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Abstract

Retrieval-Augmented Language Modeling
(RALM) methods, which show the LM rele-
vant documents from a grounding corpus dur-
ing generation, can mitigate the problem of
factually inaccurate text generation. Existing
RALM approaches focus on modifying the LM
architecture in order to facilitate the incorpora-
tion of external information, significantly com-
plicating deployment. This paper proposes an
under-explored alternative, which we dub in-
context RALM: leaving the LM architecture un-
changed and prepending grounding documents
to the input. We show that in-context RALM
which uses off-the-shelf general purpose re-
trievers provides surprisingly large LM gains
across five diverse corpora. We also demon-
strate that the document retrieval and ranking
mechanism can be specialized to the in-context
RALM setting to further boost performance.
We conclude that in-context RALM has consid-
erable potential to increase the prevalence of
LM grounding, particularly in settings where
a pretrained LM must be used without modifi-
cation or even via API access. To that end, we
release all code, datasets, retrieval corpora, and
indexes used in this paper.

1 Introduction

Recent advances in language modeling (LM) have
dramatically increased the usefulness of machine-
generated text across a wide range of use-cases and
domains (Brown et al., 2020). One key challenge
is that LM generated text often includes factual
inaccuracies or errors (Maynez et al., 2020; Huang
et al., 2020). This problem is present in any LM
generation scenario, and is exacerbated when gen-
eration is made in uncommon domains, or when
it involves up-to-date information that the LM has
not seen during training. A promising approach for
addressing this challenge is Retrieval-Augmented
Language Modeling (RALM), grounding the LM
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Figure 1: Our framework, dubbed In-Context RALM,
provides large language modeling gains on the test set
of WikiText-103, without modifying the LM. Adapting
the use of a BM25 retriever (Robertson and Zaragoza,
2009) to the LM task (§5) yields significant gains, and
choosing the grounding documents via our new class of
Predictive Rerankers (§6) provides a further boost. See
Table 1 for the full results on five diverse corpora.

during generation by conditioning on relevant docu-
ments retrieved from an external knowledge source.
RALM systems include two high level components:
(i) document retrieval, or selecting the set of docu-
ments upon which to condition; and (ii) document
reading, or determining how to incorporate the se-
lected documents into the LM generation process.

Leading RALM systems introduced in recent
years tend to be focused on altering the lan-
guage model architecture (Khandelwal et al., 2020;
Borgeaud et al., 2022; Zhong et al., 2022; Levine
et al., 2022c; Li et al., 2022). Notably, Borgeaud
et al. (2022) introduced RETRO, featuring docu-
ment reading via nontrivial modifications to the LM
architecture (and subsequent fine-tuning), while
using an off-the-shelf frozen BERT retriever. Al-
though the paper’s experimental findings showed
impressive performance gains, the need for changes
in architecture and dedicated retraining has hin-
dered the wide adoption of such models.

In this paper, we show that substantial gains can



also be made by adapting the document selection
mechanism to the task of language modeling, mak-
ing it possible to achieve many of the benefits of
RALM while working with off-the-shelf LMs, even
via API access. Specifically, we propose a simple
but powerful RALM framework, dubbed in-context
RALM (presented in Section 3), which employs a
zero-effort document integration mechanism: we
simply prepend the selected documents to the LM’s
input text.

Section 4 describes our experimental setup. To
show the wide applicability of our framework, we
performed LM experiments on a suite of five di-
verse corpora: WikiText-103 (Merity et al., 2016),
RealNews (Zellers et al., 2019), and three diverse
datasets from The Pile (Gao et al., 2021), ArXiv,
Stack Exchange and FreeLaw. We use open-source
LMs with 110M–6B parameters (from the GPT-2
and GPT-Neo model families); we deliberately stay
away from proprietary models such as Jurassic-
1 (Lieber et al., 2021) to enable reproducibility.

