
Drift Protocol v0

Drift Labs

Working Copy - August 2021

Abstract

Drift Protocol is a decentralized exchange for perpetual futures built on Solana. It features cross-

margined trading accounts and a virtual AMM (vAMM) for price discovery. This paper offers a brief

technical overview of the v0 architecture before providing a more in-depth description of the protocol’s

core features.

1

Contents

1 Technical Overview 4

1.1 Components . 4

1.2 Participants . 5

1.3 Instructions . 5

1.4 Off-Chain Dependencies . 5

1.5 Data Structures . 6

2 Virtual Automated Market Maker (vAMM) 8

2.1 Market Definition . 8

2.1.1 Constant Product Curve . 8

2.1.2 Initializing k and peg multiplier . 8

2.1.3 Adapting k and peg multiplier . 9

2.2 Future Implementation . 9

2.2.1 Alternative pricing curve . 9

2.2.2 Formulaic k and peg multiplier . 9

3 Trading and Order Specifications 9

3.1 Current Implementation . 9

3.1.1 Market Orders . 9

3.2 Future Implementation . 10

3.2.1 Limit Orders . 10

4 Margin Methodology 10

4.1 Current Implementation . 10

4.1.1 Definitions . 11

4.1.2 On-Chain Limitations . 11

4.2 Future Implementation . 12

4.2.1 Isolated Margin . 12

4.2.2 Risk-based Margin Method . 12

4.2.3 Indefinite Number of Markets . 12

5 Funding Rates 12

5.1 Current Implementation . 12

5.1.1 Definitions . 13

5.2 Future Implementation . 13

5.2.1 Continuous Funding . 13

2

5.2.2 Asymmetric Funding . 13

6 Liquidations 14

6.1 Current Implementation . 14

6.2 Future Implementation . 14

7 Disclaimer 15

3

1 Technical Overview

The following section provides a technical overview of the Drift Protocol v0. Later sections dive deeper into

specific features such as the vAMM and cross-margining. Figure 1 displays the v0 on-chain architecture.

- market_index: u64
- base_asset_amount: u128

- quote_asset_notional_amount: u128
- last_cum_funding: u128

Clearing House
- initialize_market

- deposit_collateral
- withdraw_collateral

- initialize_user_account
- open_position
- close_position

- liquidate
- update_market_funding_rate

- settle_funding_payment

Markets Account
- markets: [Market; 1000]

User Positions Account
- user_account: PublicKey

- positions: [MarketPosition; 10]

User Account
- authority: PublicKey

- collateral: u128
- positions: PublicKey

- initialized: bool,
- base_asset_amount: i128

- quote_asset_notional_amount: u128
- open_interest: u128

- volume: u128
- amm: AMM

- oracle: Pubkey
- base_asset_amount: u128
- quote_asset_amount: u128

- cum_funding_rate: i128
- funding_rate: i128

- funding_rate_ts: i64
- periodicity: i64

- mark_twap: u128
- mark_twap_ts: i64

Oracle

Admin
Wallet

Market Position

- market_index: u64
- base_asset_amount: u128

- quote_asset_notional_amount: u128
- last_cum_funding: u128

Market

- initialized: bool
- base_asset_amount: i128

- quote_asset_notional_amount: u128
- open_interest: u128

- volume: u128
- amm: AMM

AMM

- oracle: Pubkey
- base_asset_amount: u128
- quote_asset_amount: u128

- cum_funding_rate: i128
- funding_rate: i128

- funding_rate_ts: i64
- periodicity: i64

- mark_twap: u128
- mark_twap_ts: i64

Collateral Account

Insurance Account

User
WalletUser

Wallet

Program Account
Struct

Authority Account Owner Struct Pointer Public Key Pointer

Legend

On-Chain

External Oracle
Program

- Pyth/Switchboard

Figure 1: Drift Protocol v0 On-Chain Architecture

1.1 Components

Drift Protocol contains the following core components:

• Clearing House: Facilitates user interactions with the exchange

• Global Collateral Vault: Escrows all of the user collateral deposits

• User Account: Records the state of a user’s account with the Clearing House (e.g. collateral de-

posited, realized PnL)

• User Market Position: Records the state of a user’s position in a market (e.g. the size of their

position)

• Markets: Record the state of a market (e.g. open interest). Contains a reference to vAMM and

Oracle

• Virtual AMMs (vAMM): Provides a price discovery mechanism for Perpetual Future mark prices

• Oracles: Provides the price used to calculate Perpetual Future funding payments

• Insurance Fund: Pays for user withdrawals when the Global Collateral Vault has insufficient funds.

