
Contents

I. Executive summary

II. The need for H₂ in reaching net-zero

III. How is this study different?

IV. Overview of modelled scenarios with H₂, RES and nuclear

V. The impact of differing levels of RES and nuclear on power and H₂ markets

VI. Risks to the transition

VII. Policy implications

VIII. Appendix
The UK is almost half way to net-zero but additional policies are required to meet current targets

GB has been a world leader in reducing emissions, and the first country to introduce a legally binding target of net-zero emissions by 2050 however significant challenges must be overcome to reach net-zero emissions

Total UK Greenhouse Gas Emissions and carbon budgets MtCO₂e

- The Climate Change act (2008) committed the UK to 80% emissions reductions below 1990 levels by 2050 through setting legally binding 5-year carbon budgets advised by the Committee on Climate Change (CCC).
- The UK has seen a 41% decline in emissions since 1990 and has beaten all of its carbon budgets to date.
- This has mainly been driven by decarbonisation in the power sector, initially linked to the switch from coal to gas, and later due to the introduction of the Carbon Price Support, and growth in renewables through subsidies (see next slide).
- Further abatement efforts across the economy are expected to be increasingly challenging, especially outside of the power sector.
- The previous 5 carbon budgets, which covers the period to 2032, were based on the old 80% target for 2050. The 6th carbon budget, published in December 2020, which covers the time period between 2033 – 2037, seeks to align the UK’s trajectory with its recently legislated 2050 net zero target in June 2019.
- The CCC recommend a 78% reduction from 1990 levels across greenhouse gas emissions by 2035 (including international aviation and shipping). This new target essentially brings forward the previous 80% emission reduction target for 2050 forward by 15 years.

1) Nationally Determined Contributions; 2) NDCs excludes international aviation and shipping as per UN convention; 3) International aviation and shipping; 4) CCC’s 6th Carbon budget includes IAS emissions.
Technologies for power sector decarbonisation are plentiful; hydrogen can participate in all sectors even when options are limited

Sectors considered in report

<table>
<thead>
<tr>
<th>Power</th>
<th>Heat</th>
<th>Road transport</th>
<th>Aviation</th>
<th>Shipping</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Power icon]</td>
<td>![Heat icon]</td>
<td>![Road transport icon]</td>
<td>![Aviation icon]</td>
<td>![Shipping icon]</td>
<td>![Industry icon]</td>
</tr>
<tr>
<td>RES, Nuclear</td>
<td>District heating</td>
<td>Electric vehicles</td>
<td>H2</td>
<td>Electric (batteries)</td>
<td>Electric (batteries)</td>
</tr>
<tr>
<td>Gas-CCS</td>
<td>(incl. nuclear waste heat)</td>
<td>H2 fuel cell vehicles</td>
<td>Synfuels</td>
<td>H2</td>
<td>H2</td>
</tr>
<tr>
<td>H2 combustion plants</td>
<td>H2 boilers</td>
<td>Synfuels (via H2)</td>
<td>Synfuels (via H2)</td>
<td>Synfuels (via H2)</td>
<td>Synfuels (via H2)</td>
</tr>
<tr>
<td>Batteries, DSR</td>
<td>Alternative thermal energy storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ease of abatement

- Power: ⬤
- Heat: ⬤
- Road transport: ⬤
- Aviation: ⬤
- Shipping: ⬤
- Industry: ⬤

The challenge

- Many low carbon technologies are available; the key challenge is coping with variable RES output without relying on fossil fuels.
- The majority of UK homes are fitted with gas boilers, with many too inefficient to be compatible with electric heat pumps.
- Costs of electric cars have plunged but uncertainties remain for road freight. H2 fuel cells/or H2 derived synfuels are an alternative but yet to be deployed at scale.
- Orders for current models until the mid 2020s, combined with aircraft lifetimes of 20-30 years could lock-in reliance on fossil fuels for decades.
- Electric vessels could decarbonise short-haul routes but sustainable alternative fuels (SAF) are needed for long-haul routes. Long vessel lifetimes require entry by 2030.
- Many industrial processes (i.e. steel, cement, chemicals and synfuel manufacture) rely on fossil feedstock with complete overhaul of systems and processes required to decarbonise.

Low carbon solutions available

- RES, Nuclear
- Gas-CCS
- H2 combustion plants
- Batteries, DSR
- Electricity (via heat pumps)
- District heating (incl. nuclear waste heat)1
- H2 boilers
- Alternative thermal energy storage
- Electric vehicles
- H2 fuel cell vehicles
- Synfuels (via H2)
- H2
- Synfuels (via H2)
- Electricity (batteries)
- H2
- Synfuels (via H2)
- Electricity (batteries)
- H2
- Synfuels (via H2)

1) District heating using waste heat from nuclear has not been considered in this report.
Hydrogen is emerging as a potential key player to decarbonise multiple hard to abate sectors.
Hydrogen can be produced by a range of low carbon methods, however most H₂ today is currently derived from fossil fuels.

1) Note that the current European Commission definition of green H₂ differs to that used in this report. The EU states that H₂ can only be considered green if created using electricity from new, H₂ production dedicated RES assets that do not provide electricity to the grid
2) No ‘yellow’ electrolysis is seen in the core scenarios and electrolysers only produce when power prices are low.

<table>
<thead>
<tr>
<th>Standard nomenclature</th>
<th>Grey</th>
<th>Blue</th>
<th>Pink</th>
<th>Yellow¹</th>
<th>Yellow²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclature in report</td>
<td>Grey</td>
<td>Blue</td>
<td>Green</td>
<td>Green</td>
<td>Yellow²</td>
</tr>
<tr>
<td>Conversion method</td>
<td>Steam reformation</td>
<td>Steam/autothermal reformation</td>
<td>Electrolysis</td>
<td>Electrolysis</td>
<td>Electrolysis</td>
</tr>
<tr>
<td>Primary energy source</td>
<td>Natural gas</td>
<td>Natural gas</td>
<td>Nuclear electricity and waste heat</td>
<td>Zero carbon grid electricity from RES and nuclear</td>
<td>Non-zero carbon grid electricity</td>
</tr>
<tr>
<td>Technologies modelled in report</td>
<td>Steam methane reformation (SMR)</td>
<td>Steam methane reformation with CCS (SMR+CCS)</td>
<td>Zero carbon grid electricity from RES and nuclear</td>
<td>Alkaline electrolyte membrane (ALK)</td>
<td>Alkaline electrolyte membrane (ALK)</td>
</tr>
<tr>
<td></td>
<td>Autothermal reformation with CCS (ATR+CCS)</td>
<td>High temperature solid oxide electrolysis (SOE)</td>
<td>Polymer electrolyte membrane (PEM)</td>
<td>Polymer electrolyte membrane (PEM)</td>
<td></td>
</tr>
<tr>
<td>Emissions intensity, kgCO₂/kgH₂</td>
<td>8 – 12</td>
<td>0.6 - 1</td>
<td>0</td>
<td>0</td>
<td>0 - 9</td>
</tr>
</tbody>
</table>

¹) Note that the current European Commission definition of green H₂ differs to that used in this report. The EU states that H₂ can only be considered green if created using electricity from new, H₂ production dedicated RES assets that do not provide electricity to the grid.
²) No ‘yellow’ electrolysis is seen in the core scenarios and electrolysers only produce when power prices are low.

Sources: Aurora Energy Research, IEA, CE Delft, NREL, NETL, EC JRC-IE
Contents

I. Executive summary
II. The need for H_2 in reaching net-zero

III. How is this study different?

IV. Overview of modelled scenarios with H_2, RES and nuclear

V. The impact of differing levels of RES and nuclear on power and H_2 markets

VI. Risks to the transition

VII. Policy implications

VIII. Appendix
Aurora’s in-house Net Zero view sees strong deployment of RES capacity, with wind making up >50% of generation in 2050

- Aurora forecasts demand to more than double by 2050 to meet rising electricity demand, driven by the decarbonisation of sectors including heat and transport via electrification and hydrogen via electrolysis. The core scenarios modelled in this report see a 68% - 103% increase in electricity demand.
- Power capacities are similarly required to increase due to the replacement of unabated thermal plants which run at high capacity factors of over 80% with RES, which run at comparatively lower load factors and require additional battery storage and peaking capacities.
- GB does not match the specific support for electrolytic H₂ seen in other European countries like Germany and 60% H₂ supply in 2050 is forecast to come from fossil based blue H₂.

GB power Production in 2050 – Aurora Net Zero

<table>
<thead>
<tr>
<th>Capacity (GW)</th>
<th>Generation (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>2050</td>
</tr>
<tr>
<td>107</td>
<td>257</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>59</td>
</tr>
<tr>
<td>28</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
</tr>
<tr>
<td>12</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>61</td>
</tr>
</tbody>
</table>

GB hydrogen Production in 2050 – Aurora Net Zero

<table>
<thead>
<tr>
<th>Capacity (GW H₂)</th>
<th>Generation (TWh H₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>2050</td>
</tr>
<tr>
<td>5</td>
<td>365</td>
</tr>
<tr>
<td>9</td>
<td>221</td>
</tr>
<tr>
<td>5</td>
<td>117</td>
</tr>
<tr>
<td>28</td>
<td>117</td>
</tr>
<tr>
<td>21</td>
<td>117</td>
</tr>
</tbody>
</table>

- Our in-house Net Zero scenario reflects all recent government targets, including the Energy White Paper’s 40GW of offshore wind and capture of 10 MtCO₂ via CCS by 2030.
- Installed power capacity increases by 150 GW across the horizon, driven by rapid growth of renewable and peaking capacity.
- Hydrogen capacity increases by almost 20x across the horizon, with electrolysers and ATR+CCS being key contributors to hydrogen production in the long-term.
- The scenarios modelled in this report do not represent Aurora’s forecasts but instead explore the implications of high nuclear systems.

1) Low carbon flex includes DSR, battery storage, hydrogen peakers, hydrogen CCGT, pumped storage
2) Other RES includes biomass, BECCS, EfW and marine; 3) Unabated thermal includes CCGTs, gas peaking, embedded CHP.

Source: Aurora Energy Research, BEIS Energy White Paper
The majority of studies on the future of the hydrogen sector in GB focus electrolytic H₂ from RES and fossil based H₂ with CCS. The potential for nuclear to participate in the H₂ economy is often not considered due to high costs of recent assets and lack of clear policy direction leading to planned projects being put on hold. This study investigates how policy support for new nuclear technologies and business models to provide low carbon electrolytic H₂ could reduce nuclear and system costs whilst reducing reliance on fossil fuels when deployed alongside RES on the path to net-zero.

Research questions

1. **Routes to decarbonise**
 Can total system costs and emissions be reduced by including nuclear in a net-zero strategy?