In Section 5 we evaluate the application of off-
the-shelf retrievers to the In-Context RALM set-
ting, finding in this minimal effort setting that
In-Context RALM led to LM performance gains
equivalent to increasing the LM’s number of pa-
rameters by 2–3× across all of the text corpora we
examined. In Section 6 we investigate methods for
adapting document ranking to the LM task, a rel-
atively under-explored RALM degree of freedom.
Our adaptation methods range from using a small
LM to perform zero-shot ranking of the retrieved
documents, up to training a dedicated bidirectional
reranker by employing self-supervision from the
LM signal. These methods lead to further gains in
the LM task corresponding to an additional size in-
crease of 2× in the LM architecture. As a concrete
example of the gains, a 345M parameter GPT-2 en-
hanced by in-context RALM outperforms a 762M
parameter GPT-2 when employing an off-the-shelf
BM25 retriever (Robertson and Zaragoza, 2009),
and outperforms a 1.5B parameter GPT-2 when
employing our trained LM-oriented reranker.

We believe that in-context RALM can play two
important roles in making RALM systems more
powerful and more prevalent. First, given its simple
reading mechanism, in-context RALM can serve
as a clean probe for developing document retrieval
methods that are specialized for the LM task. These
in turn can be used to improve both in-context
RALM and other more elaborate RALM methods

that currently leverage general purpose retrievers.
Second, due to its compatibility with off-the-shelf
LMs, in-context RALM can help drive wider de-
ployment of RALM systems. Despite the large
gains shown by existing influential RALM papers,
there is currently no RALM system that is widely
used to augment off-the-shelf LMs. To help others
both to deploy and to build upon our work, this
paper is accompanied by an online release of all
our code, datasets, trained models, and indexes for
our standardized suite of corpora.

2 Related Work

The tendency of language models to produce
factually-incorrect outputs has given rise to a line
of work investigating RALM systems. Roughly
speaking, RALM approaches can be divided into
two families of models: (i) nearest-neighbor lan-
guage models (also called kNN-LM), and (ii) re-
trieve and read models. Our work belongs to the
second family, but is distinct in that it involves no
further training of the LM.

Nearest Neighbor Language Models The kNN-
LM approach was first introduced in Khandel-
wal et al. (2020). The authors suggest a simple
inference-time model that interpolates between two
next-token distributions: one induced by the LM
itself, and one induced by the k neighbors from the
retrieval corpus that are closest to the query token in
the LM embedding space. Zhong et al. (2022) sug-
gest a framework for training these models. While
they showed significant gains from kNN-LM, the
approach requires storing the representations for
each token in the corpus, an expensive requirement
even for a small corpus like Wikipedia. Although
numerous approaches have been suggested for al-
leviating this issue (He et al., 2021; Alon et al.,
2022), scaling any of them to large corpora remains
an open challenge.

Retrieve and Read Models This family of
RALMs creates a clear division between docu-
ment retrieval and document reading components.
All prior work involves training. Lewis et al.
(2020) and Izacard and Grave (2021) fine tune a
vanilla (i.e., non-RALM) encoder–decoder into a
RALM dedicated to downstream knowledge inten-
sive tasks. Izacard et al. (2022b) explored differ-
ent ways of pretraining such models, while Levine
et al. (2022c) pretrained a autoregressive LM on
clusters of nearest neighbors in sentence embed-



ding space. Levine et al. (2022a,b) showed com-
petitive open domain question-answering perfor-
mance by prompt-tuning. Guu et al. (2020) pre-
trained REALM, a retrieval augmented bidirec-
tional, masked LM, later fine-tuned for open-
domain question answering. The work closest to
this paper is RETRO (Borgeaud et al., 2022), which
modifies an autoregressive LM (i.e., introduces new
parameters to the model) to attend to relevant docu-
ments via chunked cross-attention. In contrast, our
In-Context RALM approach applies off-the-shelf
language models for document reading and does
not require further training of the LM. In addition,
we focus on how to choose documents for improved
performance, an aspect not yet investigated by any
of this prior work.

