
Siren AMM

3 February 2022

by Ackee Blockchain

https://ackeeblockchain.com

Contents
1. Document Revisions. 3

2. Overview . 4

2.1. Ackee Blockchain . 4

2.2. Audit Methodology . 4

2.3. Review team. 5

2.4. Disclaimer . 5

3. Executive Summary. 6

4. System Overview . 8

4.1. Contracts. 8

4.2. Actors. 10

5. Vulnerabilities risk methodology . 12

5.1. Finding classification . 12

6. Findings. 14

6.1. Possibility of re-entrancy . 17

6.2. Pitfalls of upgradeability . 20

6.3. SeriesDeployer.autoCreateSeriesAndBuy contains unchecked
transfers . 22
6.4. WToken Vault has no access controls . 24

6.5. MinterAmm.claimAllExpiredTokens contains a for loop with a dynamic

condition . 26

6.6. Use _msgSender over msg.sender . 28

6.7. Missing zero-address checks . 30

6.8. Contracts used as dependencies don’t track upstream changes 32

6.9. Code layout can be improved. 34

6.10. Use of semantic values as defaults in enums. 35

6.11. No return parameter in SeriesController.setSettlementPrice 37

Blockchain audits | Blockchain security assessment

1 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.12. SeriesController.state doesn’t have data validation 39

6.13. Usage of solc optimizer. 41

6.14. System is lacking in documentation . 42

6.15. OpenZeppelin’s upgradeable contracts are used in non-

upgradeable contracts . 43

6.16. ChainlinkEthUsdProxy.latestRoundData can contain uninitialized

return parameters . 44

6.17. Initialization functions are inconsistently named 46

6.18. Log old values in logs . 48

6.19. MinterAmm.updateVolatility’s return parameter is never initialized . . . 50

Endnotes . 52

Appendix A: How to cite . 53

Appendix B: Glossary of terms . 54

Appendix C: Non-Security-Related Recommendations. 55

C.1. Lack of emit . 55

C.2. Dead code . 55

C.3. Conditionals. 56

C.4. State variables . 56

Appendix D: Upgradeability. 57

Appendix E: Fix Review . 59

E.1. Detailed fix log . 61

Blockchain audits | Blockchain security assessment

2 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

1. Document Revisions
DRAFT Final Report February 3, 2022

1.0 Final Report February 15, 2022

1.1 Final Report

• Add Appendix E, Fix Review

March 7, 2022

Blockchain audits | Blockchain security assessment

3 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,

specialized in audits and security assessments. Our mission is to build a

stronger blockchain community by sharing knowledge – we run a free

certification course Summer School of Solidity and teach at the Czech

Technical University in Prague. Ackee Blockchain is backed by the largest VC

fund focused on blockchain and DeFi in Europe, Rockaway Blockchain Fund.

2.2. Audit Methodology
1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools

and Slither is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices and the code architecture

is reviewed.

4. Local deployment + hacking - the contracts are deployed locally and we

try to attack the system and break it.

5. Unit and fuzzy testing - run unit tests to ensure that the system works as

expected, potentially write missing unit or fuzzy tests.

Blockchain audits | Blockchain security assessment

4 of 63

https://ackeeblockchain.com
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rbf.capital/
https://ackeeblockchain.com
https://ackeeblockchain.com

2.3. Review team

Member’s Name Position

Dominik Teiml Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.4. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

Blockchain audits | Blockchain security assessment

5 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

3. Executive Summary
Siren is a protocol that allows users to mint, trade, and exercise options for

ERC20-compliant Ethereum tokens. Siren AMM is a subcomponent that allows

to buy and sell option tokens in the form of an AMM.

Between Jan 3 and Feb 3, 2022, Siren Markets engaged ABCH to conduct a

security review of the AMM subcomponent. This engagement followed up our

previous review of the /series subdirectory from November 2021. Working

commit 0329d49e58, we paid special attention to:

1. the /amm subdirectory,

2. the Welford library,

3. the VolatilityOracle,

4. the AddressesProvider, the SeriesDeployer and the WTokenVault.

Where appropriate, we also reviwed the dependencies of these contracts,

such as SeriesController and Proxiable. In the period mentioned above, we

were allocated 22 enginering days and the lead auditor was Dominik Teiml.

We began our review by using static analysis tools, namely Slither and the

solc compiler. This yielded several issues such as 6.11 and 6.7, as well as

possible code quality improvements, outlined in Appendix C. We then took a

deep dive into the logic of the contracts. During the review, we paid special

attention to:

• ensuring the arithmetic of the system is correct,

• detecting possible reentrancies in the code,

• ensuring access controls are not too relaxed or too strict,

• looking for common issues such as data validation.

Blockchain audits | Blockchain security assessment

6 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/Welford.sol#L7-L85
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L303
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/configuration/AddressesProvider.sol#L9-L186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L16-L304
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L15-L271
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesController.sol#L26-L1237
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/proxy/Proxiable.sol#L5-L35
mailto:dominik.teiml@ackeeblockchain.com
https://github.com/crytic/slither
https://github.com/ethereum/solidity
https://ackeeblockchain.com
https://ackeeblockchain.com

We also created a model of the arithmetic in a higher-level language, that we

then used to test the system. While easier to work with than the low-level

implementations, we weren’t able to find a vulnerability in the context of the

arithmetics employed.

Our review resulted in 19 findings, ranging from Informational to High severity.

The most critical issue was that related to re-entrancy protection (see

Possibility of re-entrancy). While we weren’t able to find an exploit scenario

for this issue in the allocated time, we believe the protocol should have

stricter re-entrancy protections.

Ackee Blockchain recommends Siren:

• extend the AddressesProvider to implement a global re-entrancy lock with

modifiers on all non-view public entrypoints,

• address all reported issues,

• use Slither for vulnerability detection. Slither was able to detect several

findings including 6.19, 6.11 and 6.7.

Blockchain audits | Blockchain security assessment

7 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/configuration/AddressesProvider.sol#L9-L186
https://github.com/crytic/slither
https://ackeeblockchain.com
https://ackeeblockchain.com

4. System Overview
This section contains an outline of the audited contracts. Note that this is

meant for understandibility purposes and does not constitute a formal

specification.

4.1. Contracts

AddressesProvider

The AddressesProvider is the central registry. It is used by the other modules

to get addresses of other contracts.

ChainlinkEthUsdProxy

The ChainlinkEthUsdProxy converts prices from ETH/USD and ERC20/ETH to

ERC20/USD.

Welford

Welford is a Solidity library that can compute volatility of price with an on-

line, iterative manner. It is based on a contract by Ribbon Finance (see 6.8).

VolatilityOracle

The VolatilityOracle is used to compute the volatility of a token over a number

of price readings. It stores the accumulated values for a token in an

accumulator, and uses Welford to update these values.

BlackScholes

BlackScholes is a contract to comute the estimate of the price of an option

token. It is based on a contract by Lyra Protocol (see 6.8).

Blockchain audits | Blockchain security assessment

8 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/configuration/AddressesProvider.sol#L9-L186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/ChainlinkEthUsdProxy.sol#L7-L98
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/Welford.sol#L7-L85
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L303
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/Welford.sol#L7-L85
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/BlackScholes.sol#L10-L477
https://ackeeblockchain.com
https://ackeeblockchain.com

SeriesDeployer

The SeriesDeployer allows anyone to create a series. The only pre-conditions

are that the number of series per expiration date has not yet been reached,

that an AMM exists for that (underlying token, price token, collateral token)

triple, and, finally, that the strike price is one of the allowed values.