2. **The hydrogen economy**
 How could renewables and new nuclear technologies influence the hydrogen economy?

3. **The role of nuclear**
 Can new nuclear business models and technologies with co-located H₂ production provide flexibility to the grid, displace reliance on fossil fuels and improve nuclear economics?

Modelling approach

1. Integrated in-house modelling simultaneously solves for supply mixes in power and hydrogen markets

2. Use of a capacity market with a high carbon price to incentivise economic entry of low carbon capacity

3. Modelling new nuclear technologies and business models in the power sector

4. Economic entry of hydrogen supply from nuclear

5. Discussion of the implications of each modelled scenario for policy and consumers in addition to the risks associated with achieving net-zero
This study utilises our integrated modelling suite to capture market interactions and impacts of deploying RES and nuclear

1 Integrated in-house modelling and economic entry of capacity in power and hydrogen markets

Overview of Aurora’s modelling suite

Aurora’s analytical approach is based on an integrated framework that covers the entire energy system, using:

- internally consistent gas, power and H₂ demand scenarios for heat, transport and industry
- commodity price forecasts that reflect a Net Zero outlook for Europe
- a modelling suite that highlights feedback loops across H₂ and power markets.

By integrating H₂ and power market modelling, Aurora’s approach captures the interactions of power and H₂.

Source: Aurora Energy Research
A revised Capacity Market is used to deploy low carbon capacity but has limited effectiveness in fully merchant low marginal cost systems

How is this study different?

- The Capacity Market (CM) awards contracts, paid to existing (1yr) and new-build (15yr, 1yr) assets on a £/kW basis in a pay-as-clear auction, to ensure there is sufficient capacity to meet demand.

- De-rating factor are applied to each technology to reflect their contribution to security of supply and influences the size of the payment received and the volume of capacity procured each year.

- Typically, the CM payment covers any shortfall in forecast revenue from wholesale and balancing markets, and ancillary services required to keep existing capacity online or enable entry of new capacity.

- In this modelling exercise, all capacity entering post-2030 in the core market scenarios is assumed to enter economically on a merchant basis (i.e. without direct subsidy support) based on returns available in model and the use of the CM has been expanded to procure low carbon capacity by assuming declining de-rating factors for unabated thermal assets.

- As the CM is the only tool providing contracted revenues to top-up any shortfalls in wholesale and balancing markets, this modelling approach favours the build of firm dispatchable capacity to meet supply targets (i.e. nuclear, gas-CCS) over RES that contributes less to security of supply.

- Merchant RES build-out in systems with high shares of low-marginal cost supply and a low carbon CM will inherently be low.

Note that the current administrative CM price cap of £75/kW has been removed for this exercise.

Source: Aurora Energy Research
Economic entry of RES and nuclear under a range of business models have been considered in this report

Modelling new nuclear technologies and business models in the power sector

Revenue streams for new capacity (illustrative)

<table>
<thead>
<tr>
<th></th>
<th>£/kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standalone RES</td>
<td></td>
</tr>
<tr>
<td>RES + electrolyser</td>
<td></td>
</tr>
<tr>
<td>Standalone nuclear</td>
<td></td>
</tr>
<tr>
<td>Nuclear + electrolyser (3:1)</td>
<td></td>
</tr>
<tr>
<td>Nuclear Gigafactory (electrolyser)</td>
<td></td>
</tr>
</tbody>
</table>

- Most RES capacity in GB has been deployed via direct support i.e. CfDs, however merchant business models, especially with PPA contracts are increasing.
- Dedicated RES for H₂ co-located with electrolysers do not deploy in this modelling without very high RES deployment but mechanisms could be introduced to facilitate these business models.
- New nuclear in GB has recently been supported with a CfD but other options are being explored (i.e. RAB model).
- The majority of new nuclear in this modelling builds with a co-located electrolyser for H₂ as this enables nuclear to secure higher value for power output in H₂ markets when electricity prices are low.
- Colocation of RES or nuclear with electrolysers could reduce market risk and therefore discount rates, however this has not been modelled in this report.

Overview of modelled nuclear business models

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit size (MWₑ)</th>
<th>Electrolyser pairing</th>
<th>H₂ conversion efficiency (% HHV)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing nuclear: large scale (gen III)</td>
<td>c.1500</td>
<td>PEM/Alkaline</td>
<td>75%</td>
<td>Hinkley Point C and Sizewell B are assumed to install onsite electrolysers in 2030.</td>
</tr>
<tr>
<td>Large scale (gen III)</td>
<td>c.1500</td>
<td>Solid oxide</td>
<td>107%</td>
<td>Same underlying technology but smaller unit sizes facilitate siting closer to demand centres.</td>
</tr>
<tr>
<td>Small scale (gen III)</td>
<td><300</td>
<td>Solid oxide</td>
<td>107%</td>
<td></td>
</tr>
<tr>
<td>Large/small scale (gen IV)</td>
<td>c.1500 /<300</td>
<td>Solid oxide</td>
<td>114%</td>
<td>High temp. reactors allow greater efficiency of electrolysis using high grade heat.</td>
</tr>
<tr>
<td>Gigafactory (gen IV)</td>
<td>Min. 1000</td>
<td>Solid oxide</td>
<td>114%</td>
<td>Dedicated H₂ production facility with nuclear & electrolysers near H₂ demand sources.</td>
</tr>
</tbody>
</table>

1) Contract for Difference 2) Power Purchase Agreement (PPA) 3) MWh electric to MWh H₂ conversion, values greater than 100% achieved for solid oxide electrolysers due to the added energy input from heat.

Source: Aurora Energy Research
Contents

I. Executive summary
II. The need for H₂ in reaching net-zero
III. How is this study different?
IV. Overview of modelled scenarios with H₂, RES and nuclear
V. The impact of differing levels of RES and nuclear on power and H₂ markets
VI. Risks to the transition
VII. Policy implications
VIII. Appendix
Overview of modelled scenarios with H₂, RES and nuclear

8 core market scenarios explore 4 alternative nuclear supply pathways under two H₂ demand outlooks

Modelled GB market scenarios

<table>
<thead>
<tr>
<th>Core scenarios</th>
<th>1. No new nuclear</th>
<th>2. Existing nuclear techs</th>
<th>3. New nuclear techs</th>
<th>4. Strong nuclear strategy</th>
</tr>
</thead>
</table>

- **Core scenarios** assume all technologies to compete for economic entry from 2030, with emissions reductions driven by carbon prices and restrictions on unabated thermal in the capacity market.

- **Weather year sensitivities:** Redispatch of 2040 only against 10 additional historic weather year profiles using the power and hydrogen market supply mix under the High H₂ demand scenarios.

- **Hydrogen storage sensitivities:** Full scenario sensitivities testing 3x hydrogen storage infrastructure capacities.

- **Continued RES support sensitivities:** Full scenario sensitivities using the same methodology but more closely aligned with policy intention. This is captured via higher levels of assumed offshore wind deployment. All other assumptions held equal.

Sensitivity analysis

- Increasing nuclear ambition

<table>
<thead>
<tr>
<th>Low H₂ demand</th>
<th>High H₂ demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>#L</td>
<td>#H</td>
</tr>
</tbody>
</table>

Results from these high H₂ demand scenarios are shown as standard unless specified.

The scenarios that follow are exploratory scenarios to investigate the role of nuclear and H₂ in reaching net-zero and are not forecasts.

1) Core scenario modelling results are explored in detail in Section V; 2) Sensitivity analysis is presented in Section VI.

Source: Aurora Energy Research
Overview of core market scenario assumptions

<table>
<thead>
<tr>
<th>Key assumptions</th>
<th>1. No new nuclear</th>
<th>2. Existing nuclear techs</th>
<th>3. New nuclear techs</th>
<th>4. Strong nuclear strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity demand<sup>1</sup></td>
<td>2021: 312 TWh rising to 2050: 445 TWh (High H<sub>2</sub>), 496 TWh (Low H<sub>2</sub>)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>2</sub> demand</td>
<td>2021: 28 TWh H<sub>2</sub> rising to 2050: 508 TWh H<sub>2</sub> (High H<sub>2</sub>), 210 TWh H<sub>2</sub> (Low H<sub>2</sub>)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>2</sub> storage</td>
<td>2050: 26 TWh H<sub>2</sub> (High H<sub>2</sub>), 18 TWh H<sub>2</sub> (Low H<sub>2</sub>), Includes salt caverns and pipelines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commodities</td>
<td>Gas: Base case, Carbon price: Base case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear business models</td>
<td>Hinkley Point C and Sizewell B are co-located with PEM electrolysers</td>
<td>LWSMR co-located with SOE electrolysers</td>
<td>New large nuclear co-located with SOE electrolysers</td>
<td>Gen IV co-located with SOE electrolysers, Gigafactory of gen IV reactors and SOE electrolysers exclusively for H<sub>2</sub> production</td>
</tr>
<tr>
<td>Nuclear costs</td>
<td>Base</td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Policy support</td>
<td>Capacity Market: All technologies are allowed to participate with de-rating factors reflecting contribution to security of supply. Unabated thermal can only secure 1yr contracts post-2030 and their de-rating factors decline from 90% in 2030 to 10% by 2050.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other: Existing subsidies applied, and a further 9.3 GW offshore wind supported by CfDs to reach 40GW deployment by 2030. Unabated CCGTs are not allowed to build post-2030.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build decisions</td>
<td>Economic entry of capacity assuming 5% discount rates for low carbon technologies (incl. nuclear, RES, gas-CCS, all H<sub>2</sub> production technologies, hydrogen CCGTs and hydrogen OCGTs) and 11% for other technologies.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the high H₂ demand scenarios are shown as default in the main body of the report unless specified. Please see Appendix for detailed assumptions.

¹ Excluding demand from electrolysers for H₂.

Source: Aurora Energy Research
Two internally consistent hydrogen demand scenarios are modelled, with implications for power demand

GB annual power demand by sector

<table>
<thead>
<tr>
<th>Year</th>
<th>Electric Vehicles</th>
<th>Electric Heating</th>
<th>Base power demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>312</td>
<td>283</td>
<td>281</td>
</tr>
<tr>
<td>2025</td>
<td>326</td>
<td>286</td>
<td>284</td>
</tr>
<tr>
<td>2030</td>
<td>332</td>
<td>265</td>
<td>267</td>
</tr>
<tr>
<td>2035</td>
<td>369</td>
<td>270</td>
<td>279</td>
</tr>
<tr>
<td>2040</td>
<td>424</td>
<td>292</td>
<td>306</td>
</tr>
<tr>
<td>2045</td>
<td>466</td>
<td>307</td>
<td>327</td>
</tr>
<tr>
<td>2050</td>
<td>496</td>
<td>327</td>
<td></td>
</tr>
</tbody>
</table>

1) Excludes power demand from electrolysers for \(\text{H}_2 \) production as this is a model output. Total system demand increases 68-103% from 2021 to 2050 across the core scenarios.