3 Our Framework: In-Context RALM

We now turn to describing our framework, in-
context retrieval augmented language modeling.
We begin by formulating RALM in general in Sec-
tion 3.1, and then proceed to defining In-Context
RALM in Section 3.2. At a high level, we em-
phasize the simplicity of the approach: In-Context
RALM is simply about finding documents relevant
to the LM generation, and prepending them as input
to the LM, without further changing its operation.

3.1 Retrieval Augmented Language Modeling

Language models define probability distributions
over sequences of tokens. Given such a sequence
x1, ..., xn, the standard way to model its probability
is via next-token prediction:

p(x1, ..., xn) =
n∏

i=1

p(xi|x<i), (1)

where x<i := x1, ..., xi−1 is the sequence of tokens
preceding xi, also referred to as its prefix. This
autoregressive model is usually implemented via a
learned transformer network (Vaswani et al., 2017)
parameterized by the set of parameters θ, which
models the conditional probabilities pθ(xi|x<i) for
i ∈ [n] := {1, ..., n} by employing a causal self-
attention mask (Radford et al., 2018).

Retrieval augmented language models (RALMs)
add an operation that retrieves one or more docu-
ments from an external corpus C, and condition the
above LM predictions on these documents. Specifi-
cally, for predicting xi, the retrieval operation from
C depends on its prefix: RC(x<i), so the most gen-

eral RALM decomposition is:

p(x1, ..., xn) =

n∏
i=1

p(xi|x<i,RC(x<i)). (2)

We explicitize two practical relaxations often
made in RALM systems in the above formulation.

Retrieval Stride While in the above formula-
tion a retrieval operation can occur at each gen-
eration step, we might want to perform retrieval
only once every s > 1 steps due to the cost of call-
ing the retriever. We refer to s as the retrieval stride.
This gives rise to the following RALM formulation
(which reduces back to Eq. 2 for s = 1):

p(x1, ..., xn) =

ns−1∏
i=0

s∏
j=1

p
(
xs·i+j |x<(s·i+j),RC(x≤s·i)

)
,

(3)

where ns = n/s is the number of retrieval strides.

Retrieval Query Length While the retrieval
query above in principle depends on all prefix to-
kens x≤s·i, the information at the very end of the
prefix is typically the most relevant to the generated
tokens. If the retrieval query is too long then this in-
formation can be diluted. To avoid this, we restrict
the retrieval query at stride i to the last ℓ tokens
of the prefix, i.e., we use qs,ℓi := xs·i−ℓ+1, ..., xs·i.
We refer to ℓ as the retrieval query length. Note
that prior RALM work couples the retrieval stride
s and the retrieval query length ℓ (Borgeaud et al.,
2022). In Section 5, we study the effect of s and
ℓ on the LM performance, and show that enforc-
ing s = ℓ degrades performance. Integrating these
hyper-parameters into the RALM formulation gives

p(x1, ..., xn) =

ns−1∏
i=0

s∏
j=1

p
(
xs·i+j |x<(s·i+j),RC(q

s,ℓ
i )

)
.

(4)

In order to condition the LM generation on the
retrieved document, previous RALM approaches
used specialized architectures or algorithms (§2),
while In-Context RALM uses a regular unaltered
LM.

3.2 In-Context Retrieval Augmented
Language Modeling

We now define in-context RALM, perhaps the sim-
plest approach for implementing the RALM formu-
lation described above. Let x := x1, ..., xs·i be the



prefix and y := xs·i+1, ..., xs·i+s be the tokens in
the upcoming stride. Also, let d := z1, ..., zm be
the document resulting from the retrieval operation,
i.e., d = RC(q

s,ℓ
i ), where m is its length in tokens.