WTokenVault

The WTokenVault allows the MinterAmm to lock and redeem collateral and

active writer option tokens.

AmmDataProvider

The AmmDataProvider provides helper functions for the MinterAmm,

SirenExchange, and the WTokenVault. It doesn’t have any publicly-accessible

or internal non-view functions. It calls other contracts to gather information,

and computes results based on those values.

AmmFactory

The AmmFactory allows the owner to create new MinterAmms.

MinterAmm

The MinterAmm is an implementation of an AMM to trade Siren option assets.

Each AMM is parameterized by a (underlying token, price token, collateral

token) triple and uses a combination of the SeriesController,

AmmDataProvider, VolatilityOracle and BlackScholes to mint option tokens

and offer them to users in the form of an automated market maker.

SirenExchange

The SirenExchange allows exchanging buying and selling bTokens for

arbitrary user tokens. It does this by using the MinterAmm together with a

Blockchain audits | Blockchain security assessment

9 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L16-L304
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L15-L271
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmDataProvider.sol#L18-L662
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/SirenExchange.sol#L14-L253
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L15-L271
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmFactory.sol#L15-L244
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesController.sol#L26-L1237
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmDataProvider.sol#L18-L662
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L303
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/BlackScholes.sol#L10-L477
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/SirenExchange.sol#L14-L253
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://ackeeblockchain.com
https://ackeeblockchain.com

Uniswap V2 implementation.

4.2. Actors
This part describes actors of the system, their roles and permissions.

AddressesProvider

The AddressesProvider has an owner that is the initializer by default. The owner

may transfer ownership, udpate the imlementation pointer, set address in a

low-level manner for any bytes32 id, and set address registries for all system

contracts.

ChainlinkEthUsdProxy

The ChainlinkEthUsdProxy does not have an owner or any other privileged

actor.

VolatilityOracle

The VolatilityOracle has an owner that is the deployer. The owner has the

opportunity to transfer ownership per OwnableUpgradeable.transferOwnership,

and can add token pairs, set accumulator values and last prices for token

pairs.

BlackScholes

BlackScholes does not have any owner or any other privileged actor.

SeriesDeployer

The SeriesDeployer uses AccessControlUpgradeable, however, it only uses

one role (the DEFAULT_ADMIN role). This is by default the initializer, and is also

called the owner throughout the contract, and can be transferred. The owner

may update the implementation contract, the AddressesProvider registry and

Blockchain audits | Blockchain security assessment

10 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/configuration/AddressesProvider.sol#L9-L186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/ChainlinkEthUsdProxy.sol#L7-L98
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L303
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/BlackScholes.sol#L10-L477
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L16-L304
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/7ebad27950c0b65fd046c43c3605d2347a1f96e2/contracts/access/AccessControlUpgradeable.sol#L58-L223
https://ackeeblockchain.com
https://ackeeblockchain.com

may arbitrarily change the maximum number of series for each expiration

date. Finally, the owner may update the allowed strike price ranges for each

underlying token.

WTokenVault

The WTokenVault has an owner, by default the initializer. The owner may be

transferred to a different address through

OwnableUpgradeable.transferOwnership. There are currently no other features

that only the owner can execute.

AmmDataProvider

The AmmDataProvider does not have any owner or any other privileged actor.

AmmFactory

The AmmFactory has an owner which is by default the initializer. The owner may

update the token and amm implementation that new AMMs are proxied to.

They can also update the AmmFactory implementation, transfer their

ownership and create AMMs.

MinterAmm

The MinterAmm has an owner, by default the initializer. The owner may transfer

their ownership, udpate the implementation and AddressesProvider pointer.

They can also set the trading and maxium fees fees, their destination

address, and set the config values used for price calculation, namely ivShift,

dynamicIvEnabled and ivDriftRate.

SirenExchange

The SirenExchange does not have any owner or any other privileged actor.

Blockchain audits | Blockchain security assessment

11 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L15-L271
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmDataProvider.sol#L18-L662
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmFactory.sol#L15-L244
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmFactory.sol#L15-L244
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/configuration/AddressesProvider.sol#L9-L186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/SirenExchange.sol#L14-L253
https://ackeeblockchain.com
https://ackeeblockchain.com

5. Vulnerabilities risk methodology
Each finding contains an Impact and Likelihood ratings.

If we have found a scenario in which the issue is exploitable, it will be

assigned an impact of Critical, High, Medium, or Low, based on the direness of

the consequences it has on the system. If we haven’t found a way, or the

issue is only exploitable given a change in configuration (such as deployment

scripts, compiler configuration, use of multi-signature wallets for owners,

etc.) or given a change in the codebase, then it will be assigned an impact

rating of Warning or Informational.

Low to Critical impact issues also have a Likelihood which measures the

probability of exploitability during runtime.

5.1. Finding classification
The full definitions are as follows:

Impact

High

Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

Medium

Code that activates the issue will result in consequences of serious

substance.

Low

Code that activates the issue will have outcomes on the system that are

either recoverable or don’t jeopardize its regular functioning.

Blockchain audits | Blockchain security assessment

12 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

Warning

The issue cannot be exploited given the current code and/or configuration

(such as deployment scripts, compiler configuration, use of multi-

signature wallets for owners, etc.), but could be a security vulnerability if

these were to change slightly. If we haven’t found a way to exploit the

issue given the time constraints, it might be marked as "Warning" or higher,

based on our best estimate of whether it is currently exploitable.

Informational

The issue is on the border-line between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration (see above) was to change.

Likelihood

High

The issue is exploitable by virtually anyone under virtually any

circumstance.

Medium

Exploiting the issue currently requires non-trivial preconditions.

Low

Exploiting the issue requires strict preconditions.

Blockchain audits | Blockchain security assessment

13 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6. Findings
This section contains the list of discovered findings. Unless overriden for

purposes of readability, each finding contains:

• a Description,

• an Exploit scenario, and

• a Recommendation

Many times, there might be multiple ways to solve or alleviate the issue, with

varying requirements in terms of the necessary changes to the codebase. In

that case, we will try to enumerate them all, making clear which solve the

underlying issue better (albeit possibly only with architectural changes) than

others.

Summary of Findings

Id Type Impact Likelihood

1 Possibility of re-entrancy Re-entrancy High Medium

2
Pitfalls of upgradeability Access controls,

Upgradeability

Warning N/A

3

SeriesDeployer.autoCreat

eSeriesAndBuy contains

unchecked transfers

Data validation High Medium

4
WToken Vault has no

access controls

Access controls Medium High

5

MinterAmm.claimAllExpire

dTokens contains a for

loop with a dynamic

condition

Code maturity Informat

ional

N/A

Blockchain audits | Blockchain security assessment

14 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

Id Type Impact Likelihood

6
Use _msgSender over
msg.sender

Builtin variables Informat

ional

N/A

7
Missing zero-address

checks

Data validation High Low

8

Contracts used as

dependencies don’t track

upstream changes

Dependencies High Low

9
Code layout can be

improved

Code maturity Informat

ional

N/A

10
Use of semantic values as

defaults in enums

Data validation Warning Medium

11
No return parameter in
SeriesController.setSett

lementPrice

Return

parameters

Warning High

12

SeriesController.state

doesn’t have data

validation

Data validation Warning High

13
Usage of solc optimizer Compiler

configuration

High Low

14
System is lacking in

documentation

Specification &

documentation

Informat

ional

N/A

15

OpenZeppelin’s

upgradeable contracts

are used in non-

upgradeable contracts

Dependencies Medium Low

Blockchain audits | Blockchain security assessment

15 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

Id Type Impact Likelihood

16

ChainlinkEthUsdProxy.lat

estRoundData can contain

uninitialized return

parameters

Uninitialized

variables

Warning N/A

17
Initialization functions

are inconsistently named

Code maturity Informat

ional

N/A

18
Log old values in logs Logging Informat

ional

High

19

MinterAmm.updateVolatili

ty’s return parameter is

never initialized

Return

parameters

Low High

Table 1. Table of Findings

Blockchain audits | Blockchain security assessment

16 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.1. Possibility of re-entrancy

Impact: High Likelihood: Medium

Target: /**/* Type: Re-entrancy

Background

Re-entrancy vulnerabilities come in various forms. The vulnerability might

occur when an external call separates two code blocks, and somewhere on

the network there is code that is contingent on both blocks executing

without interruption.