GB annual hydrogen demand by Sector

<table>
<thead>
<tr>
<th>Year</th>
<th>Industry</th>
<th>Transport</th>
<th>Heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>2025</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>2030</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2035</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>2040</td>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>2045</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>2050</td>
<td>210</td>
<td>210</td>
<td>210</td>
</tr>
</tbody>
</table>

1) Excludes power demand from electrolysers for \(\text{H}_2 \) production as this is a model output. Total power demand therefore varies in each market scenario.

Source: Aurora Energy Research
Assumed capacity deployment in the power and H₂ is consistent across scenarios; all other capacity decisions are solved in model.

GB assumed power capacity timelines across all scenarios

1 GW

<table>
<thead>
<tr>
<th>Year</th>
<th>Interconnectors</th>
<th>Other RES</th>
<th>Solar PV</th>
<th>Onshore wind</th>
<th>Gas CCS</th>
<th>Offshore wind</th>
<th>Large nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>8</td>
<td>46</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>2030</td>
<td>11</td>
<td>28</td>
<td>7</td>
<td>14</td>
<td>6</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>2040</td>
<td>11</td>
<td>18</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>2050</td>
<td>13</td>
<td>18</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>15</td>
<td>11</td>
</tr>
</tbody>
</table>

GB assumed hydrogen capacity timeline across all scenarios

1 GW

<table>
<thead>
<tr>
<th>Year</th>
<th>Interconnectors</th>
<th>Other RES</th>
<th>Solar PV</th>
<th>Onshore wind</th>
<th>Gas CCS</th>
<th>Offshore wind</th>
<th>Large nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2030</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2040</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2050</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **RES** – assumed capacity is constant from 2030 in all scenarios.
- **Nuclear** – existing capacity retires by 2030 except Sizewell B (2055). Hinkley Point C (HPC) enters from 2028.
- **Thermal** - Existing thermal assets may retire if insufficient revenues are secured in model. Coal assets must retire by 2024.
- **BECCS** – capacity is assumed to enter to secure “negative emissions”.

- Current H₂ supply is sourced from SMRs.
- 50% of H₂ transport demand is met by PEM electrolysers at fuel cell charging stations that do not interact with the market.
- Known blue H₂ pilot plants are assumed for entry by 2030
- H₂ storage in the form of pipelines and salt caverns is assumed.
- BECCS for H₂ production is also assumed to secure “negative emissions”.

Any additional capacity required to meet demand is built within model based on profitability of individual plants under each scenario.

All assumed capacity is incorporated in total system cost calculations.

Source: Aurora Energy Research
Contents

I. Executive summary

II. The need for \(H_2 \) in reaching net-zero

III. How is this study different?

IV. Overview of modelled scenarios with \(H_2 \), RES and nuclear

V. The impact of differing levels of RES and nuclear on power and \(H_2 \) markets
 1. System level impacts
 2. Power market impacts
 3. \(H_2 \) market impacts

VI. Risks to the transition

VII. Policy implications

VIII. Appendix
The impact of differing levels of RES and nuclear on power and H₂ markets - System level impacts

High nuclear scenarios lead to higher power demand than low H₂ scenarios, driven by increased demand from electrolytic H₂

- High nuclear penetration not only enables stable production of H₂ from collocated electrolysers, it also increases hydrogen production via standalone electrolysers by providing cheap power to the grid at high load factors.

- Despite resulting in higher energy demand, high levels of nuclear open up pathways to Net Zero with lower systems costs and emissions.

Source: Aurora Energy Research
The impact of differing levels of RES and nuclear on power and H₂ markets - System level impacts

Systems with higher levels of nuclear deployment lead to lower emissions from the power and hydrogen sectors

- Scenario 4H achieves net zero with the lowest emissions and fuel use.
- 1H has the highest fuel use due to high RES intermittency.
- Potential to cancel out up to 36 MtCO₂ annually by considering negative emissions from sustainable biomass paired with CCS.
- Fossil fuel usage is reduced dramatically as nuclear is added to the mix, with 4H having one third the reliance on gas of scenario 1H.

GB cumulative power and H₂ emissions from 2021-50 MtCO₂

GB cumulative power and H₂ gas usage from 2021-50 TWhth HHV

GB power and H₂ sector emissions in 2050 excluding BECCs MtCO₂

GB total power and H₂ gas usage in 2050 TWhth HHV

Source: Aurora Energy Research
Electricity prices are the single biggest driver of deltas in system costs and outweigh deltas in infrastructure and support costs.

GB NPV total system spend from 2021 – 2050

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Electricity</th>
<th>Hydrogen</th>
<th>CO2</th>
<th>Support Costs</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H. No new nuclear</td>
<td>181</td>
<td>43</td>
<td></td>
<td>113</td>
<td>325</td>
</tr>
<tr>
<td>2H. Existing nuclear techs</td>
<td>642</td>
<td>110</td>
<td></td>
<td>110</td>
<td>308</td>
</tr>
<tr>
<td>3H. New nuclear techs</td>
<td>638</td>
<td>158</td>
<td></td>
<td>110</td>
<td>310</td>
</tr>
<tr>
<td>4H. Strong nuclear strategy</td>
<td>617</td>
<td>168</td>
<td></td>
<td>111</td>
<td>284</td>
</tr>
</tbody>
</table>

Key drivers

- **Electricity market spending** is the key driver of total system spend across scenarios and is directly linked to the supply mix. Scenarios with a high share of RES and nuclear dampen electricity prices, whereas scenarios that rely on more expensive fossil based sources for baseload and flexibility see higher electricity prices.

- **Hydrogen market spending** is similar across scenarios as prices are typically set by blue H\(_2\) and strongly correlated with gas prices. Lower costs in 4H are driven by nuclear derived electrolytic H\(_2\) meeting demand in summer.

- **Support costs** are strongly linked to electricity market prices as low wholesale market revenues lead to higher top-ups for existing contracts (CfDs) and higher CM payments for new capacity to break even. The need for higher support costs in 4H due to low electricity prices is counteracted by lower costs for nuclear and a smaller system overall.

- **Infrastructure costs** are similar across all core scenarios as systems are of a similar size and H\(_2\) and CO\(_2\) costs are volumetric. H\(_2\) and CO\(_2\) costs could vary much more depending on proximity of supply to demand.

Overview of cost items

- **Electricity market**: wholesale and balancing market price multiplied by volume.
- **Hydrogen market**: hydrogen market price multiplied by volume.
- **Support costs**: Capacity Market (CM), existing schemes (i.e. CfD) and any top-ups required for assumed capacity to break even.
- **Electricity network**: investment required to maintain and expand the transmission and distribution grids as new capacity is added.
- **H\(_2\) and CO\(_2\) infrastructure**: the capital investment required to transport and store the H\(_2\) and captured CO\(_2\) respectively from power and H\(_2\) generation only.

1) Costs are discounted using a rate of 5%
2) See appendix for further details on methodology.

Source: Aurora Energy Research
Contents

I. Executive summary

II. The need for H_2 in reaching net-zero

III. How is this study different?

IV. Overview of modelled scenarios with H_2, RES and nuclear

V. The impact of differing levels of RES and nuclear on power and H_2 markets
 1. System level impacts
 2. Power market impacts
 3. H_2 market impacts

VI. Risks to the transition

VII. Policy implications

VIII. Appendix
Deploying RES alongside nuclear could reduce power system reliance on fossil fuels to just 3% of supply in the strong nuclear strategy case

GB installed capacity in 2050

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Capacity (GW)</th>
<th>1H. No new nuclear</th>
<th>2H. Existing nuclear techs</th>
<th>3H. New nuclear techs</th>
<th>4H. Strong nuclear strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>265</td>
<td>245</td>
<td>244</td>
<td>253</td>
</tr>
<tr>
<td>Nuclear</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Other RES</td>
<td>60</td>
<td>61</td>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Low carbon flex</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Unabated thermal</td>
<td>28</td>
<td>18</td>
<td>22</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Interconnectors</td>
<td>48</td>
<td>40</td>
<td>42</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Offshore wind</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Gas CCS</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Small Modular Reactor</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Large nuclear</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Gen IV with electrolyser</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

GB electricity production and net imports in 2050

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Production (TWh)</th>
<th>1H. No new nuclear</th>
<th>2H. Existing nuclear techs</th>
<th>3H. New nuclear techs</th>
<th>4H. Strong nuclear strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>590</td>
<td>60</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Nuclear</td>
<td>80</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Other RES</td>
<td>214</td>
<td>16</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Low carbon flex</td>
<td>48</td>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Unabated thermal</td>
<td>214</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Interconnectors</td>
<td>48</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Offshore wind</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Gas CCS</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Small Modular Reactor</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Large nuclear</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Gen IV with electrolyser</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

- 1H with no new nuclear sees just 66% supply met by RES and nuclear and relies on fossil fuels for 28% of supply. Enabling new nuclear to co-locate with electrolysers for H₂ production could drastically reduce reliance on fossil fuels. By comparison, 3H enables 90% generation to be met by nuclear (53%) and RES (37%) and just 6% provided by fossil fuels. Low nuclear costs assumed in 4H enable 95% generation to be met via nuclear and RES with just 3% from fossil fuels.

- The low nuclear costs in 4H enable small modular and gen IV reactors to be cost competitive with large reactors, displacing 5 GW large reactors and 18 GW small and gen IV reactors.

- Limited RES build out is observed in all new nuclear scenarios due to low capture prices and higher returns for dispatchable capacity.

- Enabling substantial nuclear deployment can reduce overall system size by 8% in 3H relative to 1H as less overall capacity is required to meet demand. This is offset slightly in 4H where the increased levels of low marginal cost generation facilitate greater utilisation of electrolysers for H₂ and a resulting 6% increase in power demand, resulting in a larger system size. This has implications on land use and network costs.

Source: Aurora Energy Research

1) Low carbon flex includes DSR, battery storage, hydrogen peakers, hydrogen CCGT, pumped storage 2) Other RES includes biomass, BECCS, EfW and marine; 3) Unabated thermal includes CCGTs, gas peaking, embedded CHP.
Three key factors determine power prices, with high penetration of RES and nuclear leading to lower prices

1. Commodity prices
 - When commodity prices increase, so does the short run marginal costs of conventional plants (CCGTs, coal plants, etc...), exerting an upward pressure on power market prices.

2. Demand
 - The demand level will substantially affect market prices.

3. System composition
 - Renewable deployment pushes away conventional thermal plants in the merit-order, thereby depressing market prices.