To condition the LM on d, we simply concatenate
d and x in the Transformer input, obtaining:

p (y|x, d) =
s∏

j=1

pθ(xs·i+j |z1, ..., zm, x1, ..., xs·i+j−1)
(5)

where (crucially) pθ is parameterized simply by an
existing LM.

Modern, transformer-based LM architectures
support limited-length inputs. Let w be the maxi-
mum input length supported by our LM. If m+n >
w (i.e., if the concatenation of d and x would ex-
ceed the maximum input length), we remove tokens
from the head of x until the overall input length
equals that allowed by the model. In other words,
in this case we take the last w−m tokens. Since our
documents are actually passages of limited length,
in practice m is much smaller than w (in our exper-
iments m < 256 and w = 1024; cf. Section 4.3),
hence we always have enough context left from x.

4 Experimental Details

We now describe our experimental setup, including
all models we use and their implementation details.

4.1 Datasets

We evaluated the effectiveness of in-context RALM
across five diverse datasets. The first is WikiText-
103 (Merity et al., 2016), which has been exten-
sively used to evaluate RALMs (Khandelwal et al.,
2020; He et al., 2021; Borgeaud et al., 2022; Alon
et al., 2022; Zhong et al., 2022). Second, we chose
three datasets spanning diverse subjects from The
Pile (Gao et al., 2021): ArXiv, Stack Exchange
and FreeLaw. Finally, we also investigated Real-
News (Zellers et al., 2019), since The Pile lacks a
corpus focused only on news.

4.2 Models

Language Models We performed our experi-
ments using variants of GPT-2 (Radford et al.,
2019) and GPT-Neo (Black et al., 2021; Wang
and Komatsuzaki, 2021): GPT-2 117M (also re-
ferred to as GPT-2 S or GPT-2 Small), GPT-2
345M (Medium), GPT-2 762M (Large), GPT-2

1.5B (XL),1 GPT-Neo 1.3B, GPT-Neo 2.7B and
GPT-J 6B. All models are open source and publicly
available.2 We elected to study these particular
models for the following reasons. The first four
(GPT-2) models were trained on WebText (Radford
et al., 2019), with Wikipedia documents excluded
from their training datasets. We were thus able
to evaluate our method’s “zero-shot” performance
when retrieving from a novel dataset, WikiText-
103. The three GPT-Neo models brought two fur-
ther benefits. First, they allowed us to investigate
how our methods scale to models larger than GPT-
2. Second, the fact that Wikipedia was part of
their training data allowed us to investigate the
usefulness of in-context RALM for corpora seen
during training. We observe that the helpfulness
of such retrieval has been demonstrated for previ-
ous RALM methods (Khandelwal et al., 2020) and
has also been justified theoretically by Levine et al.
(2022c).

To facilitate more direct comparison between
the models, we ran all of them with a maximum
sequence length of 1,024 (i.e., w = 1024), even
though GPT-Neo models support a sequence length
of 2,048.

Retrievers We experimented with both sparse
(word-based) and dense (neural) retrievers. We
used BM25 (Robertson and Zaragoza, 2009) as our
sparse model. For dense models, we experimented
with (i) a frozen BERT-base (Devlin et al., 2019)
followed by mean pooling, similar to Borgeaud
et al. (2022); and (ii) the Contriever (Izacard et al.,
2022a) and Spider (Ram et al., 2022) models,
which are unsupervised dense retrievers.

Reranking When training rerankers (Sec-
tion 6.2), we initialized from RoBERTa-base (Liu
et al., 2019), which shares the same vocabulary
with our GPT-2 and GPT-Neo LMs.