A special case of this is when the re-entrancy is the same function. However,

it could be a different function, or a different contract, or even a different

protocol altogether. Whenever there exists logic on the network that is

contingent on the second code block, it could be possible to utilize a code

injection to violate their atomicity.

Re-entrancies most commonly occur in:

• ether transfers,

• transfers of ERC20s that are also ERC223s or ERC777s,

• transfers of ERC1155s.

Protection

One way to prevent re-entrancies is to use the checks-effects-interactions

pattern. However, this is not always possible. A function’s semantics may

include:

• state mutations to the current contract based on external interactions,

• multiple external interactions (code elsewhere may depend the atomicity

of these multiple interactions).

Blockchain audits | Blockchain security assessment

17 of 63

https://docs.soliditylang.org/en/v0.8.10/security-considerations.html#use-the-checks-effects-interactions-pattern
https://ackeeblockchain.com
https://ackeeblockchain.com

Another way to protect against reentrancies is by introducing a re-entrancy

lock. Based on Background, a re-entrancy lock will only work if:

1. It protects all public entrypoints of a contract.

It is not enough to protect just publicly-accessible functions. An

onlyOwner function may, for example, transfer tokens, and those may call

callbacks. If that is the case, the atomicity of onlyOwner function may be

violated.

2. It protects all public entrypoints of all contracts.

Other modules may rely on the contract’s state. If an attacker calls these

modules, they may perform a dirty read.

3. The lock can be read by any network contract.

Similarly, other projects may rely on the contract’s state.

Note that it is only necessary to protect mutating functions. View functions

might give incorrect results if injected, but they will be relevant only if called

by a function that is non-view.

Siren

Siren added the nonReentrant modifier to all relevant publicly-accessible non-

view functions.

Based on Background, it is not possible to perform all external calls atomically

at the end. Hence a re-entrancy lock really is necessary. However, based on

the analysis in Protection, it is not enough to just protect publicly-accessible

functions.

Blockchain audits | Blockchain security assessment

18 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

Vulnerability scenario

An Ethereum protocol P relies on Siren. Mallory calls one of the publicly-

accessible functions. One of the token transfers allows her to execute

arbitrary code. She re-enters into P, which calls Siren. At this stage, Siren is in

an uncommitted state. She is able to exploit that to attack protocol P.

Alternativaley, the same exploit, but for a different module in Siren rather

than for a different protocol.

Recommendation

Add a system-wide re-entrancy lock in AddressesProvider by declaring a

state variable representing a lock. When any mutating function in the system

is called, there will be a switch on the caller (msg.sender):

• if it is any contract in the system, the call will proceed,

• if it is not and the lock has been acquired, the call will revert,

• if it is not any contract in the system and the lock has not been acquired,

it will be acquired.

This will ensure the project is resilient against the re-entrancy attacks

outlined above.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

19 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/configuration/AddressesProvider.sol#L9-L186
https://ackeeblockchain.com
https://ackeeblockchain.com

6.2. Pitfalls of upgradeability

Impact: Warning Likelihood: N/A

Target: /**/* Type: Access controls,

Upgradeability

Description

Many contracts in the system are upgradeable per Proxiable. Currently, the

initialization process for these contracts is:

1. Deploy the (logic) contract.

2. Deploy the proxy, pointing to the logic contract.

3. Call the initialization function on the proxy.

There are three issues with the current upgradeability process:

1. The logic contracts have no access controls to prevent malicious actors

from interacting with them directly. Note that this is only a problem

insofar as they could change the logic contract’s code.

2. An attacker could front-run one of the initialization functions.

3. An attacker could call other functions on the proxy before initialize is

called on it.

Analysis of Requirement #1

Contract

code

invariant

A contract that doesn’t use callcode, delegatecall or

selfdestruct instructions cannot be selfdestructed.

Moreover, its code cannot change.

Based on the Contract code invariant, the only way to change a contract’s

code is through the use of callcode, delegatecall or selfdestruct. We checked

Blockchain audits | Blockchain security assessment

20 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/proxy/Proxiable.sol#L5-L35
https://ackeeblockchain.com
https://ackeeblockchain.com

that none of the logic contracts uses one of these statements. For a fully

generic discussion, see Appendix D.

Recommendation

To protect against Requirement #2, consider:

• requiring in your deployment scripts that the initialization call is

successful. OpenZeppelin’s initializer modifier will ensure that if the

initialization has been called, the call to it will fail.

• modifying Proxy's constructor to take an additional bytes parameter.

Delegatecall this on the target, requiring the call be successful. This will

ensure an atomic construction and initialization of the Proxy.

To protect against Requirement #3, refer to Appendix D.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

21 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/proxy/Proxy.sol#L5-L46
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/proxy/Proxy.sol#L5-L46
https://ackeeblockchain.com
https://ackeeblockchain.com

6.3. SeriesDeployer.autoCreateSeriesAndBuy
contains unchecked transfers

Impact: High Likelihood: Medium

Target: SeriesDeployer Type: Data validation

Listing 1. SeriesDeployer.sol#L261-L266

261 // Move the collateral into this address and approve the AMM
262 IERC20(ammTokens.collateralToken).transferFrom(
263 msg.sender,
264 address(this),
265 _collateralMaximum
266);

Listing 2. SeriesDeployer.sol#L291-L297

291 // Send any unused collateral back to buyer
292 if (IERC20(ammTokens.collateralToken).balanceOf(address(this))
 > 0) {
293 IERC20(ammTokens.collateralToken).transfer(
294 msg.sender,
295 IERC20(ammTokens.collateralToken).balanceOf(address
 (this))
296);
297 }

Description

The SeriesDeployer is a module that allows anyone to create a series whose

(underlying, price, collateral) token triple already exists in a AMM. The

autoCreateSeriesAndBuy implements this, and also allows users to directly buy

bTokens of the series from the corresponding AMM.

To do this, it uses transferFrom to transfer the collateral tokens from the user,

and transfer to send any unused collateral back.

Blockchain audits | Blockchain security assessment

22 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L16-L304
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L261-L266
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L291-L297
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L16-L304
https://ackeeblockchain.com
https://ackeeblockchain.com

However, in these instances, it doesn’t use SafeERC20, nor does it

appropriately handle the case of tokens returning false (rather than

reverting) on failure conditions (such as insufficient allowance).

Vulnerability scenario

An ERC20 token with the above behavior is used as a collateral token in an

AMM. Since one of these functions may not have the expected behavior of

transferring tokens, undefined behavior may occur.

For example, the transfer function used to send leftovers may fail, for

whatever reason internal to the token at hand. As a result, the AMM will keep

the leftover of the user’s collateral tokens.