Power plants short-run marginal cost (SRMC) £/MWh

- Renewable technologies like solar, wind, and hydro are "low marginal cost" technologies due to zero or low fuel costs.
- Storage marginal costs vary depending on the price paid to store energy, due to the need to capture sufficient spreads between charge and discharge costs.
- Thermal assets have the highest SRMC driven by fuel and carbon costs.

Source: Aurora Energy Research
The low marginal cost of nuclear generation keeps it almost always in merit.

Large volumes of nuclear generation push more expensive thermal generation out of merit, allowing a cheaper technology to set the price.

This leads to the wholesale baseload price in 2050 in Scenario 4H to be half of that in Scenario 1H.

Scenario 4H sees prices below £20/MWh for more than half the settlement periods in 2045.

None of the scenarios see negative prices by 2045 due to the lack of remaining RES assets with high subsidy payments or thermal that doesn't ramp down in face of low prices.

Higher levels of nuclear generation lead to a greater frequency of low price periods

GB wholesale electricity price
£/MWh (real 2019)

• In 1H. No new nuclear, 25% demand is met via gas-CCS, which has a higher marginal cost than RES or nuclear, raising the middle portion of prices.

• In 4H. Strong nuclear strategy, nuclear makes up c.58% of supply by 2050, enabling very low power prices <£15/MWh 70% of the time.

• Very high prices of over £400/MWh are driven by very tight supply when there is little spare capacity available in the system but occur less than 1% of the time.

GB power price distribution curve (PDC) in 2045
£/MWh

Source: Aurora Energy Research
Nuclear can meet baseload requirements, reducing the reliance on fossil fuelled gas-CCS by 3 TWh in one sample winter week alone

- During the winter solar generation in GB is minimal, so wind is the dominant source of renewable power generation, but it is not dispatchable.
- The sample winter week which sees a high price point corresponding to system tightness/strain due to somewhat low instantaneous wind output during a period of high demand.
- Due to large amounts of cheap baseload low carbon generation, Scenario 4H is able to cope with system stress without gas peakers, keeping prices and emissions lower than in 1H. The contribution of nuclear to system resilience will be explored further in future weather sensitivity analysis.
- The many nuclear plants in 4H displace gas ccs as the dominant baseload supply, and are a more reliable source of clean power, as they are less likely to be pushed out of merit due to their low marginal cost.
I. Executive summary

II. The need for H₂ in reaching net-zero

III. How is this study different?

IV. Overview of modelled scenarios with H₂, RES and nuclear

V. The impact of differing levels of RES and nuclear on power and H₂ markets
 1. System level impacts
 2. Power market impacts
 3. H₂ market impacts

VI. Risks to the transition

VII. Policy implications

VIII. Appendix
Low nuclear costs and economic entry of a hydrogen Gigafactory enable reliance on fossil H_2 to drop to 6% by 2050

GB installed capacity in 2050

<table>
<thead>
<tr>
<th>Scenario</th>
<th>H_2 Capacity (GW)</th>
<th>Nuclear (GW)</th>
<th>Coal (GW)</th>
<th>Gas (GW)</th>
<th>RE (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H. No new nuclear</td>
<td>83</td>
<td>59</td>
<td>18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2H. Existing nuclear techs</td>
<td>84</td>
<td>48</td>
<td>21</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3H. New nuclear techs</td>
<td>86</td>
<td>41</td>
<td>26</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>4H. Strong nuclear strategy</td>
<td>85</td>
<td>18</td>
<td>22</td>
<td>5</td>
<td>40</td>
</tr>
</tbody>
</table>

GB gross H_2 production in 2050

<table>
<thead>
<tr>
<th>Scenario</th>
<th>H_2 Production (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H. No new nuclear</td>
<td>508</td>
</tr>
<tr>
<td>2H. Existing nuclear techs</td>
<td>371</td>
</tr>
<tr>
<td>3H. New nuclear techs</td>
<td>293</td>
</tr>
<tr>
<td>4H. Strong nuclear strategy</td>
<td>323</td>
</tr>
</tbody>
</table>

- All scenarios with the exception of 4H have a high reliance on blue H_2 made from fossil gas with CCS. This is responsible for 73% of supply in 2050 in 1H and remains a significant source of H_2 in 2H and 3H. Variability in RES output, combined with low levels of excess RES lead to unfavourable economics for non-nuclear derived green H_2 relative to fossil based blue H_2.
- In contrast, strong support for a nuclear pipeline could enable the construction of a nuclear gigafactory consisting of many small nuclear reactors dedicated to H_2 production via SOEs can reduce reliance on fossil fuels for H_2 production to just 6% by 2050.
- The "negative carbon emissions" associated with BECCS are expected to be highly valuable and attributed to hard to abate sectors. This capacity is therefore assumed in model as it is likely to be driven by policy or valuable carbon credits.

Source: Aurora Energy Research

1) Majority of PEM electrolyser capacity and generation shown here correspond to re-fuelling stations providing pure H_2 for hydrogen-powered vehicles. These are treated separately and do not contribute to market dynamics shown in the following slides.
The availability of large volumes of low cost nuclear derived enable H₂ price reductions of c.1/3 due to the low costs of input heat and electricity relative to:

- Fossil gas for blue H₂ production
- Grid electricity prices for green/yellow H₂, particularly in winter.

The low marginal cost of nuclear derived H₂ displaces blue and yellow H₂ from the supply mix, enabling the rapid growth in H₂ demand being met with fewer cumulative emissions.

Emissions rise in all scenarios in the 2040s due to substantial increases in forecasted hydrogen demand and residual emissions from blue hydrogen, with the notable exception of 4H.
Nuclear H$_2$ has the potential to meet demand at low prices throughout the summer, with marginal blue H$_2$ used in winter.

In 1H the supply stack in 2045 is dominated by blue hydrogen. This sets the price around the £40/MWh H$_2$ in both summer and winter.

As more nuclear comes onto the system the blue hydrogen production technologies are shifted up the merit order.

In 4H, nuclear derived H$_2$ sets the very low prices in summer with blue H$_2$ setting prices in winter.

Storage is not included in the merit order as it does not capture how and when storage would decide to discharge, with other factors like opportunity costs and recovering the cost of charging requiring consideration.

1) Average hydrogen demand from April to September 2045; 2) Average hydrogen demand from January to March and October to December 2045.

Source: Aurora Energy Research
H₂ storage consistently discharges in winter when demand is high and charges in summer months when demand and prices are low.

- Seasonality in H₂ storage levels is driven by selling H₂ to meet high winter demand for heating, followed by stockpiling during summer months, when hydrogen demand is lower.
- Storage utilisation is similar across all scenarios.
- In scenarios 1-3, blue hydrogen technologies set the price throughout the year.
- The very high penetration of nuclear derived H₂ in 4.H enabled by hydrogen gigafactories, allows all demand in summer months to be met by nuclear derived H₂, resulting in very low prices of c.£14/MWh H₂.
The majority of demand is met by blue \(\text{H}_2 \), with most dynamic use of storage in 4L where the share of green \(\text{H}_2 \) is greatest.

- Fossil based blue \(\text{H}_2 \) plays an important role in achieving the volume of \(\text{H}_2 \) required in all scenarios bar 4H, ramping up in the winter to meet peak heating demand along with storage.
- Nuclear derived electrolytic \(\text{H}_2 \) is a cheaper alternative that is able to displace blue \(\text{H}_2 \), providing a stable supply of Hydrogen throughout the year.
- This is most evident in scenario 4H, due to the deployment of nuclear \(\text{H}_2 \) gigafactories.
- RES and grid derived electrolytic \(\text{H}_2 \) are not able to consistently meet fluctuating \(\text{H}_2 \) demand throughout the year when competing with blue \(\text{H}_2 \).

Source: Aurora Energy Research
Contents

I. Executive summary

II. The need for H₂ in reaching net-zero

III. How is this study different?

IV. Overview of modelled scenarios with H₂, RES and nuclear

V. The impact of differing levels of RES and nuclear on power and H₂ markets

VI. Risks to the transition

VII. Policy implications

VIII. Appendix
Policy objectives and investment requirements must be met in order to deploy low carbon supply and limit risks to the transition

Government objectives

1. **Decarbonisation**: Mitigate climate change and decrease emissions via policies that increase low carbon supply i.e. rising carbon prices that increase revenues for low carbon techs, direct support for low carbon techs, wider facilitation of low carbon systems.

2. **Security of Supply**: Objective to deliver energy security by ensuring adequate power capacity is available during peak times from a variety of technologies. The Capacity Market was created as the primary mechanism to achieve this.

3. **Minimising cost**: Objective to minimise cost to consumers through efficient markets and low-carbon support measures, household energy efficiency, and encouraging competition among suppliers.

Investment requirements

4. **Revenue certainty**: Meet required returns via markets designed to support low carbon techs and additional value streams with long term contracts (i.e. CM, ancillary services, CfD) to account for market shortfalls. This reduces investor risk and therefore financing costs.

5. **Policy roadmap**: Required for clarity on future market developments, planning approval, development of a project pipeline and supply chains.

6. **Wider infrastructure**: High level planning for system infrastructure to ensure requisite infrastructure is in place in time for assets to be deployed.

Source: Aurora Energy Research
An assessment of risks in not achieving net-zero must be undertaken

Policy & market design
- Low marginal cost systems yield low revenues and low carbon techs won't deploy without support under current market design.
- This led to low RES deployment in the core scenarios however introducing additional supported RES did not increase system costs.
- Unclear policy increases uncertainty, investor risk and the likelihood of projects not being delivered due to insufficient project pipelines.
- Inefficient market design may lead to suboptimal supply mixes being locked in for decades due to asset lifetimes.

System resilience & emissions
- Capacity is needed to meet demand during prolonged periods of low RES output.
- Without direct limitations on emissions intensive technologies.
- Climate change leads to increasingly unpredictable weather, potentially exacerbating risk of unexpected high emissions and fossil fuel use in high RES systems.
- Weather year sensitivities, using 10 years of historic weather data, found that systems with low nuclear penetration were more likely to see higher fossil fuel usage than high nuclear scenarios due to the reliance on fossil fuels for flexibility.

Infrastructure requirements
- Insufficient assessment of the requirements for very large systems at an early stage may result in unforeseen limits on deployment of low carbon techs in future.
- The H₂ and CO₂ transport and storage infrastructure is dependent on demand, with short haul transport of pure H₂ for transport and industry vs a large pipeline network for H₂ use in heating with decisions on infrastructure pathways required well in advance of deployable need.
- Infrastructure must be built before new supply can be connected, however large infrastructure projects often take a long time to deploy and are subject to cost and time overruns.

Costs
- An uncoordinated approach to decarbonisation may limit the scale of cost reductions or even increase project costs.
- Although technology cost declines have historically been underestimated, costs associated with deploying very high levels of low carbon tech may rise due to limited resource and site availability.
- The full infrastructure costs of decarbonisation pathways should be assessed to determine lowest cost pathways to net-zero and prevent unexpectedly high infrastructure investment costs in future when alternative options are limited.