Financed via trading and liquidation fees.

4

1.2 Participants

The exchange is designed with an admin and three types of users in mind:

• Admin: Initializes the insurance fund and new markets. Modifies Clearing House and market param-

eters. To be under control of a DAO.

• Traders: Users that are interested in speculating in the future price of a market or running quantitative

trading strategies.

• Arbitrageurs: Delta-neutral users that are interested in collecting spreads between our exchange and

other exchanges, playing an active role in pushing the platform mark price towards oracle prices and

collecting funding rate payments

• Liquidators: Users that are willing to run liquidations on under-collateralized users in exchange for

a reward.

1.3 Instructions

The Clearing House program enables the following user interactions:

1. User Account Initialization: Create a User Account with the Clearing House

2. Market Initialization: Initializes a new Perpetual Futures market. Admin only.

3. Deposit Collateral: Deposit collateral in the Global Collateral Vault

4. Withdraw Collateral: Withdraw an amount of collateral less than or equal to the user’s free collateral

5. Open Position: Open a long or short position in a Perpetual Future. The position size is bounded

by their free collateral

6. Close Position: Close out a user’s Perpetual Future position and attributes the realized PnL to the

user’s collateral

7. Liquidate: Close out a user’s positions, transferring a portion of the remaining collateral to liquidator

and portion to the liquidator. User must be below maintenance margin ratio

8. Update Market Funding Rate: Update a market’s funding rate. Success is conditional on a

sufficient amount of time elapsing since the previous funding rate update

9. Settle Funding Payment: Settle a user’s outstanding funding payments. If the user is owed funding

payments, the insurance fund pays the users; if the user owes funding payments, the user pays the

insurance fund

1.4 Off-Chain Dependencies

Drift Protocol is dependent on two actions being triggered off-chain by exchange participants:

5

1. Market Funding Rate Updates: Market funding rates can be updated once an hour by any par-

ticipant. Traders and Arbitragers are incentivized to update the market rate so that they receive their

funding rate payments

2. Liquidations: Liquidations can be triggered by any user. Users are incentivized to liquidate over-

leveraged positions as the liquidator receives a fraction of the liquidated users’ collateral after the

position is closed

1.5 Data Structures

pub struct UserAccount {

pub authority: Pubkey,

pub collateral: u128,

pub positions: Pubkey,

}

pub struct UserPositionsAccount {

pub user_account: Pubkey,

pub positions: [MarketPosition; 10],

}

pub struct MarketPosition {

pub market_index: u64,

pub base_asset_amount: i128,

pub quote_asset_notional_amount: u128,

pub last_cum_funding: i128,

}

pub struct MarketsAccount {

pub markets: [Market; 1000],

}

pub struct Market {

pub initialized: bool,

pub base_asset_amount: i128,

pub quote_asset_notional_amount: u128,

pub open_interest: u128,

pub volume: u128,

6

pub amm: AMM,

}

pub struct AMM {

pub oracle: Pubkey,

pub base_asset_amount: u128,

pub quote_asset_amount: u128,

pub base_asset_price: u128,

pub peg_multiplier: u128,

pub cum_funding_rate: i128,

pub funding_rate: i128,

pub funding_rate_ts: i64,

pub periodicity: i64,

pub mark_twap: u128,

pub mark_twap_ts: i64,

}

7

2 Virtual Automated Market Maker (vAMM)

2.1 Market Definition

Every market is implemented as a perpetual futures contract, priced using a virtual AMM.