Recommendation

Short term, use SafeERC20 in these instances.

Long term, always use SafeERC20 when interacting with external tokens. This

will ensure the maximum support range for variously-behaving ERC20 tokens.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

23 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.4. WToken Vault has no access controls

Impact: Medium Likelihood: High

Target: WTokenVault Type: Access controls

Listing 3. WTokenVault.sol#L66-L77

66 function lockActiveWTokens(
67 uint256 lpTokenAmount,
68 uint256 lpTokenSupply,
69 address redeemer,
70 uint256 volatility
71) external override {
72 LocalVars memory vars;
73
74 ISeriesController seriesController = ISeriesController(
75 addressesProvider.getSeriesController()
76);
77 IMinterAmm amm = IMinterAmm(msg.sender);

Listing 4. WTokenVault.sol#L243-L248

243 function lockCollateral(
244 uint64 seriesId,
245 uint256 collateralAmount,
246 uint256 wTokenAmount
247) external override {
248 address ammAddress = msg.sender;

Description

WTokenVault has many code locations where it assumes the caller is an AMM

(see Listing 3 and Listing 4). Undefined behavior could occur if these publicly-

accessible functions are called by other parties.

Blockchain audits | Blockchain security assessment

24 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L15-L271
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L66-L77
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L243-L248
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L15-L271
https://ackeeblockchain.com
https://ackeeblockchain.com

Recommendation

Short term, either remove the assumptions that the caller is an AMM, and

document the expected behavior for a generalized caller, or, alternatively,

add access controls to forbid other callers.

Long term, avoid unclear assumptions; this will make the code more readable.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

25 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.5. MinterAmm.claimAllExpiredTokens contains a
for loop with a dynamic condition

Impact: Informational Likelihood: N/A

Target: MinterAmm Type: Code maturity

Listing 5. MinterAmm.claimAllExpiredTokens

547 /// @notice Claims any remaining collateral from all expired series
 whose wToken is held by the AMM, and removes
548 /// the expired series from the AMM's collection of series
549 function claimAllExpiredTokens() public {
550 for (uint256 i = 0; i < openSeries.length(); i++) {
551 uint64 seriesId = uint64(openSeries.at(i));
552 while (
553 seriesController.state(seriesId) ==
554 ISeriesController.SeriesState.EXPIRED
555) {
556 claimExpiredTokens(seriesId);
557
558 // Handle edge case: If, prior to removing the Series,
 i was the index of the last Series
559 // in openSeries, then after the removal `i` will point
 to one beyond the end of the array.
560 // This means we've iterated through all of the Series
 in `openSeries`, and we should break
561 // out of the while loop. At this point i ==
 openSeries.length(), so the outer for loop
562 // will end as well
563 if (i == openSeries.length()) {
564 break;
565 } else {
566 seriesId = uint64(openSeries.at(i));
567 }
568 }
569 }
570 }

Blockchain audits | Blockchain security assessment

26 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L547-L570
https://ackeeblockchain.com
https://ackeeblockchain.com

Listing 6. MinterAmm.sol#L599-L601

599 // Remove the expired series to free storage and reduce gas fee
600 // NOTE: openSeries.remove will remove the series from the i’th
 position in the EnumerableSet by
601 // swapping it with the last element in EnumerableSet and then
 calling .pop on the internal array.

Description

MinterAmm contains a function claimAllExpiredTokens. The intended behavior

of this function is to loop over all series' tokens held by the AMM, and claim

collateral for those that are past the expiry date.

The implementation of this function is unsatisfactory:

1. Even though it is looping over one list, it uses two loops to accomplish

that

2. It relies on claimExpiredTokens' behavior, which uses implementation-

specific details of Enumerable Set (see Listing 6).

3. The bound of the condition in the for loop (openSeries.length()) is

dynamic and might change on every iteration. Dynamic conditions are very

difficult to read, debug, and reason about.

Recommendation

Short term, investigate the option of using MinterAmm.allSeries to fetch all

ids, and then claiming tokens and evicting series appropriately. Unless are

other disadvantages, this should solve all three of the above issues.

Long term, avoid anti-patterns such as loop conditions with side-effects or

ones that are dynamic. This will make the code much easier to reason about.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

27 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L599-L601
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://ackeeblockchain.com
https://ackeeblockchain.com

6.6. Use _msgSender over msg.sender

Impact: Informational Likelihood: N/A

Target: VolatilityOracle,

SeriesDeployer,

AddressesProvider,

WTokenVault, MinterAmm,

AmmFactory

Type: Builtin variables

Description

The following contracts have ContextUpgradeable in its inheritance chain:

1. VolatilityOracle

2. SeriesDeployer

3. AddressesProvider

4. WTokenVault

5. MinterAmm

6. AmmFactory

ContextUpgradeable defines _msgSender and _msgData functions. This makes it

easy to switch their semantics, e.g. if Siren decides to support

metatransactions in the future. If a contract inherits from

ContextUpgradeable, uses of msg.data and msg.sender should be replaced by

internal calls to _msgData and _msgSender, respectively. This will ensure that if

the semantics is changed in the future, the codebase will remain consistent.

Recommendation

Short term, replace all instances of msg.sender with _msgSender() in the

contracts that inherit from ContextUpgradeable. This will ensure future-

Blockchain audits | Blockchain security assessment

28 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L303
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L16-L304
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/configuration/AddressesProvider.sol#L9-L186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L15-L271
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmFactory.sol#L15-L244
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/7ebad27950c0b65fd046c43c3605d2347a1f96e2/contracts/utils/ContextUpgradeable.sol#L16-L32
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L303
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L16-L304
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/configuration/AddressesProvider.sol#L9-L186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/WTokenVault.sol#L15-L271
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmFactory.sol#L15-L244
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/7ebad27950c0b65fd046c43c3605d2347a1f96e2/contracts/utils/ContextUpgradeable.sol#L16-L32
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/7ebad27950c0b65fd046c43c3605d2347a1f96e2/contracts/utils/ContextUpgradeable.sol#L16-L32
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/7ebad27950c0b65fd046c43c3605d2347a1f96e2/contracts/utils/ContextUpgradeable.sol#L16-L32
https://ackeeblockchain.com
https://ackeeblockchain.com

proofness against future code changes.

Long term, ensure that all contracts' code is consistent with the code of their

inherited contracts.

Blockchain audits | Blockchain security assessment

29 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.7. Missing zero-address checks

Impact: High Likelihood: Low

Target: /**/* Type: Data validation

Listing 7. MinterAmm.setTradingFeeParams

326 /// The owner can set the trade fee params - if any are set to
 0/0x0 then trade fees are disabled
327 function setTradingFeeParams(
328 uint16 _tradeFeeBasisPoints,
329 uint16 _maxOptionFeeBasisPoints,
330 address _feeDestinationAddress
331) public onlyOwner {
332 tradeFeeBasisPoints = _tradeFeeBasisPoints;
333 maxOptionFeeBasisPoints = _maxOptionFeeBasisPoints;
334 feeDestinationAddress = _feeDestinationAddress;
335 emit TradeFeesUpdated(
336 tradeFeeBasisPoints,
337 maxOptionFeeBasisPoints,
338 feeDestinationAddress
339);
340 }

Listing 8. VolatilityOracle.sol#L83-L93

83 constructor(
84 uint32 _period,
85 IPriceOracle _priceOracle,
86 uint256 _windowInDays
87) {
88 require(_period > 0, "!_period");
89 require(_windowInDays > 0, "!_windowInDays");
90
91 period = _period;
92 priceOracleAddress = _priceOracle;
93 windowSize = _windowInDays.mul(uint256(1 days).div(_period));

Blockchain audits | Blockchain security assessment

30 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L326-L340
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L83-L93
https://ackeeblockchain.com
https://ackeeblockchain.com

Description

There are multiple places in the system where zero-address checks are not

present (see Listing 7 and Listing 8). While not a perfect method of data

validation, zero-address checks are the first line of defense against

incorrectly supplied input arguments.