Source: Aurora Energy Research
High RES net-zero systems in line with government ambition can be achieved at no additional cost with direct support for RES capacity

- To reflect government ambition for high RES systems, 3H RES assumes additional subsidised RES deployment beyond 2030. All other assumptions are equal to 3H.
- Despite resulting in a larger system capacity, 3H RES still reaches net-zero with similar system costs relative to 3H.
- This is driven by the very high share of low marginal cost supply on the system remaining relatively consistent between scenarios as electricity prices are the biggest driver for differences in total system costs.
- The large amounts of offshore wind generation on the system improve the economics of alkaline electrolysers in 3H RES reducing the total share of blue hydrogen.

1) Low carbon flex includes DSR, battery storage, hydrogen peakers, hydrogen CCGT, pumped storage 2) Other RES includes biomass, BECCS, EfW and marine; 3) Unabated thermal includes CCGTs, gas peaking, embedded CHP.

Source: Aurora Energy Research
High nuclear scenarios are more resilient to higher than expected emissions and fossil fuel usage under different weather patterns

The core scenarios modelled in this report use historic weather patterns from 2013 to inform the profiles of RES generation and demand in the model and single year sensitivities using GB weather patterns from 2006-2016 were applied to test resilience to emissions and fuel use.

Variations in fuel use and emissions are lowest in 4H, where a high penetration of nuclear capacity co-located with electrolysers provides flexibility to the system to meet changing RES output. The variation is higher in the high RES scenarios, 1H RES and 3H RES, due to greater reliance on fossil fuels via gas-CCS or gas peaking plants to provide flexibility.

Whilst the variations are modest, at <1 MtCO$_2$e, using historic weather patterns does not simulate the effects of extreme weather events such as wind droughts that are more likely in future as a result of climate change.

A supply mix that combines RES and nuclear with limited reliance on fossil fuels for flexibility is key to minimising the risk of unexpected emissions on the path to net-zero.

1) Note negative emissions from BECCS are not included.

Source: Aurora Energy Research
A high H₂ strategy leads to increased system size and therefore greater system costs due to electricity to H₂ conversion losses.

The high H₂ demand scenarios assume the same degree of decarbonisation as low H₂ but with less electrification. Increased power demand in high H₂ scenarios is slightly counterintuitive but highlights the need for greater deployment of power and H₂ supplies and infrastructure.
Risks to the transition

Full feasibility assessments on the land use of different supply mixes are needed to assess ecological, environmental and deployment program risks.

Power density of each technology

MW/km²

- 4.5
- 5
- 5.5
- 500

GB land area covered (excluding offshore wind)

% 7 9 4 6

GB total installed power capacity

GW 265 319 244 285

Area covered by technology in 2050¹

'000 km²

1H. No new nuclear 25,885 10,738 5,140 9,998
1H RES. No new nuclear 37,348 15,156 5,164 17,020
3H. New nuclear techs 17,607 6,267 3,255 8,000
3H RES. New nuclear techs 26,706 10,089 4,091 12,460

Scenarios with greater deployment of nuclear use less land

-28%

Source: Aurora Energy Research, World Bank, NREL, WindEurope, CCC, LucidCatalyst
Hydrogen storage will take up ~90% of infrastructure investment in scenarios with high levels of hydrogen demand

- Infrastructure spending quantifies the capital investment needed to build the gas pipeline and storage infrastructure required to cope with the volumes of H₂ and captured CO₂ in each scenario.
- In the core scenarios, we see at most 1.08 Gt CO₂ being captured and stored from 2021-50, utilizing a mere 1.5% of the UK’s overall CO₂ storage potential.¹
- CO₂ infrastructure spending will be higher than what is presented in this report due to significant volumes of CO₂ being captured outside the power and hydrogen sectors i.e. from industrial processes, which are not accounted for in these calculations.

¹) This assumes an emission intensity of 7kg/MWh of biomass combusted. Supply chain emissions not included.

Map of GB

- H₂ and CO₂ storage locations are well located relative to current industrial clusters and likely H₂ supply.
NPV savings of up to £16bn with minimal changes to emissions could be realised by lowering reliance on hydrogen storage

- System costs can be reduced on net by lowering the hydrogen storage capacity on the system.

- Scenario 3H demonstrates NPV savings of £16bn when lowering the 2050 hydrogen storage capacity from 26TWh to 10TWh. This is driven by a combination of reduced hydrogen infrastructure spend, support costs and electricity infrastructure spend.

- In a system with little power and hydrogen production from nuclear (1H), savings from reduced storage are not realised.

- Reducing the levels of hydrogen storage has limited risks in terms of increasing unabated emissions and reliance on fossil fuels.

Source: Aurora Energy Research
Technology costs could fall slower or faster than expected but historic reductions have largely been achieved by clear policy

- Technology cost reductions are assumed for RES, and new nuclear technologies, however these forecasts are uncertain and could increase due to:
 - **Lower than expected learning rates** although these have historically been underestimated
 - **Deploying capacity on worse sites** as capacity will first be deployed on sites with the lowest costs and therefore highest returns
 - **Tight supply chains and high demand** for key materials due to high levels of global demand and the pace of delivery required to reach net-zero.

- The most recent new build nuclear plant in GB, Hinkley Point C, has faced high costs driven by a number of factors including being a first of a kind (FOAK) plant and commencement of construction before completion of the plant design. Support for a pipeline of nuclear projects, particularly small reactors less exposed to delays and cost overruns, could lead to decreased costs for nuclear plants.

- If the low costs for nuclear in the 4H. *Strong nuclear strategy* scenarios are not realised, system spending could increase by £21bn (NPV 2021-2050), when comparing against 3H. *New nuclear techs.*
Contents

I. Executive summary
II. The need for H₂ in reaching net-zero
III. How is this study different?
IV. Overview of modelled scenarios with H₂, RES and nuclear
V. The impact of differing levels of RES and nuclear on power and H₂ markets
VI. Risks to the transition
VII. Policy implications
VIII. Appendix
New policies for low carbon solutions beyond recently announced ambitious policies are needed to reach net-zero

Policy implications

- GB has been a world leader in reducing emissions, and the first country to introduce a legally binding target of net-zero emissions by 2050.
- The 10-Point Plan, published in 2020, includes targets for:
 - Energy: 40 GW offshore wind by 2030
 - Transport: Ban on combustion engines from 2030 and hybrid vehicles from 2035
 - Hydrogen: 5 GW 'low-carbon' H2 production capacity by 2030
 - CCS: Removal of 10 MtCO2e per year by 2030
 - Buildings: 600k heat pumps installed annually from 2028
 - Nature: 30k hectares of trees planted each year.
- Combined with the Energy White Paper, these initiatives are expected to deliver a 6% reduction in emissions on top of existing policies.
- The recent ratification of the 6th carbon budget (78% 1990 levels) in April 2021 will require a much more comprehensive decarbonization plan to be developed to align UK's carbon emission trajectory.
- Despite these ambitions and policies, the UK is on track to exceed its 4th & 5th carbon budgets.
- Careful consideration of technology pathways and the additional policies required to support them is needed to ensure these targets are met.

Sources: Aurora Energy Research, BEIS, CCC
The UK published its Energy White Paper in December 2020, which was informed by the 10 point plan released in November 2020, both documents contained hydrogen based targets and incentives.

The announcements within the UK so far are production method agnostic – with mention of electrolysis, gas reformation and even use of runoff nuclear heat being used to improve efficiency of processes.

Considerable UK commitments on H₂ are colour agnostic but lack incentives for consumption and greater clarity is needed

The United Kingdom’s Energy White Paper

- The UK has announced many funds but support is combined across green and blue hydrogen, and actual production and consumption support mechanisms are not realised aside from some grid blending and home use pilot programs.

Policies and targets

- 5 GW of electrolyser capacity built by 2030, requiring about GBP4bn of private investment.
- Saving of 41 Mt of CO₂ between 2023 and 2032
 - Capturing 10 MT of CO₂ annually by 2030 using CCUS.
- Seeking to blend 20% hydrogen in the natural gas network by 2023.
- 60,000 jobs in hydrogen production and CCS.

Incentives cover several business models

- Hydrogen technology development is included as able to participate in the GBP1bn energy innovation program.
- GBP20m in 2021 in zero emission hydrogen freight trials.
- Funding for 4,000 zero emissions buses (both battery and hydrogen fuelled).
- Plan to fund the expansion of hydrogen neighbourhood to hydrogen village by 2025.
- Investing GBP1bn in CCS deployment in two industrial clusters.
- GBP240m of investment in a "net zero hydrogen fund" until 2025.
- GBP315m of investment in the “Industrial Energy Transformation Fund” until 2024.

Thematic and incentive focus in the UK

- Thematic and incentive focus in the UK is spread throughout all three areas of hydrogen demand – focusing on pilot and demonstration projects, and development of a hydrogen ecosystem on a local scale.
- If hydrogen fuel cell buses dominate this allocation, this will be by far the biggest hydrogen bus fleet in Europe.

Policy implications

- 5 GW of electrolyser capacity built by 2030, requiring about GBP4bn of private investment.
- Saving of 41 Mt of CO₂ between 2023 and 2032
 - Capturing 10 MT of CO₂ annually by 2030 using CCUS.
- Seeking to blend 20% hydrogen in the natural gas network by 2023.
- 60,000 jobs in hydrogen production and CCS.

Sources: Aurora Energy Research, The Ten Point Plan for a Green Industrial Revolution, Energy White Paper
Future policy direction should consider the decarbonisation routes facilitated by different supply mixes in addition to fossil fuel usage

1. Labeling deeper emissions reductions

- Industrial processes, with nuclear H₂ particularly suited to production of syngas to be used as drop-in replacement for fossil fuels in aviation and shipping, which are very hard to abate
 - A key advantage is the ability to locate supply near demand with nuclear H₂ gigafactories and offshore wind plants near ports and industrial clusters and refueling stations.

- Waste heat from nuclear can also provide low carbon district heating applications and increase efficiency of Direct Air Capture (DAC) of CO₂.

- Impure H₂ from fossil based blue H₂ is only suitable for heating and H₂ combustion plants so uses are limited and may be associated with continued methane leaks from gas pipelines and undesirable combustion byproducts.

2. System resilience and reliance on fossil fuels

- Low carbon dispatchable capacity is required to manage short- and long-term fluctuations in variable RES output, particularly during consecutive days of low wind output when battery storage is unlikely to meet demand.
- Gas CCS is a useful transitional technology on the path to net-zero however it extends reliance on fossil gas and uncertainties remain on long term storage of CO₂.
- Large scale nuclear can provide flexibility but co-location with electrolysers enables plants to provide more flexibility to the grid by diverting electricity output to H₂ production, thereby displacing the role of gas CCS and fossil fuels.
- Small nuclear reactors have the added benefit of providing local flexibility in addition to reducing the risk of in-feed losses and reliance on back-up gas.