4.3 Implementation Details

We implemented our code base using the Trans-
formers library (Wolf et al., 2020). We based our

1 Note that we were not able to reproduce the results that
were reported for GPT-2 1.5B (XL) in Radford et al. (2019) on
WikiText-103. The paper authors share that this inconsistency
is due to their use of de-tokenizers for LM datasets: https:
//www.reddit.com/r/MachineLearning/
comments/oye64h/comment/h7ucco2/?utm_
source=share&utm_medium=web2x&context=3

2All models can be found and used via https://
huggingface.co/

https://www.reddit.com/r/MachineLearning/comments/oye64h/comment/h7ucco2/?utm_source=share&utm_medium=web2x&context=3
https://www.reddit.com/r/MachineLearning/comments/oye64h/comment/h7ucco2/?utm_source=share&utm_medium=web2x&context=3
https://www.reddit.com/r/MachineLearning/comments/oye64h/comment/h7ucco2/?utm_source=share&utm_medium=web2x&context=3
https://www.reddit.com/r/MachineLearning/comments/oye64h/comment/h7ucco2/?utm_source=share&utm_medium=web2x&context=3
https://huggingface.co/
https://huggingface.co/


P
er

pl
ex

ity

10

20

30

40

GPT-2 117M (S) GPT-2 1.5B (XL)

No Retrieval BERT Contriever Spider BM25

Figure 2: The performance of four off-the-shelf retriev-
ers used for in-context RALM, on the development set
of WikiText-103. The three RALMs are run with s = 4
(i.e., retrieval is applied every four tokens). For each
RALM, we report the result of the best query length ℓ.

dense retrieval code on the DPR repo (Karpukhin
et al., 2020).

Retrieval Corpora For WikiText-103, we used
the Wikipedia corpus from Dec. 20, 2018, stan-
dardized by Karpukhin et al. (2020) using the pre-
processing from Chen et al. (2017). To avoid con-
tamination, we found and removed all 120 articles
of the development and test set of WikiText-103
from the corpus. For the remaining datasets, we
used their training data as the retrieval corpus. Sim-
ilar to Karpukhin et al. (2020), our retrieval corpora
consist of non-overlapping passages of 100 words
(which translate to less than 150 tokens for the
vast majority of passages). Thus, we limit m (Sec-
tion 3.2) to be 256, but it is usually much smaller.

Retrieval For sparse retrieval, we used the Py-
serini library (Lin et al., 2021). For dense retrieval,
we applied exact search using FAISS (Johnson
et al., 2021).

5 The Effectiveness of In-Context RALM
with Off-the-Shelf Retrievers

We now empirically show that despite its simple
document reading mechanism, in-context RALM
led to substantial LM gains across our diverse eval-
uation suite. We begin in this section by investigat-
ing the effectiveness of off-the-shelf retrievers for
in-context RALM; we go on in Section 6 to show
that further LM gains can be made by tailoring
document ranking functions to the LM task.

The experiments in this section provided us
with a recommended starting configuration for in-
context RALM: applying a BM25 retriever that
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Figure 3: An analysis of perplexity as a function of
retrieval stride (also referred to as s) on the development
set of WikiText-103. Throughout the paper, we use
s = 4 to balance perplexity and runtime.

receives ℓ = 32 token queries, with a retrieval
frequency of every s = 4 tokens (ℓ and s are for-
mally defined in Section 3). Tables 1 and 2 show
that across all the examined corpora, employing
in-context RALM with an off-the-shelf retriever
improved LM perplexity to a sufficient extent that
it matched that of a 2–3× larger model.

5.1 BM25 Outperforms Off-the-Shelf Neural
Retrievers in Language Modeling

We experimented with different off-the-shelf gen-
eral purpose retrievers, and found that the sparse
(lexical) BM25 retriever (Robertson and Zaragoza,
2009) outperformed three popular dense (neural)
retrievers: a retriever based on the average pooling
of BERT embeddings that was used in the RETRO
paper (Borgeaud et al., 2022), and the strong self-
supervised Contriever (Izacard et al., 2022a) and
Spider (Ram et al., 2022).

Figure 2 compares the performance gains of in-
context RALM with these four general-purpose re-
trievers. The BM25 retriever clearly outperformed
all dense retrievers. This outcome is consistent with
prior work showing that BM25 outperforms neu-
ral retrievers across a wide array of tasks (Thakur
et al., 2021).