Vulnerability scenario

Bob is an employee of Siren or a project cloning Siren. They call

setTradingFeeParams, but because of a bug in the scripting library, the abi

values are incorrectly encoded. The contract interprets the

_feeDestinationAddress argument as 0x0 and sets the state variable

accordingly. Fees are sent to this external address, resulting in loss of funds.

Recommendation

Short term, add a zero-address check for all addresses and contracts used as

inputs to the system.

Long term, investigate more stringent method of data validation, such as

through a specific id, to catch even more instances of machine or human

error.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

31 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.8. Contracts used as dependencies don’t track
upstream changes

Impact: High Likelihood: Low

Target: EnumerableSet, DSMath, Math,

PRBMathSD59x18, Welford

Type: Dependencies

Description

The system relies on several dependencies, such as OpenZeppelin's contracts-

upgradeable library, and Maker's DSMath library. Some of these dependencies

are managed through npm, a package manager. However, the following third-

party contracts are not:

• EnumerableSet

• DSMath

• Math

• PRBMathSD59x18

• Welford

Vulnerability scenario

A vulnerability is discovered in one of these contracts. A hotfix is immediately

pushed, as well as security alerts into all package managers, where it is

distributed. Since these dependencies are used without a package manager,

the following consequences may occur:

• developers installing these dependencies will not be alerted through their

package manager

• a vulnerable version of the contract will be used during deployment

Blockchain audits | Blockchain security assessment

32 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/oz/EnumerableSet.sol#L5-L346
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/DSMath.sol#L20-L98
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/Math.sol#L5-L26
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/PRBMathSD59x18.sol#L4-L98
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/Welford.sol#L7-L85
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/oz/EnumerableSet.sol#L5-L346
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/DSMath.sol#L20-L98
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/Math.sol#L5-L26
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/PRBMathSD59x18.sol#L4-L98
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/libraries/Welford.sol#L7-L85
https://ackeeblockchain.com
https://ackeeblockchain.com

• the team will not find out about the vulnerability

Recommendation

Short term, track upstream changes of these dependencies using package

managers that they are officially distributed in.

Long term, track all upstream changes of all dependencies. This will ensure

the latest version of the contracts is used, which is the least likely to contain

security concerns, as well as the least likely to contain safety concerns.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

33 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.9. Code layout can be improved

Impact: Informational Likelihood: N/A

Target: /**/* Type: Code maturity

Listing 9. BlackScholes.sol#L179-L189

179 uint256 prob = uint256(
180 (d *
181 (3193815 +
182 ((-3565638 +
183 ((17814780 +
184 ((-18212560 + (13302740 * 1e7) / t1) * 1e7)
 /
185 t1) * 1e7) /
186 t1) * 1e7) /
187 t1) *
188 1e7) / t1
189);

Description

There are many instances in the codebase when arithmetic operations span

up to 11 LoC (see Listing 9). This hinders readability for users, auditors,

developers, and other stake-holders. Splitting this onto multiple arithmetic

expressions, separated by assignment operations, will significantly improve

readability of the code.

Recommendation

Introduce local variables in places such as Listing 9. This will improve

readability while not compromising performance.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

34 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/BlackScholes.sol#L179-L189
https://ackeeblockchain.com
https://ackeeblockchain.com

6.10. Use of semantic values as defaults in enums

Impact: Warning Likelihood: Medium

Target: SeriesController Type: Data validation

Listing 10. ISeriesController.SeriesState

36 /// @notice All possible states a Series can be in with regard to
 its expiration date
37 enum SeriesState {
38 /**
39 * New option token cans be created.
40 * Existing positions can be closed.
41 * bTokens cannot be exercised
42 * wTokens cannot be claimed
43 */
44 OPEN,
45 /**
46 * No new options can be created
47 * Positions cannot be closed
48 * bTokens can be exercised
49 * wTokens can be claimed
50 */
51 EXPIRED
52 }

Listing 11. ISeriesController.FeeType

54 /** Enum to track Fee Events */
55 enum FeeType {
56 EXERCISE_FEE,
57 CLOSE_FEE,
58 CLAIM_FEE
59 }

Description

There are multiple times in the system when Solidity enums are used (see, for

Blockchain audits | Blockchain security assessment

35 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesController.sol#L26-L1237
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/ISeriesController.sol#L36-L52
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/ISeriesController.sol#L54-L59
https://ackeeblockchain.com
https://ackeeblockchain.com

example, Listing 10 and Listing 11).

Solidity enums are implemented as integers. As such, the default value on the

Ethereum Virtual Machine of 0 will be interpreted as the first enum option.

This can be dangerous, for example if enums are used as state variables.

Vulnerability scenario

One of the two enums above is used in a state variable, for example in a

mapping, or a top-level state variable. When an unitialized value is read, it will

default to the first enum option even though that might not be desired

behavior. Since this will not raise compiler warnings, and current tools such as

Slither do not warn about this, it can be difficult to catch.

Recommendation

Short term, add a NULL or DEFAULT value to the above enums. This will ensure

that whenever one of the other options is read, it doesn’t correspond to the

default value.

Long term, always assume that the first value could be an unitialized one. This

will prevent future bugs.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

36 of 63

https://github.com/crytic/slither
https://ackeeblockchain.com
https://ackeeblockchain.com

6.11. No return parameter in
SeriesController.setSettlementPrice

Impact: Warning Likelihood: High

Target: SeriesController Type: Return

parameters

Listing 12. SeriesController.setSettlementPrice

1177 /// @notice Sets the settlement price for all settlement dates
 prior to the current block timestamp
1178 /// for the given <underlyingToken>-<priceToken> pair
1179 /// @param _seriesId The specific series, accessed by its index
1180 function setSettlementPrice(uint64 _seriesId) internal {
1181 Series memory currentSeries = allSeries[_seriesId];
1182
1183 return
1184 IPriceOracle(priceOracle).setSettlementPrice(
1185 address(currentSeries.tokens.underlyingToken),
1186 address(currentSeries.tokens.priceToken)
1187);
1188 }

Description

SeriesController has an internal function setSettlementPrice that calls the

PriceOracle to set the relative price of two assets (see Listing 12). The

function has a return statement even though it doesn’t have a return

parameter.

Vulnerability scenario

Inspecting the code, a developer believes that setSettlementPrice returns the

set price. It does not, leading to bad consequences.

Blockchain audits | Blockchain security assessment

37 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesController.sol#L26-L1237
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesController.sol#L1177-L1188
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesController.sol#L26-L1237
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/PriceOracle.sol#L10-L308
https://ackeeblockchain.com
https://ackeeblockchain.com

Recommendation

Short term, either remove the return statement from

SeriesController.setSettlementPrice, or add a return parameter and return

statement to PriceOracle.setSettlementPrice and a return parameter to

SeriesController.setSettlementPrice. This will ensure consistency and

expected behavior of the system.