3. Mechanisms required to support low carbon supply

- Broader economic benefits of RES and nuclear based H₂:
 - Funding awarded for Sizewell C to explore designs to use waste heat for DAC.
 - Provide sufficient economic incentives for low carbon capacity, particularly in low marginal cost systems with high shares of RES and/or nuclear and low wholesale market prices.
 - The capacity mechanism is not an effective tool for decarbonization when used in isolation, as in the core scenarios, and may lead to inefficient spending. This is demonstrated by the lack of RES build in the core scenarios.
 - Hybrid business models of RES or nuclear with H₂ production can boost project revenues and potential revenue support payments.
 - Adopting a suite of mechanisms that provide either direct support for low carbon capacity or add value to grid services can lead to more efficient deployment of low carbon capacity and system spending.

- Hydrogen exports to neighboring countries could enable GB to become a world leader in low carbon hydrogen supply due to very high resource availability enabling even high levels of H₂ supply than modelled in this report.
- Creation of jobs due to the development of the offshore wind, electrolyser and nuclear industries.
- Retention of industry due to the abundance of low cost, low carbon H₂ preventing relocation to cheaper areas.

Source: Aurora Energy Research
Policy implications

A range of mechanisms are available to encourage deployment of low carbon supply

<table>
<thead>
<tr>
<th>Description</th>
<th>Benefits</th>
<th>Limitations</th>
<th>Solutions it supports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract for Different (CfD)</td>
<td>▪ Long term contracts awarded in a competitive auction that guarantee a fixed price for generation.</td>
<td>▪ High degree of revenue certainty, reduces cost of capital, clear pipeline of auctions, auctions across different technology buckets.</td>
<td>▪ Not market led, reduces market dispatch signals.</td>
</tr>
<tr>
<td>Capacity Market (CM)</td>
<td>▪ Long & short term contracts to procure sufficient firm capacity to meet demand.</td>
<td>▪ Competitive auction.</td>
<td>▪ Procures cheapest capacity resulting in deployment of unabated gas peaking plants.</td>
</tr>
<tr>
<td>Carbon price</td>
<td>▪ Market based tool to increase costs associated with emissions.</td>
<td>▪ Increases SRMC for emitters and revenues for non-emitters.</td>
<td>▪ Trajectory highly uncertain, of limited use in low carbon systems.</td>
</tr>
<tr>
<td>Carbon CfD</td>
<td>▪ Payments to low carbon solutions relative to their carbon emissions savings.</td>
<td>▪ Reduces costs for low carbon solutions below emissions intensive alternatives, multi-sector applicability.</td>
<td>▪ Some complexity associated with new policy design.</td>
</tr>
<tr>
<td>Dispatchable CfD</td>
<td>▪ Guarantees payments to ensure low carbon assets dispatch ahead of unabated thermal.</td>
<td>▪ Ensures low carbon solutions displace unabated solutions in the merit order, guaranteeing higher output volumes.</td>
<td>▪ Reduces revenues for existing assets, potentially increasing costs elsewhere.</td>
</tr>
<tr>
<td>Regulated Asset Base (RAB)</td>
<td>▪ Guarantees a fixed rate of return on investment, despite costs.</td>
<td>▪ Guaranteed return lowers financing costs and increases private investment where otherwise considered too risky.</td>
<td>▪ Consumers bear the significant risk of cost and time overruns as well as potential monopolisation.</td>
</tr>
<tr>
<td>Ancillary services (AS)</td>
<td>▪ Contracts for targeted grid services (i.e. STOR, Black Start, Dynamic Containment, FFR).</td>
<td>▪ Able to meet specific grid needs.</td>
<td>▪ Occasionally opaque process for awarding contracts.</td>
</tr>
</tbody>
</table>

Source: Aurora Energy Research
A series of least regret options can be pursued to minimise risks to the transition towards net-zero

1. **Continued revenue support for low carbon technologies**
 To incentivise deployment of low-carbon capacity despite low wholesale market revenues as a result of high penetrations of low marginal cost supply. A level playing field for all technologies is required.

2. **Limit participation of unabated thermal in the CM**
 To prevent locking in reliance on new unabated thermal assets, that will remain online for 25 years, by only procuring low carbon alternatives.

3. **Studies on the role of green H₂ from RES and nuclear to displace fossil fuels**
 Further investigations of H₂ only business models for RES and nuclear to create low cost H₂ without fossil fuels.

4. **Conduct in depth siting and feasibility studies for nuclear and RES deployment**
 To ensure target deployment can be met.

5. **Assess infrastructure requirements of decarbonisation pathways**
 To assess need, cost, development time and ecological impact for required infrastructure to be deployed in time for assets to online.

6. **Examine the role existing nuclear can play in green H₂ production**
 Co-location of electrolysers with existing nuclear can unlock additional revenue streams whilst providing additional power system flexibility.

7. **Explore support for a construction pipeline of small modular reactors**
 To enable deployment, costs reductions and assess feasibility of large scale deployment.

8. **Explore support options for nuclear business models for power + H₂**
 To compare against other low carbon technologies.

9. **Further investigate the benefits of high temperature nuclear (Gen IV)**
 High temperature reactors could unlock very high H₂ conversion efficiencies using waste heat, with potential for cost reductions.

10. **Development of clear business models for H₂ and CO₂ infrastructure**
 To assess costs and incentivise investment.

Source: Aurora Energy Research
Contents

I. Executive summary

II. The need for \(H_2 \) in reaching net-zero

III. How is this study different?

IV. Overview of modelled scenarios with \(H_2 \), RES and nuclear

V. The impact of differing levels of RES and nuclear on power and \(H_2 \) markets

VI. Risks to the transition

VII. Policy implications

VIII. Appendix

1. Modelling methodology

2. Additional model results

3. Additional assumptions
Unique, proprietary, in-house modelling capabilities underpin Aurora’s superior analysis of the power system

Advantages of Aurora approach

- Flexible and nimble because we own the code.
- Transparent results.
- State-of-the-art infrastructure.
- Zero dependence on black-box third-party software (e.g. Plexos).
- Constantly up to date through subscription research.
- Ability to model complex policy changes very quickly.

INPUTS

- Technology
- Policy
- Demand
- Commodity prices¹
- Weather patterns

Dispatch model

- Hourly granularity
- Iterative modelling
- Dynamic dispatch of plant
- Endogenous interconnector flows

Outputs

- Capacity mix
- Generation mix
- Wholesale & imbalance prices
- Profit / Loss and NPV
- Electric vehicle charging

Investment decisions module

- Capacity market modelling
- Capacity build / exit / mothballing
- IRR / NPV driven
- Detailed technology assessments

Continuous iteration until an equilibrium is reached

Up to 70 specifications modelled for each plant

c. 85k investment hours on modelling capabilities

3k - 4k model runs per week

30+ strength of modelling team globally

1) Gas, coal, oil and carbon prices fundamentally modelled in-house with fully integrated commodities and gas market model.

Source: Aurora Energy Research
System cost component

<table>
<thead>
<tr>
<th>Electricity market</th>
<th>Includes the total spend in the wholesale electricity market (i.e. wholesale price x demand, assuming 8% transmission losses) and the electricity balancing market to match outturn supply and demand.</th>
</tr>
</thead>
</table>
| Electricity market support payments | - Subsidy payments to plants with existing support contracts (e.g. ROC, FiT, CfD).
- Capacity Market payments to ensure acceptable returns are met for sufficient capacity to build to meet security of supply targets.
- Additional top-up payments required for assumed capacity additions to breakeven. |
| Network costs (TNUoS, DUoS) | Estimate of the costs required to expand the network to connect new capacity (accounting for retirements), and the costs to operate and maintain the existing network (underestimates the cost of connecting offshore wind). |
| Hydrogen market costs | Includes the total spend in the hydrogen market (i.e. wholesale hydrogen market price x demand, hydrogen price achieved by PEM electrolyzers at vehicle charging points x demand). |
| Additional infrastructure costs (see following slide) | - Estimate of additional costs of connecting offshore wind to the transmission network not accounted for in network costs.
- Estimate of the costs of hydrogen storage and pipeline infrastructure.
- Estimate of the costs of CO₂ storage and pipeline infrastructure. |
Our proposed methodology is influenced by the IEA 2020 Special Report on CCUS.

We propose to ignore shipping as a means of transport as it is competitive with pipelines only for long-haul transport of small CO₂ volumes.

Infrastructure cost estimates for the Hydrogen system are based on the assumption that large parts of existing gas network infrastructure can be refitted to carry H₂.

Price points are averaged from project cost estimates spanning multiple reports and were agreed upon by the consortium behind Aurora's 2020 Hydrogen Study.

Price/ km estimate will be based on recent greenfield and brownfield transactions for offshore transmission infrastructure.

Average distance to shore and Number of offshore sites per MW will be calculated by analysing the existing fleet.

Sources: Aurora Energy Research, IEA, Pale Blue Dot, EU ZEP, H21, Co2 Stored, Element Energy, Inframation, WindEurope, Energy White Paper
I. Executive summary

II. The need for H\textsubscript{2} in reaching net-zero

III. How is this study different?

IV. Overview of modelled scenarios with H\textsubscript{2}, RES and nuclear

V. The impact of differing levels of RES and nuclear on power and H\textsubscript{2} markets

VI. Risks to the transition

VII. Policy implications

VIII. Appendix

1. Modelling methodology

2. Additional model results

3. Additional assumptions
Nuclear capacity forecast by scenario

GB installed nuclear capacity: 1L. No new nuclear

- **2021**: 9 GW
- **2030**: 5 GW
- **2040**: 5 GW
- **2050**: 16 GW

GB installed nuclear capacity: 2L. Existing nuclear techs

- **2021**: 9 GW
- **2030**: 5 GW
- **2040**: 12 GW
- **2050**: 19 GW

GB installed nuclear capacity: 3L. New nuclear techs

- **2021**: 9 GW
- **2030**: 5 GW
- **2040**: 12 GW
- **2050**: 43 GW

GB installed nuclear capacity: 4L. Strong nuclear strategy

- **2021**: 9 GW
- **2030**: 5 GW
- **2040**: 16 GW
- **2050**: 47 GW

Legend:
- Nuclear
- Small Modular Reactor
- Gen IV with electrolyser

1) Other RES includes EfW and marine; 2) Other thermal includes embedded CHP; 3) Gas CCGT includes abated and unabated plants.