5.2 Frequent Retrieval Improves Language
Modeling

We investigated the effect of varying the retrieval
stride s (i.e., the number of tokens between consec-
utive retrieval operations). Figure 3 shows that LM
performance improved as the retrieval operation
became more frequent. This supports the intuition
that retrieved documents become more relevant the
closer the retrieval query becomes to the generated



Model Retrieval Reranking
WikiText-103 RealNews ArXiv Stack Exch. FreeLaw

word ppl token ppl token ppl token ppl token ppl

GPT-2 110M (S)

– – 37.5 21.3 11.6 16.9 13.6
BM25 §5 – 29.6 16.1 10.5 14.6 9.2
BM25 Zero-shot §6.1 28.6 15.5 9.6 13.7 8.4
BM25 Predictive §6.2 26.8 – – – –

GPT-2 345M (M)

– – 26.3 15.7 9.0 11.0 9.8
BM25 §5 – 21.5 12.4 8.3 10.0 7.0
BM25 Zero-shot §6.1 20.8 12.0 7.6 9.6 6.5
BM25 Predictive §6.2 19.7 – – – –

GPT-2 762M (L)

– – 22.0 13.6 8.2 10.4 9.1
BM25 §5 – 18.1 10.9 7.5 9.5 6.7
BM25 Zero-shot §6.1 17.6 10.6 7.0 9.1 6.2
BM25 Predictive §6.2 16.6 – – – –

GPT-2 1.5B (XL)

– – 20.0∗ 12.4 7.6 10.0 8.5
BM25 §5 – 16.6 10.1 7.0 9.2 6.3
BM25 Zero-shot §6.1 16.1 9.8 6.5 8.8 5.9
BM25 Predictive §6.2 15.4 – – – –

Table 1: Perplexity on the test set of WikiText-103 and the development sets of RealNews and three datasets from
the Pile, with and without using the top-scored passage retrieved by BM25. All models share the same vocabulary,
thus token-level perplexity (token ppl) numbers are comparable. For WikiText we follow prior work and report
word-level perplexity (word ppl). ∗Result is not consistent with Radford et al. (2019), please see Footnote 1.
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Figure 4: An analysis of perplexity as a function of
the number of tokens in the query for BM25 on the de-
velopment set of WikiText-103. In the appendix, we
show similar patterns for other corpora in the “diverse
corpora" suite, and a similar tradeoff for the dense con-
triever retriever within WikiText-103. Throughout the
paper, we use 32 tokens in the query.

tokens. Of course, each retrieval operation imposes
a runtime cost. To balance performance and run-
time, we used s = 4 in our experiments. For com-
parison, RETRO employed a retrieval frequency of
s = 64 (Borgeaud et al., 2022).

5.3 A Contextualization vs. Recency Tradeoff
in Query Length

We also investigated the effect of varying ℓ, the
length of the retrieval query for BM25. Figure 4
reveals an interesting tradeoff and a sweet spot

Model Retrieval
WikiText-103 RealNews

word ppl token ppl

GPT-Neo 1.3B
- 17.5 12.3
BM25, §5 14.6 9.9

GPT-Neo 2.7B
- 15.1 11.0
BM25, §5 12.8 9.0

GPT-J 6B
- 11.6 9.2
BM25, §5 10.0 7.7

Table 2: The performance of larger models from the
GPT-Neo family, measures by word-level perplexity on
the test set of WikiText-103 and token-level perplexity
on the development set of RealNews.

around a query length of 32 tokens. Similar ex-
periments for dense retrievers are given in App. A.
We conjecture that when the retriever query is too
short, it does not include enough of the input con-
text, decreasing the retrieved document’s relevance.
Conversely, excessively growing the retriever query
deemphasizes the tokens at the very end of the pre-
fix, diluting the query’s relevance to the LM task.