Long term, avoid returning return values from functions that don’t return

anything. While not currently enforced by the compiler, it is poor practice and

can lead to unintended consequences.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

38 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.12. SeriesController.state doesn’t have data
validation

Impact: Warning Likelihood: High

Target: SeriesController Type: Data validation

Listing 13. SeriesController.state

 93 /// @notice Returns the state of a Series, which can be OPEN or
 EXPIRED. The OPEN state
 94 /// means the block timestamp is still prior to the Series'
 expiration date, and so option
 95 /// tokens can be minted or closed. The EXPIRED state means the
 block timestamp is after
 96 /// the expiration date, and now the bTokens can be exercised and
 the wTokens claimed
 97 /// @param _seriesId The index of this Series
 98 /// @return The state of the Series
 99 function state(uint64 _seriesId)
100 public
101 view
102 override
103 returns (SeriesState)
104 {
105 // before the expiration
106 if (block.timestamp < allSeries[_seriesId].expirationDate) {
107 return SeriesState.OPEN;
108 }
109
110 // at or after expiration
111 return SeriesState.EXPIRED;
112 }

Description

SeriesController has a function state(uint64) that returns the current state a

series is in (see Listing 13). If the series does not currently exist, it returns

SeriesState.EXPIRED. External parties can make the conclusion that the series

Blockchain audits | Blockchain security assessment

39 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesController.sol#L26-L1237
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesController.sol#L93-L112
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesController.sol#L26-L1237
https://ackeeblockchain.com
https://ackeeblockchain.com

has expired, when in fact a series with that id does not exist.

Note that fixing 6.10 would make this issue less severe. However, we still

recommend making partial functions (functions that revert on invalid inputs)

unless there is a good reason to work with uninitialized series.

Vulnerability scenario

A function in the system calls SeriesController.state with a non-existent

series' id. The return value is interpreted as an expired series, which can lead

to unintended consequences.

Recommendation

Short term, unless there arises a situation when state returning an

uninitialized series' state would be semantically significant, add validation to

state that if expirationDate == 0, the function should revert.

Long term, add more data validation to getter functions. While this might

have a gas cost trade-off, it will improve the security of your system.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

40 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.13. Usage of solc optimizer

Impact: High Likelihood: Low

Target: /**/* Type: Compiler

configuration

Description

The project uses the solc optimizer. Enabling the solc optimizer may lead to

unexpected bugs.

The Solidity compiler was audited in November 2018 and the audit concluded

that the optimizer may not be safe.

Vulnerability scenario

A few months after deployment, a vulnerability is discovered in the optimizer.

As a result, it is possible to attack the protocol.

Recommendation

Until the solc optimizer undergoes more stringent security analysis, opt out

using it. This will ensure the protocol is resilient to any existing bugs in the

optimizer.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

41 of 63

https://docs.soliditylang.org/en/v0.8.10/bugs.html
https://docs.soliditylang.org/en/v0.8.10/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://ackeeblockchain.com
https://ackeeblockchain.com

6.14. System is lacking in documentation

Impact: Informational Likelihood: N/A

Target: /**/* Type: Specification &

documentation

Description

The system is currently lacking high-level documentation. While some

contracts, such as the MinterAmm, have contract-level natspec, many

contracts and many functions lack natspec documentation. This hinders

readability and makes onboarding onto the system more difficult.

Recommendation

Short term, add contract-level and function-level natspec to all contracts

and functions, respectively. Additionally, add a high-level overview of the

system.

Long term, document the codebase while writing it. This will ensure maximum

transparency and ease of use for developers, users, and auditors.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

42 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://ackeeblockchain.com
https://ackeeblockchain.com

6.15. OpenZeppelin’s upgradeable contracts are
used in non-upgradeable contracts

Impact: Medium Likelihood: Low

Target: VolatilityOracle Type: Dependencies

Listing 14. VolatilityOracle.sol#L12-L12

12 contract VolatilityOracle is DSMath, OwnableUpgradeable {

Description

VolatilityOracle is not meant to be upgraded, as it doesn’t inherit from

Proxiable and hence lacks the _updateCodeAddress method. However, it still

inherits from OwnableUpgradeable (see Listing 14). OwnableUpgradeable is

meant to be used for upgradeable contracts.

Recommendation

Short term, inherit from Ownable instead.

Long term, use all dependencies in the way they are intended to be used.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

43 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L303
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L12
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L303
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/proxy/Proxiable.sol#L5-L35
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/7ebad27950c0b65fd046c43c3605d2347a1f96e2/contracts/access/OwnableUpgradeable.sol#L19-75
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/7ebad27950c0b65fd046c43c3605d2347a1f96e2/contracts/access/OwnableUpgradeable.sol#L19-75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/23869e5b2a7c6b9c3e27dee4289615b8cf50e36b/contracts/access/Ownable.sol#L18-L68
https://ackeeblockchain.com
https://ackeeblockchain.com

6.16. ChainlinkEthUsdProxy.latestRoundData can
contain uninitialized return parameters

Impact: Warning Likelihood: N/A

Target: ChainlinkEthUsdProxy Type: Uninitialized

variables

Listing 15. ChainlinkEthUsdProxy.latestRoundData

78 function latestRoundData()
79 external
80 view
81 override
82 returns (
83 uint80 roundId,
84 int256 answer,
85 uint256 startedAt,
86 uint256 updatedAt,
87 uint80 answeredInRound
88)
89 {
90 (, int256 ethUsdPrice, , ,) = ethUsdOracle.latestRoundData();
91 (, int256 assetEthPrice, , ,) = assetEthOracle.
 latestRoundData();
92
93 require(ethUsdPrice > 0, "ETH/USD price is 0");
94 require(assetEthPrice > 0, "ASSET/ETH price is 0");
95
96 answer = (ethUsdPrice * assetEthPrice) / priceDivisor;
97 }

Description

ChainlinkEthUsdProxy is a module that aggregates two chainlink oracles to

produce asset prices in USD. It exposes the same API as Chainlink

aggregators, including the function latestRoundData().

Blockchain audits | Blockchain security assessment

44 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/ChainlinkEthUsdProxy.sol#L7-L98
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/ChainlinkEthUsdProxy.sol#L78-L97
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/ChainlinkEthUsdProxy.sol#L7-L98
https://docs.chain.link/docs/price-feeds-api-reference/
https://docs.chain.link/docs/price-feeds-api-reference/#latestrounddata
https://ackeeblockchain.com
https://ackeeblockchain.com

The issue is that since the prices can come from multiple Chainlink rounds, it

is difficult to determine the appropriate values for the following return

parameters:

• roundId,

• startedAt,

• updatedAt,

• answeredInRound

In the current code (see Listing 15), these return parameters remain

uninitialized. As they are all integers, they will be 0.

Vulnerability scenario

Bob is a developer building on top of the ChainlinkEthUsdProxy. Based on the

contract API, he assumes that latestRoundData returns the above parameters.

He uses them in the code, but they are 0, leading to unintended

consequences.

Recommendation

Short term, either change the API of the contract to exclude these

parameters, or add developer natspec to the method stating that the four

parameters should not be used. This will ensure that developers know the

limitations of using this method.

Long-term, document all locations where return values may be different than

expected by other developers. This will prevent potentially costly mistakes

such as that outlined above.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

45 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.17. Initialization functions are inconsistently
named

Impact: Informational Likelihood: N/A

Target: /**/* Type: Code maturity

Listing 16. AmmFactory.initialize

46 function initialize(
47 address _ammImplementation,
48 address _tokenImplementation,
49 ISeriesController _seriesController,
50 IAddressesProvider _addressesProvider
51) external {
52 __AmmFactory_init(
53 _ammImplementation,
54 _tokenImplementation,
55 _seriesController,
56 _addressesProvider
57);
58 }

Description

Upgradeable functions in the system contain initialization methods to be able

to run in the context of proxy contracts. However, these functions are

inconsistently named.