Source: Aurora Energy Research
Power market capacity forecast by scenario

GB installed nuclear capacity: 1H. No new nuclear

GW

<table>
<thead>
<tr>
<th>Year</th>
<th>Nuclear</th>
<th>Small Modular Reactor</th>
<th>Gen IV with electrolyser</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2030</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2040</td>
<td>5</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>2050</td>
<td>9</td>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

GB installed nuclear capacity: 2H. Existing nuclear techs

GW

<table>
<thead>
<tr>
<th>Year</th>
<th>Nuclear</th>
<th>Small Modular Reactor</th>
<th>Gen IV with electrolyser</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2030</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2040</td>
<td>5</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2050</td>
<td>5</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

GB installed nuclear capacity: 3H. New nuclear techs

GW

<table>
<thead>
<tr>
<th>Year</th>
<th>Nuclear</th>
<th>Small Modular Reactor</th>
<th>Gen IV with electrolyser</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>9</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>2030</td>
<td>5</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>2040</td>
<td>21</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>2050</td>
<td>43</td>
<td>15</td>
<td>31</td>
</tr>
</tbody>
</table>

GB installed nuclear capacity: 4H. Strong nuclear strategy

GW

<table>
<thead>
<tr>
<th>Year</th>
<th>Nuclear</th>
<th>Small Modular Reactor</th>
<th>Gen IV with electrolyser</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>9</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>2030</td>
<td>5</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>2040</td>
<td>5</td>
<td>19</td>
<td>31</td>
</tr>
<tr>
<td>2050</td>
<td>9</td>
<td>17</td>
<td>56</td>
</tr>
</tbody>
</table>

1) Other RES includes EfW and marine; 2) Other thermal includes embedded CHP; 3) Gas CCGT includes abated and unabated plants.

Source: Aurora Energy Research
Power market capacity forecast by scenario

GB installed capacity: 1L. No new nuclear

GB installed capacity: 2L. Existing nuclear techs

GB installed capacity: 3L. New nuclear techs

GB installed capacity: 4L. Strong nuclear strategy

Source: Aurora Energy Research

1) Other RES includes EfW and marine; 2) Other thermal includes embedded CHP; 3) Gas CCGT includes abated and unabated plants.
Power market capacity forecast by scenario

GB installed capacity: 1H. No new nuclear

GB installed capacity: 2H. Existing nuclear techs

GB installed capacity: 3H. New nuclear techs

GB installed capacity: 4H. Strong nuclear strategy

1) Other RES includes EfW and marine; 2) Other thermal includes embedded CHP; 3) Gas CCGT includes abated and unabated plants.

Source: Aurora Energy Research
Power market generation forecast by scenario

Electricity production and net imports: 1L. No new nuclear

Electricity production and net imports: 2L. Existing nuclear techs

Electricity production and net imports: 3L. New nuclear techs

Electricity production and net imports: 4L. Strong nuclear strategy

1) Other RES includes EfW and marine; 2) Other thermal includes embedded CHP; 3) Gas CCGT includes abated and unabated plants.

Source: Aurora Energy Research
Power market generation forecast by scenario

Electricity production and net imports: 1H. No new nuclear
TWh

Electricity production and net imports: 2H. Existing nuclear techs
TWh

Electricity production and net imports: 3H. New nuclear techs
TWh

Electricity production and net imports: 4H. Strong nuclear strategy
TWh

Source: Aurora Energy Research
Hydrogen market capacity forecast by scenario

GB H₂ installed capacity: 1L. No new nuclear
GW H₂

GB H₂ installed capacity: 2L. Existing nuclear techs
GW H₂

GB H₂ installed capacity: 3L. New nuclear techs
GW H₂

GB H₂ installed capacity: 4L. Strong nuclear strategy
GW H₂

Source: Aurora Energy Research
Hydrogen market capacity forecast by scenario

GB H₂ installed capacity: 1H. No new nuclear
GW H₂

GB H₂ installed capacity: 2H. Existing nuclear techs
GW H₂

GB H₂ installed capacity: 3H. New nuclear techs
GW H₂

GB H₂ installed capacity: 4H. Strong nuclear strategy
GW H₂

Source: Aurora Energy Research
Hydrogen market generation forecast by scenario

GB gross H₂ production : 1L. No new nuclear
TWh H₂

GB gross H₂ production : 2L. Existing nuclear techs
TWh H₂

GB gross H₂ production : 3L. New nuclear techs
TWh H₂

GB gross H₂ production : 4L. Strong nuclear strategy
TWh H₂

Source: Aurora Energy Research
Hydrogen market generation forecast by scenario

GB gross H₂ production: 1H. No new nuclear TWh H₂

GB gross H₂ production: 2H. Existing nuclear techs TWh H₂

GB gross H₂ production: 3H. New nuclear techs TWh H₂

GB gross H₂ production: 4H. Strong nuclear strategy TWh H₂

Source: Aurora Energy Research
Total system costs by scenario

GB total system spend: 1L. No new nuclear
£bn (real 2019)

<table>
<thead>
<tr>
<th>Period</th>
<th>Wholesale electricity</th>
<th>Wholesale hydrogen</th>
<th>Support costs (incl. CM & subsidies)</th>
<th>Electricity infrastructure</th>
<th>Hydrogen infrastructure</th>
<th>CO2 infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-2030</td>
<td>368</td>
<td>69</td>
<td>103</td>
<td>111</td>
<td>188</td>
<td>26</td>
</tr>
<tr>
<td>2031-2040</td>
<td>362</td>
<td>71</td>
<td>53</td>
<td>111</td>
<td>218</td>
<td>53</td>
</tr>
<tr>
<td>2041-2050</td>
<td>80</td>
<td>237</td>
<td>167</td>
<td>22</td>
<td>28</td>
<td>129</td>
</tr>
</tbody>
</table>

GB total system spend: 2L. Existing nuclear techs
£bn (real 2019)

<table>
<thead>
<tr>
<th>Period</th>
<th>Wholesale electricity</th>
<th>Wholesale hydrogen</th>
<th>Support costs (incl. CM & subsidies)</th>
<th>Electricity infrastructure</th>
<th>Hydrogen infrastructure</th>
<th>CO2 infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-2030</td>
<td>371</td>
<td>69</td>
<td>107</td>
<td>17</td>
<td>188</td>
<td>237</td>
</tr>
<tr>
<td>2031-2040</td>
<td>385</td>
<td>71</td>
<td>107</td>
<td>20</td>
<td>204</td>
<td>118</td>
</tr>
<tr>
<td>2041-2050</td>
<td>80</td>
<td>80</td>
<td>22</td>
<td>22</td>
<td>28</td>
<td>118</td>
</tr>
</tbody>
</table>

GB total system spend: 3L. New nuclear techs
£bn (real 2019)

<table>
<thead>
<tr>
<th>Period</th>
<th>Wholesale electricity</th>
<th>Wholesale hydrogen</th>
<th>Support costs (incl. CM & subsidies)</th>
<th>Electricity infrastructure</th>
<th>Hydrogen infrastructure</th>
<th>CO2 infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-2030</td>
<td>371</td>
<td>69</td>
<td>107</td>
<td>17</td>
<td>187</td>
<td>26</td>
</tr>
<tr>
<td>2031-2040</td>
<td>385</td>
<td>71</td>
<td>107</td>
<td>20</td>
<td>204</td>
<td>53</td>
</tr>
<tr>
<td>2041-2050</td>
<td>458</td>
<td>80</td>
<td>22</td>
<td>22</td>
<td>210</td>
<td>129</td>
</tr>
</tbody>
</table>

GB total system spend: 4L. Strong nuclear strategy
£bn (real 2019)

<table>
<thead>
<tr>
<th>Period</th>
<th>Wholesale electricity</th>
<th>Wholesale hydrogen</th>
<th>Support costs (incl. CM & subsidies)</th>
<th>Electricity infrastructure</th>
<th>Hydrogen infrastructure</th>
<th>CO2 infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-2030</td>
<td>371</td>
<td>69</td>
<td>107</td>
<td>17</td>
<td>187</td>
<td>26</td>
</tr>
<tr>
<td>2031-2040</td>
<td>374</td>
<td>72</td>
<td>107</td>
<td>20</td>
<td>189</td>
<td>25</td>
</tr>
<tr>
<td>2041-2050</td>
<td>388</td>
<td>83</td>
<td>22</td>
<td>22</td>
<td>152</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Aurora Energy Research
Total system costs by scenario

GB total system spend: 1H. No new nuclear
£bn (real 2019)

GB total system spend: 2H. Existing nuclear techs
£bn (real 2019)

GB total system spend: 3H. New nuclear techs
£bn (real 2019)

GB total system spend: 4H. Strong nuclear strategy
£bn (real 2019)

Source: Aurora Energy Research
The load factor of the paired electrolyser has a weak relationship with captured power prices for the nuclear asset. Baseload operation at a c.70% load factor ensures maximum revenue in the H₂ market, to account for low overall captured prices in the power sector.

In scenario 4H, electrolyser output declines toward the end of the year in order to capture slightly higher returns in the power sector once storage capacity has been filled over the summer months.

Seasonality in H₂ production from electrolysers paired with nuclear is minimal, with baseload operations preferred.
Contents

I. Executive summary
II. The need for H₂ in reaching net-zero
III. How is this study different?
IV. Overview of modelled scenarios with H₂, RES and nuclear
V. The impact of differing levels of RES and nuclear on power and H₂ markets
VI. Risks to the transition
VII. Policy implications

VIII. Appendix

1. Modelling methodology
2. Additional model results
3. Additional assumptions
A Net-Zero scenario is consistent with low gas prices and high carbon prices

Gas prices decline due to low demand as aggressive decarbonisation trajectories limit the use of gas for power. The low gas price scenario assumes no new gas/gas-CCS build from 2030.

Carbon price will likely be calibrated during our modelling iterations in order to incentivize economic capacity buildout to meet Net Zero targets.