2.1.1 Constant Product Curve

The current implementation is a two-dimensional constant product curve:

x · y = k

The market price for x in terms of y is the slope of the curve, given the relative scarcity:

price =
y

x
· 1

Using Drift’s naming conventions, we have:

base asset amount︸ ︷︷ ︸
underlying asset

· quote asset amount︸ ︷︷ ︸
USDC

= k

Given that the market is virtual, there is no liquidity pool and there are no tokens for users to hold.

Instead, users’ positions are stored in a Market Position struct owned by the Clearing House. When a user

places an order, their respective base or quote asset amounts are swapped with the vAMM’s. During the

swap, the pair updates to maintain the constant product invariant and the price moves accordingly. The

size of the user’s position is constrained by their margin ratio (discussed in Section 4).

These markets are imbued with value from the Clearing House’s insurance fund which pays out imbalance

in funding rates (Section 5) and losses incurred from leveraged activity. The insurance fund is initialized

by the admin and is further funded by liquidation fees. The liquidation mechanism and fee structure are

discussed in Section 6.

2.1.2 Initializing k and peg multiplier

At the time of initialization, tinit, we initialize the balances as follows in order to concentrate liquidity at

the oracle price:

base asset amount = quote asset amount =:
√
k

Since the ideal k is not deterministic at tinit, we set a single market’s k in expectation of Participant

demand in that market. To protect the insurance fund from paying excessive funding rate imbalance,

the protocol errs to initialize with conservatively low k, with plans to increase k as evidence for consistent

Participant demand is revealed.

In order to peg this to a starting oracle price, we introduce a peg multiplier to pin onto a price value.

For maximum liquidity / minimum slippage, the multiplier is initialized around an oracle twap price at tinit.

8

price =
quote asset amount

base asset amount
· peg multiplier

The Clearing House tracks profit and losses(PnL) using this price formula above. The effective price a

user enters a position with, is the average price along the curve. This means, before explicit protocol fees, a

user opening then closing a single position, with no protocol events between, will not see any PnL.

2.1.3 Adapting k and peg multiplier

The admin account has the sole authority to modify these parameters as needed. The impact on the Clearing

House is a function of the market’s bias. We define bias as the long-short delta, i.e. the cumulative user

position:

bias = market.base asset amount

=
∑
i

user positioni.base asset amount

In the event that bias = 0, we can freely adjust k and peg multiplier without any dislocations in cumulative

user PnL (given path independence). Since an individual user PnL can be altered, it would be done only to

support healthier market conditions.

2.2 Future Implementation

2.2.1 Alternative pricing curve

Drift Protocol plans to test the benefits of other pricing curve constructions that offer more flexibility and

concentration liquidity around the peg price.

2.2.2 Formulaic k and peg multiplier

In future versions we aim to optimally adjust these parameters in additional scenarios, where bias is non-zero.

For instance, since every order is a taker order, volume can be broken up into arbitraging and non-

arbitraging volume. Arbitraging volume is defined as volume that moves the AMM’s price towards the

oracle price. A high appetite for arbitraging volume per oracle price movement encourages us to support a

higher k, providing lower slippage for Traders.

3 Trading and Order Specifications

3.1 Current Implementation

3.1.1 Market Orders

User trades are executed against a vAMM. Drift Protocol supports market orders along with the ability to

specify a limit price. The limit price provides a mechanism for users to specify the maximum slippage that

9

they’re willing to pay. If the order is executed and the price is worse than the limit price, the transaction is

canceled.

Although one can calculate the vAMM’s slippage at any given time, one can’t guarantee the order of the

transactions so a user can receive a price worse than expected when they initiate a transaction.

All orders are either traded within a single transaction or they are canceled. No orders are queued, so if

the transaction isn’t filled instantly, it will be canceled and users will have to replace their orders.

3.2 Future Implementation

3.2.1 Limit Orders

Future versions of Drift Protocol may support a matching engine for limit orders. One potential solution

involves adding an order book to the exchange and incentivizing off-chain bots to match orders against the

vAMM when prices cross the limit order price. These will resemble limit orders, stop losses and take profits

in practice.

4 Margin Methodology

The Margin Method defines the rules for Traders to take take additional leverage using margin managed by

the Clearing House.