Consider these examples:

• the AmmFactory contains an initialize and __AmmFactory_init functions

(see Listing 16),

• the SeriesVault and SeriesDeployer contain only a __SeriesVault_init

function

• the MinterAmm contains only an initialize function

Blockchain audits | Blockchain security assessment

46 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmFactory.sol#L46-L58
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmFactory.sol#L15-L244
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesVault.sol#L13-L111
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/SeriesDeployer.sol#L16-L304
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://ackeeblockchain.com
https://ackeeblockchain.com

Recommendation

Short term, ensure consistency in the naming of the initialization functions -

this will ensure no surprises for developers building on top the code.

Long term, ensure consistency in all areas of the codebase.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

47 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.18. Log old values in logs

Impact: Informational Likelihood: High

Target: /**/* Type: Logging

Listing 17. AmmFactory.sol#L116-L131

116 /// @notice The owner can update the token implementation address
 that will be used for future AMMs
117 function updateTokenImplementation(address newTokenImplementation)
118 external
119 onlyOwner
120 {
121 require(
122 newTokenImplementation != address(0x0),
123 "Invalid newTokenImplementation"
124);
125
126 // Update the address
127 tokenImplementation = newTokenImplementation;
128
129 // Emit the event
130 emit TokenImplementationUpdated(tokenImplementation);
131 }

Description

When logging important state changes, currently the codebase usually logs

only the new value (see Listing 17). This might make incident analysis and

other analyses of runtime behavior difficult.

Recommendation

Short term, log old values for very important operations such as updating

implementation pointers. This will ensure the most possible information is

available for someone analyzing runtime behavior.

Blockchain audits | Blockchain security assessment

48 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmFactory.sol#L116-L131
https://ackeeblockchain.com
https://ackeeblockchain.com

Long term, log any values that on-chain and off-chain observers might be

interested in. This ensures the maximum transparency of the protocol to its

users, developers and other stakeholders.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

49 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

6.19. MinterAmm.updateVolatility’s return
parameter is never initialized

Impact: Low Likelihood: High

Target: MinterAmm Type: Return

parameters

Listing 18. MinterAmm.updateVolatility

289 /// Each time a trade happens we update the volatility
290 function updateVolatility(
291 uint64 _seriesId,
292 int256 priceImpact,
293 uint256 currentIV,
294 uint256 vega
295) internal returns (uint256) {
296 int256 newIV = int256(currentIV) + (priceImpact * 1e18) /
 int256(vega);
297
298 // TODO: ability to set IV range
299 int256 MAX_IV = 4e18; // 400%
300 int256 MIN_IV = 5e17; // 50%
301 if (newIV > MAX_IV) {
302 newIV = MAX_IV;
303 } else if (newIV < MIN_IV) {
304 newIV = MIN_IV;
305 }
306 SeriesVolatility storage seriesVolatility = seriesVolatilities[
307 _seriesId
308];
309 seriesVolatility.volatility = uint256(newIV);
310 seriesVolatility.updatedAt = block.timestamp;
311 }

Description

MinterAmm.updateVolatility declares an anonymous return parameter (see

Listing 18). Since there are no return statements in the method, the function

Blockchain audits | Blockchain security assessment

50 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L289-L311
https://ackeeblockchain.com
https://ackeeblockchain.com

will always return 0.

Vulnerability scenario

Alice, a developer building on top of Siren, observes the function signature of

MinterAmm.updateVolatility and assumes that the function returns some

semantically meaningful unsigned integer. However, it returns 0 instead.

Recommendation

Short term, either remove the return parameter or return a value from a

function.

Long term, avoid declaring return parameters when there is no way the

function returns anything but the default value. This will improve the quality

of the code and avoid future bugs.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

51 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

Endnotes

Blockchain audits | Blockchain security assessment

52 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain, "Report template", January 22, 2022.

If an individual issue is referenced, please use the following identifier:

ABCH-{project_identifer}-{finding_number},

where {project_identifier} for this project is SIREN-AMM and {finding-number}

is the integer corresponding to the section number aligned to three digits.

For example, to cite Possibility of re-entrancy, we would use ABCH-SIREN-AMM-

001.

Blockchain audits | Blockchain security assessment

53 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com
https://ackeeblockchain.com

Appendix B: Glossary of terms
The following terms might be used throughout the document:

Public entrypoint

An external or public function.

Publicly-accessible function/entrypoint

An external or public function that can be successfully executed by any

network account.

Blockchain audits | Blockchain security assessment

54 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

Appendix C: Non-Security-Related
Recommendations

C.1. Lack of emit

MinterAmm.provideCapital contains an event emission without emit

Listing 19. MinterAmm.sol#L390-L391

390 // Emit event
391 LpTokensMinted(msg.sender, collateralAmount,
 collateralAmount);

Use the emit keyword in Listing 19. This will improve readability and

automated static analysis of the codebase.

C.2. Dead code

MinterAmm.WTokensSold is never used

In MinterAmm, the event WTokensSold is defined but never used throughout

the codebase.

SirenExchange._status is never used

Listing 20. SirenExchange._status

29 uint256 private _status;

SirenExchange defines a uint _status (see Listing 20). This state variable is

never used throughout the codebase.

Blockchain audits | Blockchain security assessment

55 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L390-L391
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/MinterAmm.sol#L21-L1186
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/SirenExchange.sol#L29-L30
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/SirenExchange.sol#L14-L253
https://ackeeblockchain.com
https://ackeeblockchain.com

C.3. Conditionals

AmmDataProvider.getPriceForSeriesInternal contains an unnecessary
boolean comparison

Listing 21. AmmDataProvider.sol#L423-L427

423 if (series.isPutOption == true) {
424 return ((put * 1e18) / underlyingPrice);
425 } else {
426 return ((call * 1e18) / underlyingPrice);
427 }

AmmDataProvider's getPriceForSeriesInternal uses a boolean comparison for

control flow. This boolean can be used directly and the boolean comparison

removed.

C.4. State variables

VolatilityOracle.priceOracleAddress could be made immutable

VolatilityOracle has a state variable called priceOracleAddress. Since it is

assigned to in the constructor and nowhere else, it could be made immutable.

Blockchain audits | Blockchain security assessment

56 of 63

https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmDataProvider.sol#L423-L427
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/amm/AmmDataProvider.sol#L18-L662
https://github.com/sirenmarkets/core/blob/0329d49e58ec866b09d12e835324b8278ce9386e/contracts/series/VolatilityOracle.sol#L12-L303
https://ackeeblockchain.com
https://ackeeblockchain.com

Appendix D: Upgradeability
In 6.2, we assumed that logic contracts cannot be selfdestructed and that

calling functions on logic contracts before they are initialized is safe. For

reference, we are relaxing our assumptions to illustrate how to protect

against those threats in a general sense.

For a discussion of how to accomplish (3) of the Requirements, see 6.2.2.

The best way to accomplish both (1) and (2) (while preserving (3)) is to:

1. Ensure that no function on the logic contract can be called until its

initialization function is called.

2. Make sure that once the logic contract is constructed, its initialization

function cannot be called.

3. Ensure that the initialization function can be called on the Proxy.

4. Ensure that all functions can be called on the Proxy once it has been

initialized.

If we are able to accomplish these (and only these) constraints, then the only

risk will be the front-running of the initialization function by an attacker; we’ll

inspect that later.