1) For years 2021-2025, the prices shown take into account current futures prices for the years in question, with declining weights. Prices are displayed from 2021 onward, reflecting 30-day historical average as of 2 December 2020.
Aurora’s high hydrogen demand scenario sees significant adoption of across transport, heating and industry

Overview of Aurora's GB H₂ demand scenarios – scrutinised by over 18 market participants

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Low Hydrogen</th>
<th>Central Hydrogen (not modelled in this report)</th>
<th>High Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>Low penetration of FCEVs for private transport with moderate use of Hydrogen for in freight and public transport, where use of natural gas prevails.</td>
<td>Low penetration of FCEVs for private transport with moderate use of Hydrogen for in freight and public transport, where use of natural gas prevails. Adoption of H₂ for maritime and rail transport.</td>
<td>Moderate presence of H₂ in private transport, with higher uptake in public transport and freight. Adoption of H₂ for maritime and rail transport.</td>
</tr>
<tr>
<td></td>
<td>18 TWh H₂ in 2050</td>
<td>116 TWh H₂ in 2050</td>
<td>162 TWh H₂ in 2050</td>
</tr>
<tr>
<td>Heating</td>
<td>H₂ serves certain areas in the country with advantageous conditions, but use is not widespread.</td>
<td>H₂ serves certain areas in the country with advantageous conditions but is moderately widespread.</td>
<td>Gas networks are converted to hydrogen with 14 million H₂ boilers present in 2050.</td>
</tr>
<tr>
<td></td>
<td>110 TWh H₂ in 2050</td>
<td>153 TWh H₂ in 2050</td>
<td>230 TWh in 2050</td>
</tr>
<tr>
<td>Industry</td>
<td>H₂ use for high-grade heat applications along with CCS, electricity serving with low-grade heat requirements. Use as feedstock remains.</td>
<td>Greater H₂ use for high-grade heat applications along with CCS and some low-grade heat requirements. Use as feedstock remains.</td>
<td>H₂ used for both high and low-grade heat applications, as well as for industrial feedstock.</td>
</tr>
<tr>
<td></td>
<td>82 TWh by 2050</td>
<td>96 TWh by 2050</td>
<td>114 TWh by 2050</td>
</tr>
</tbody>
</table>

Source: Aurora Energy Research
Significant electrification of heat, despite extensive H\textsubscript{2} penetration will be required to reach net-zero.

Electrification hurdles could drive H\textsubscript{2} uptake:
- change in consumer preferences
- high investment needs for energy efficiency1
- power network upgrades.

Use of H\textsubscript{2} in residential and commercial heating carries safety concerns and would require infrastructure adequation, and appliance replacement / refurbishment.

Many projects in the UK and continental Europe show promise for these applications.

Biogas is likely to play a role at a municipal level.

1\textsuperscript{) High grades of energy efficiency are required for heat pumps to work at high efficiencies and effectively condition spaces (without the need for heat pump oversizing).
The entire road fleet is assumed to decarbonise by 2050, with the technology mix depending on the degree of hydrogen penetration.

GB number of vehicles in 2050 by type and scenario

<table>
<thead>
<tr>
<th>Thousands of units</th>
<th>Cars</th>
<th>Buses</th>
<th>Heavy Goods Vehicles</th>
<th>Light Goods Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low H_2</td>
<td>100%</td>
<td>75%</td>
<td>77%</td>
<td>93%</td>
</tr>
<tr>
<td>High H_2</td>
<td>25%</td>
<td>25%</td>
<td>24%</td>
<td>7%</td>
</tr>
</tbody>
</table>

- For private cars, customer choice is expected to lean towards BEVs\(^1\), with higher FCEV\(^2\) uptake for high-mileage and commercial cars.
- The convenient of shorter H_2 refueling times relative to electric charging could drive uptake in light and heavy goods vehicles, as well as buses.
- The HGV segment is expected to be an early adopter of H_2 in the mid-2030s, followed by LGVs and buses in the early-2040s.
- H_2 demand in this sector will be highly dependent on the availability of refuelling infrastructure and is expected to compete with electrification throughout the analysis horizon.

\(^1\) Battery-Electric Vehicles; \(^2\) Fuel Cell Electric Vehicles.

Source: Aurora Energy Research
Other transport segments were considered only in our High H$_2$ scenario, but likelihood of uptake is still uncertain

<table>
<thead>
<tr>
<th>GB outlook for H$_2$ Adoption</th>
<th>Likelihood</th>
<th>GB High H$_2$ Scenario Assumption3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railway</td>
<td></td>
<td>29 TWh by 2050 Equivalent to a third of all trains in the UK switching fuel use to H$_2$</td>
</tr>
<tr>
<td>▪ Most promising options for rail decarbonisation include electrification and fuel switching to biofuels or H$_2$.</td>
<td></td>
<td>No demand was assumed for this sector in the high H$_2$ scenario, however higher H$_2$ demand scenarios could see adoption in aviation</td>
</tr>
<tr>
<td>▪ There are concerns on supply limitations for biofuels and, in some areas, cost and infrastructure disruption could make electrification prohibitive, making a case for H$_2$ adoption.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aviation</td>
<td></td>
<td>11 TWh by 2050 Equivalent to the forecasted fuel demand for the sector2</td>
</tr>
<tr>
<td>▪ Prospective measures include increasing efficiency, reducing allowed cargo and using alternative fuels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Even with all these measures, the sector will likely face disruption or high abatement needs in order to reach Net Zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Although small demonstration projects seek to prove feasibility, H$_2$ uptake in the sector is highly uncertain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ International Maritime Organisation has enacted a mandate to cut the sector’s CO$_2$ emissions by 50% (relative to 2008 levels) by 2050.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Organisations have stated that without the use of alternative fuels this is likely to be missed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Despite technical and financial challenges, potential for H$_2$ uptake in the sector is considered high, either through direct use or as ammonia.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) ICCT; 2) BEIS' forecast extrapolated to 2050; 3) None of these segments were considered in our Low H$_2$ scenarios.

Sources: Aurora Energy Research, ICCT
Our scenarios explore different plausible trajectories for the development of advanced nuclear technologies

GB Nuclear – CAPEX
£/kW (real, 2019)

<table>
<thead>
<tr>
<th>Year</th>
<th>Large nuclear</th>
<th>Small nuclear (LWSMR)</th>
<th>Gen IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>4,500</td>
<td>3,000</td>
<td>2,500</td>
</tr>
<tr>
<td>2031</td>
<td>4,000</td>
<td>2,500</td>
<td>2,000</td>
</tr>
<tr>
<td>2032</td>
<td>3,500</td>
<td>2,000</td>
<td>1,500</td>
</tr>
<tr>
<td>2033</td>
<td>3,000</td>
<td>1,500</td>
<td>1,000</td>
</tr>
<tr>
<td>2034</td>
<td>2,500</td>
<td>1,000</td>
<td>0</td>
</tr>
</tbody>
</table>

Variable O&M £/MWh
- Large Scale Nuclear (Scen 1-3) £/MWh: 2.4
- LWSMR (Scen 1-3) £/MWh: 2.4
- LWSMR (Scen 4) £/MWh: 2.4

Fixed O&M £/kW/year
- Large Scale Nuclear (Scen 1-3) £/kW/year: 75.5
- LWSMR (Scen 1-3) £/kW/year: 75.5
- LWSMR (Scen 4) £/kW/year: 75.5

Sources: Aurora Energy Research, Lucid Catalyst
Global deployment of electrolysers will drive significant CAPEX, efficiency and lifetime gains

GB electrolyser – CAPEX
£/kW H₂ (real, 2019)

<table>
<thead>
<tr>
<th></th>
<th>ALK</th>
<th>PEM</th>
<th>SOEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>% LHV (HHV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term</td>
<td>70%</td>
<td>68%</td>
<td>(107%)¹</td>
</tr>
<tr>
<td>Long-term</td>
<td>79%</td>
<td>77%</td>
<td>(114%)²</td>
</tr>
<tr>
<td>Variable O&M</td>
<td>£/MWh H₂</td>
<td>0.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Fixed O&M</td>
<td>£/kW/year</td>
<td>31.9</td>
<td>22.5</td>
</tr>
<tr>
<td>Stack lifetime</td>
<td>hours</td>
<td>75,000</td>
<td>34,000</td>
</tr>
</tbody>
</table>

Notes: Variable O&M includes all non-fuel costs; 1) Low temperature heat efficiency; 2) High temperature heat efficiency.

Sources: Aurora Energy Research, IEA, CCC, IRENA, Element Energy, Jacobs Consulting, Equinor, Lucid Catalyst
Abated gas reforming can also benefit from deployment at scale, albeit to a lesser degree than electrolysers.

GB gas reforming technologies – CAPEX
£/kW H₂ (real, 2019)

<table>
<thead>
<tr>
<th></th>
<th>SMR</th>
<th>SMR + Carbon capture</th>
<th>ATR + Carbon capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term</td>
<td>80%</td>
<td>73%</td>
<td>74%</td>
</tr>
<tr>
<td>Long-term</td>
<td>80%</td>
<td>76%</td>
<td>80%</td>
</tr>
<tr>
<td>Variable O&M £/MWh H₂</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>CO₂ capture £/MWh H₂</td>
<td></td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Fixed O&M £/kW/year</td>
<td>17.9</td>
<td>22.1</td>
<td>17.9</td>
</tr>
<tr>
<td>Reduction in CO₂ footprint</td>
<td></td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Variable O&M includes all non-fuel costs (neither gas nor oxygen for ATR).

Sources: Aurora Energy Research, IEA, CCC, IRENA, Element Energy, Jacobs Consulting, Equinor
The continuation of historical learning rates will lead to significant cost declines, particularly for offshore wind and solar PV

- Offshore wind benefits from more efficient supply chains and economies of scale as the industry matures, driving strong cost declines for turbines and supporting infrastructure.
- Cost reductions related to onshore wind turbine procurement and development are offset by rising grid connection costs.
- Solar CAPEX declines the most, driven mainly by expected module cost reductions.
Disclaimer and Copyright

General Disclaimer
This document is provided "as is" for your information only and no representation or warranty, express or implied, is given by Aurora Energy Research Limited and its subsidiaries Aurora Energy Research GmbH and Aurora Energy Research Pty Ltd (together, "Aurora"), their directors, employees agents or affiliates (together, Aurora’s "Associates") as to its accuracy, reliability or completeness. Aurora and its Associates assume no responsibility, and accept no liability for, any loss arising out of your use of this document. This document is not to be relied upon for any purpose or used in substitution for your own independent investigations and sound judgment. The information contained in this document reflects our beliefs, assumptions, intentions and expectations as of the date of this document and is subject to change. Aurora assumes no obligation, and does not intend, to update this information.

Forward-looking statements
This document contains forward-looking statements and information, which reflect Aurora's current view with respect to future events and financial performance. When used in this document, the words "believes", "expects", "plans", "may", "will", "would", "could", "should", "anticipates", "estimates", "project", "intend" or "outlook" or other variations of these words or other similar expressions are intended to identify forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements as a result of known and unknown risks and uncertainties. Known risks and uncertainties include but are not limited to: risks associated with political events in Europe and elsewhere, contractual risks, creditworthiness of customers, performance of suppliers and management of plant and personnel; risk associated with financial factors such as volatility in exchange rates, increases in interest rates, restrictions on access to capital, and swings in global financial markets; risks associated with domestic and foreign government regulation, including export controls and economic sanctions; and other risks, including litigation. The foregoing list of important factors is not exhaustive.

Copyright
This document and its content (including, but not limited to, the text, images, graphics and illustrations) is the copyright material of Aurora, unless otherwise stated. This document is confidential and it may not be copied, reproduced, distributed or in any way used for commercial purposes without the prior written consent of Aurora.