6 Improving In-Context RALM with
LM-Oriented Reranking

Since in-context RALM uses a fixed document
reading component by definition, it is natural to
ask whether its performance can be improved by
adapting its document retrieval mechanism. Indeed,
there is considerable scope for improvement: the
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Figure 5: Potential for gains from reranking: perplexity
improvement from an oracle that takes the best of the 16
top documents retrieved by BM25 rather than the first.

previous section considered conditioning the model
only on the first document retrieved by the BM25
retriever. This permits very limited semantic under-
standing of the query, since BM25 is based only on
the bag of words signal. Moreover, it offers no way
to accord different degrees of importance to dif-
ferent query tokens, such as recognizing that later
query tokens are more relevant to the generated
text.

In this section, we focus on choosing which doc-
ument to present to the model, reranking the top
k documents returned by the BM25 retriever. Fig-
ure 5 shows the large potential for improvement
among the top 16 documents returned by the BM25
retriever. Specifically, in Section 6.1, we show per-
formance gains across our evaluation suite obtained
by using an LM to perform zero-shot reranking of
the top-k BM25 retrieved documents. Then, in
Section 6.2, we show that training a specialized
bidirectional reranker of the top-k BM25 retrieved
documents over the LM signal can provide further
LM gains.

6.1 LMs as Zero-Shot Rerankers
We used language models as document rerankers
for the RALM. Formally, for a query q consisting
of the last ℓ tokens in the prefix of the LM input
x, let {d1, ..., dk} be the top k documents returned
by BM25. For retrieval iteration i, the text for
generation is y := xsi+1, ..., xsi+s. Ideally, we
would like to find the document dj∗ that maximizes
the probability of the text for generation, i.e.,

j∗ = argmax
j∈[k]

p(y|x≤si, dj) (6)

according to Eq. (5). However, at test time, we do
not have access to the tokens of y. Thus, we used

the last prefix tokens instead. Formally, we define
a hyper-parameter s′ that determines the number
of the prefix tokens by which to rerank, choosing
document dĵ such that

ĵ = argmax
j∈[k]

p(xsi−s′+1, ..., xsi|x≤(si−s′), dj).

(7)
The main motivation is that since BM25 is a lexical
retriever, we want to incorporate a semantic signal
induced by the LM. Also, this reranking shares con-
ceptual similarities with the reranking framework
of Sachan et al. (2022) for open-domain question
answering, where our prefix x≤si can be thought
of as their “question”.

Note that our zero-shot reranking does not re-
quire that the LM used for reranking (i.e., in
Eq. (7)) be the same as the actual language model
(i.e., in Eq. (5)). This observation unlocks the
possibility of reranking with smaller (and thus
faster) models, which is important for two main
reasons: (i) Reranking k documents requires k for-
ward passes; and (ii) it allows our methods to be
used in cases where the actual LM’s log probabili-
ties are not available (for example, when the LM is
accessed through an API).

Results A minimal hyper-parameter search on
the development set of WikiText-103 revealed that
the optimal query length is s′ = 16,3 so we proceed
with this value going forward. Table 1 shows the
results of letting the LM perform zero-shot rerank-
ing on the top-16 documents retrieved by BM25
(third row for each of the models). Table 3 in the
appendix shows that the a small LM (GPT-2 117M)
can be used to re-rank the documents for larger
LMs (GPT-2 345M-1.5B), with roughly the same
performance as having each LM perform rerank-
ing for itself, suppporting the applicability of this
method for LMs that are only accessible via an
API. Indeed, it is evident that reranking yielded
consistently better results than simply taking the
first result returned by the retriever. For example,
the perplexity of GPT-2 117M on WikiText-103
improved from 29.6 to 28.6, and between 0.6 and
1.0 in the rest of the datasets. Overall, we observed
improvements for all models and datasets.

6.2 Training LM-dedicated Rerankers

Next, we trained a reranker to choose the doc-
uments from the top-k documents retrieved by

3We experimented with s′ ∈ {4, 8, 16, 32}.