The initialization function can only currently be called once. Hence the way to

accomplish the above (and only the above) constraints is to:

1. Add the initializer modifier to the constructor of the logic contract. The

constructor will be called on the logic, but not on the proxy contract (see

Listing 22)

2. Add a initialized storage slot that gets set to true on initialization (see

Listing 23). Note that we have to define a new variable, since

OpenZeppelin’s _initialized is marked as private.

Blockchain audits | Blockchain security assessment

57 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

3. Add a require to every non-view public entrypoint in the logic contract

that it has been initialized (see Listing 24).

Listing 22. To be added to the logic contract

bool public initialized;

constructor() initializer {}

Listing 23. To be added to initialize on the logic contract

initialized = true;

Listing 24. To be added to every non-view public entrypoint on the

logic contract

modifier onlyInitialized() {
 require(initialized);
 _;
}

In summary, the process would be to:

1. Add a requirement to every non-view public entrypoint that the contract

has been initialized.

2. Add a requirement to the initialization function that it cannot be called on

the logic contract.

Together, these will accomplish both (1) and (2) of the upgradeability

requirements.

Blockchain audits | Blockchain security assessment

58 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

Appendix E: Fix Review
On Mar 7, 2022, ABCH reviewed Siren Market’s fixes for the issues identified in

this report. The fixes were spread across the following pull requests:

Id PR

3
SeriesDeployer.autoCreateSeriesAndBuy contains

unchecked transfers

#124, #127,

#134

5
MinterAmm.claimAllExpiredTokens contains a for loop

with a dynamic condition

#125

7 Missing zero-address checks #120

11
No return parameter in
SeriesController.setSettlementPrice

#121

12 SeriesController.state doesn’t have data validation #123

16
ChainlinkEthUsdProxy.latestRoundData can contain

uninitialized return parameters

#138

17 Initialization functions are inconsistently named #119

19
MinterAmm.updateVolatility’s return parameter is

never initialized

#122

Table 2. Pull requests for issues

At the time of this writing, all pull requests have been merged into the v3

branch.

Siren Markets has fixed or partially fixed 8 issues. We reviewed the fixes to

ensure they were effective.

Id Impact Likelihood Status

1 Possibility of re-entrancy High Medium Not fixed

2 Pitfalls of upgradeability Warning N/A Not fixed

Blockchain audits | Blockchain security assessment

59 of 63

https://github.com/sirenmarkets/core/pull/124
https://github.com/sirenmarkets/core/pull/127
https://github.com/sirenmarkets/core/pull/134
https://github.com/sirenmarkets/core/pull/125
https://github.com/sirenmarkets/core/pull/120
https://github.com/sirenmarkets/core/pull/121
https://github.com/sirenmarkets/core/pull/123
https://github.com/sirenmarkets/core/pull/138
https://github.com/sirenmarkets/core/pull/119
https://github.com/sirenmarkets/core/pull/122
https://ackeeblockchain.com
https://ackeeblockchain.com

Id Impact Likelihood Status

3

SeriesDeployer.autoCreateS

eriesAndBuy contains

unchecked transfers

High Medium Fixed

4
WToken Vault has no

access controls

Medium High Not fixed

5

MinterAmm.claimAllExpiredT

okens contains a for loop

with a dynamic condition

Informational N/A Fixed

6
Use _msgSender over
msg.sender

Informational N/A Not fixed

7
Missing zero-address

checks

High Low Partially

fixed

8

Contracts used as

dependencies don’t track

upstream changes

High Low Not fixed

9
Code layout can be

improved

Informational N/A Not fixed

10
Use of semantic values as

defaults in enums

Warning Medium Not fixed

11
No return parameter in
SeriesController.setSettle

mentPrice

Warning High Fixed

12

SeriesController.state

doesn’t have data

validation

Warning High Fixed

13 Usage of solc optimizer High Low Not fixed

14
System is lacking in

documentation

Informational N/A Not fixed

Blockchain audits | Blockchain security assessment

60 of 63

https://ackeeblockchain.com
https://ackeeblockchain.com

Id Impact Likelihood Status

15

OpenZeppelin’s

upgradeable contracts are

used in non-upgradeable

contracts

Medium Low Not fixed

16

ChainlinkEthUsdProxy.lates

tRoundData can contain

uninitialized return

parameters

Warning N/A Fixed

17
Initialization functions are

inconsistently named

Informational N/A Fixed

18 Log old values in logs Informational High Not fixed

19

MinterAmm.updateVolatility

’s return parameter is never

initialized

Low High Fixed

Table 3. Fix log

E.1. Detailed fix log

Missing zero-address checks

Listing 25. VolatilityOracle.sol#L86-L95

86 function initialize(
87 uint32 _period,
88 IAddressesProvider _addressesProvider,
89 uint256 _windowInDays
90) external initializer {
91 require(_period > 0, "!_period");
92 require(_windowInDays > 0, "!_windowInDays");
93
94 period = _period;
95 addressesProvider = _addressesProvider;

Blockchain audits | Blockchain security assessment

61 of 63

https://github.com/sirenmarkets/core/blob/45c6c999c4dc06a451a03f286b60436d668d57d0/contracts/series/VolatilityOracle.sol#L86-L95
https://ackeeblockchain.com
https://ackeeblockchain.com

Partially fixed. At the time of this writing the latest commit on v3 is

45c6c999c4. As of that commit, there are still many places in the code when

zero-address checks are missing (see Listing 25).

Blockchain audits | Blockchain security assessment

62 of 63

https://github.com/sirenmarkets/core/blob/45c6c999c4dc06a451a03f286b60436d668d57d0
https://ackeeblockchain.com
https://ackeeblockchain.com

Thank You
Ackee Blockchain a.s.

Prague, Czech Republic

hello@ackeeblockchain.com

h�ps://discord.gg/z4KDUbuPxq

1

	Siren AMM
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain
	2.2. Audit Methodology
	2.3. Review team
	2.4. Disclaimer

	3. Executive Summary
	4. System Overview
	4.1. Contracts
	4.2. Actors

	5. Vulnerabilities risk methodology
	5.1. Finding classification

	6. Findings
	6.1. Possibility of re-entrancy
	6.2. Pitfalls of upgradeability
	6.3. SeriesDeployer.autoCreateSeriesAndBuy contains unchecked transfers
	6.4. WToken Vault has no access controls
	6.5. MinterAmm.claimAllExpiredTokens contains a for loop with a dynamic condition
	6.6. Use _msgSender over msg.sender
	6.7. Missing zero-address checks
	6.8. Contracts used as dependencies don’t track upstream changes
	6.9. Code layout can be improved
	6.10. Use of semantic values as defaults in enums
	6.11. No return parameter in SeriesController.setSettlementPrice
	6.12. SeriesController.state doesn’t have data validation
	6.13. Usage of solc optimizer
	6.14. System is lacking in documentation
	6.15. OpenZeppelin’s upgradeable contracts are used in non-upgradeable contracts
	6.16. ChainlinkEthUsdProxy.latestRoundData can contain uninitialized return parameters
	6.17. Initialization functions are inconsistently named
	6.18. Log old values in logs
	6.19. MinterAmm.updateVolatility’s return parameter is never initialized
	Endnotes

	Appendix A: How to cite
	Appendix B: Glossary of terms
	Appendix C: Non-Security-Related Recommendations
	C.1. Lack of emit
	C.2. Dead code
	C.3. Conditionals
	C.4. State variables

	Appendix D: Upgradeability
	Appendix E: Fix Review
	E.1. Detailed fix log