4.1 Current Implementation

Drift Protocol v0 supports a rules-based cross-margining multiple positions using a single pool of USDC

collateral. Figure 2, describes some trade offs between Cross Margin: a combined margin ratio across all

open positions and Isolated Margin: which separates margin for each positions into separate collateral

account.

Margin Method Pros Cons

Isolated Margin* Position blocks can limited loss

to capital pool.

Excess collateral may not be

swept pre-liquidation.

Cross Margin Profits from one position can

support losses in another.

All collateral is at risk of liquida-

tion.

Figure 2: Margin Methods Comparison

(*: Not available in v0)

10

4.1.1 Definitions

With multiple positions in the cross-margin implemention, the margin ratio can be calculated as:

margin ratio =
total collateral

position notional

where:

total collateral = user account.collateral + unrealized pnl

unrealized pnl =
∑
i

position valuei − user positioni.quote asset notional amount

position notional =
∑
i

position valuei

position valuei = user positioni.base asset amount · amm.base asset price

4.1.2 On-Chain Limitations

The two limiting factors for implementing cross-margining on Solana were the maximum transaction size

and the instruction compute unit limit. Solana transactions must be smaller than 1232 bytes. An account

address is 32 bytes, thus the maximum number of accounts that can be included in a transaction is 40. If

each Market were stored in its own account, a user would be constrained to entering 40 markets. This is

because when a user interacts with the exchange (e.g. opens a position, withdraws collateral), the protocol

must check the user’s margin ratio which requires fetching the price of each market.

Instead of storing the state of each market in one account, Drift Protocol stores the state of all its markets

in a single account. This is possible because vAMMs have a space-complexity of O(1) (whereas an order

book has a space-complexity of O(n) where n is the number of orders).

index base asset amount ...

i0

i1

i2

...

i998

i999





index market index ...

n0 i0 ...

n1 i1 ...

n2 i2 ...

...

n8 i8 ...

n9 i9 ...



Figure 3: MarketsAccount (supports 1000 markets), UserPositionsAccount (supports 10 user positions)

The instruction compute unit limit is the more constraining factor. As mentioned above, every time a

user interacts with the exchange, the exchange must calculate the user’s margin ratio. This requires looping

through each of the user’s positions and thus, given enough positions, can consume all of an instruction’s

compute units. To start, Drift Protocol enables a user to enter 10 positions. This a conservative start and

11

more testing is required to determine an upper bound. Solana’s increases from a 200,000 compute unit limit

to 1,000,000 compute unit limit will also increase the number of positions a user can enter.

4.2 Future Implementation

4.2.1 Isolated Margin

To enable support for isolated margin accounts, the protocol would enable users to create multiple UserPo-

sitionsAccounts (these accounts could also be named UserPositionGroups) and specify what amount of their

total collateral should be allocated to each positions account.

4.2.2 Risk-based Margin Method

To bring about additional capital efficiency, the protocol intends to add a risk based margin method. Features

include:

• Allowing different margin requirements across different markets;

• Reducing collateral required for holding correlated long/short positions;

4.2.3 Indefinite Number of Markets

To extend to an indefinite number of markets, the protocol can be modified to support an arbitrary number

of MarketsAccounts.

5 Funding Rates

Funding Rate payments are the incentive mechanism to bring the vAMM’s mark price closer to the oracle

price. For instance, a user with long position in a market whose oracle price > mark price will receive a

payoff proportional to their position size.

5.1 Current Implementation

For each market, every hour, the Funding Rate update transactions are initiated by users who are incentivized

to collect the funding rate payment. This update reflects the premium or discount between the vAMM’s

mark price and the oracle’s price on average over the previous hour window.

12

5.1.1 Definitions

To enable funding rate payments lazily, Drift Protocol stores a cumulative funding rate since initialization.

amm.cum funding rate0 = 0

...

amm.cum funding ratet =
∑
t

amm.mark twapt − amm.oracle.twapt
amm.oracle.twapt · 24

A user position account then stores the cumulative funding rate they have received so far in each market

(positioni.last cum funding). All funding rate payments are settled directly with the user’s collateral. The

Clearing House automatically attempts to settle the user’s funding rate payments upon user interaction

(withdraw, open position, close position, etc). Updating the funding payment owed is as follows:

Piba = positioni.base asset amount

Pifr
= positioni.last cum funding

Mifr
= ammi.cum funding rate

user.collateral +=
∑
i

Piba · (Mifr
− Pifr

)

After the funding payment is completed, the user’s last cumulative funding rate is updated to match the

market’s:

Pifr
= Mifr

∀i

In the event that collateral deposits do not cover withdrawals of funding rate payments, the Insurance

Fund covers the remainder.

5.2 Future Implementation

5.2.1 Continuous Funding

Future versions of Drift Protocol can explore a more continuous approach to funding rate updates. Instead

of updating the funding rate once an hour, funding rates may be updated every time a user interacts with

the vAMM, i.e. every time they open or close a position. In addition to making the funding rate more

precise, this would remove the off-chain dependency where users must trigger funding rate updates once an

hour.

5.2.2 Asymmetric Funding

Currently, funding rates are symmetric amongst longs and shorts. Mechanisms around the funding rate

imbalance may also be altered to protect the insurance fund.

13

6 Liquidations

6.1 Current Implementation

Liquidations are a necessary function for the risk management of margin trading. The margin rules are

defined in Figure 4:

Requirement Margin Ratio < Implication

initial margin requirement .20 No risk increasing open positions

partial margin requirement .0625 Vulnerable to 25% position reduction

2.5% remaining collateral penalty

maintenance margin requirement .05 Vulnerable to 100% position reduction

100% remaining collateral penalty

Figure 4: Drift Protocol v0 Margin Requirements/Liquidation Rules

Anyone can run a liquidator bot to reduce/close positions of a user whose margin ratio is below the

partial margin requirement. The remaining collateral penalty is split equally between the insurance fund

and liquidator. Leveraged losses beyond 0% margin are solely absorbed by Drift’s Insurance Fund.

We include partial liquidations to reduce the likelihood of users getting entirely liquidated by offloading

positions earlier. A user in multiple positions will have each position reduced by 25% of their position notional

size.

A user is fully liquidated at a 5% maintenance margin. At this point, a liquidator closes out 100% of the

user’s position at the market price and receives the user’s remaining collateral.

6.2 Future Implementation

Future work will focus on improving the speed of liquidations and requiring liquidators to put up capital to

bolster the Insurance Fund. Examples include:

• Experimentation of dynamic parameters for liquidations and risk management;

• Allowing liquidators to put up a position’s initial margin in order to inherit or take over positions

instead of directly closing out positions on the market, which reduces pressure on Drift’s Insurance

Fund;

• New set of liquidation rules under future risk-based margining system

14

7 Disclaimer

This paper is for general information purposes only. It does not constitute investment advice or a recom-

mendation or solicitation to buy or sell any investment and should not be used in the evaluation of the

merits of making any investment decision. It should not be relied upon for accounting, legal or tax advice or

investment recommendations. This paper reflects current opinions of the authors and is not made on behalf

of Drift Labs or their affiliates and does not necessarily reflect the opinions of Drift Labs, their affiliates or

individuals associated with them. The opinions reflected herein are subject to change without being updated.

15

	Technical Overview
	Components
	Participants
	Instructions
	Off-Chain Dependencies
	Data Structures

	Virtual Automated Market Maker (vAMM)
	Market Definition
	Constant Product Curve
	Initializing k and peg_multiplier
	Adapting k and peg_multiplier

	Future Implementation
	Alternative pricing curve
	Formulaic k and peg_multiplier

	Trading and Order Specifications
	Current Implementation
	Market Orders

	Future Implementation
	Limit Orders

	Margin Methodology
	Current Implementation
	Definitions
	On-Chain Limitations

	Future Implementation
	Isolated Margin
	Risk-based Margin Method
	Indefinite Number of Markets

	Funding Rates
	Current Implementation
	Definitions

	Future Implementation
	Continuous Funding
	Asymmetric Funding

	Liquidations
	Current Implementation
	Future Implementation

	Disclaimer