BM25. We refer to this as a predictive reranker,
since it learned to choose which document will help
in predicting the upcoming text. For this process,
we assume availability of training data from the
target corpus. Our reranker is a classifier that gets
a document dj (for j ∈ [k]) and a prefix x≤s·i, and
produces a scalar f(x≤s·i, dj) that should resemble
the relevance of dj for the continuation of x≤s·i.

We then normalize these relevance scores:

prank(dj |x≤s·i) =
exp(f(x≤s·i, dj))∑k

j′=1 exp(f(x≤s·i, dj′))
, (8)

and choose the document dĵ such that

ĵ = argmax
j∈[k]

prank(dj |x≤s·i). (9)

Training Process Our reranker was a fine-tuned
RoBERTa-base (Liu et al., 2019) trained as follows.
Let x≤si be a prefix we sample from the training
data, and y := xsi+1, ..., xsi+s its next stride. We
run BM25 on the query q derived from x≤si and
get k documents {d1, ..., dk}. For each document
dj , we then run the LM to compute p(y|x≤s·i, dj)
according to Eq. 5. The objective function we use
to train the reranker follows previous work (Guu
et al., 2020; Lewis et al., 2020):

− log
k∑

j=1

prank(dj |x≤s·i) · p(y|x≤s·i, dj). (10)

Note that unlike these two works, we train only the
reranker (prank), while the LM is kept frozen. The
motivation for using this objective, rather than a
classification-like loss function like cross entropy,
is that it does not enforce gradients when all k doc-
uments have similar p(y|x≤s·i, dj) values (which
is the case, for example, when none of them helps
the model).

Results Table 1 shows the result of training a
predictive reranker on the training set of WikiText-
103. Specifically, we train it with data produced
by GPT-2 110M (S), and test its effectiveness for
all GPT-2 models. We observed significant gains
obtained from predictive reranking. For example,
the perplexity of GPT-2 110M (S) improved from
29.6 to 26.8, and that of GPT-2 1.5B (XL) im-
proved from 16.6 to 15.4. This trend held for the
other two models as well. Overall, these results
demonstrate that training a reranker with domain-
specific data was more effective than zero-shot

reranking (Section 6.1). Note that these results—
while impressive—still leave room for further im-
provements, compared to the oracle results (cf. Fig-
ure 5).

7 Discussion

Retrieval from external sources has become a com-
mon practice in knowledge-intensive tasks (such
as factual question answering, fact checking, and
more; Petroni et al. 2021). In parallel, recent break-
throughs in LM generation capabilities has led to
LMs that can generate useful long texts. How-
ever, factual inaccuracies remain a common way in
which machine-generated text can fall short. This
makes RALMs both a promising and an urgent new
application area for knowledge grounding. Prior
research has already investigated this application,
of course, but it is not yet widely deployed. One
likely reason is that existing approaches rely upon
fine-tuning the LM, which is typically difficult and
costly, and is impossible for LMs accessible only
via an API.

This paper presented the framework of in-context
RALM, enabling frozen LMs to benefit from re-
trieval. We demonstrated that substantial perfor-
mance gains can be achieved by integrating exter-
nal knowledge into a frozen LM and showed that
additional gains can be achieved from adjusting
the retriever query to the LM task; tailoring the
retrieved documents to the generation setting; and
adapting the document reading mechanism to facil-
itate retrieval during generation.

Several directions for further improvement re-
main for future work. First, this paper considers
only the case of prepending a single external docu-
ment to the context; adding more documents could
drive further gains. Second, we retrieved docu-
ments every fixed interval of s tokens during gen-
eration, but see potential for large latency and cost
gains by retrieving more sparsely, such as only
when a specialized model predicts that retrieval is
needed. Finally, Ratner et al. (2022) recently pro-
pose a method of parallelizing the input sequence
when generating with off-the-shelf LMs. This can
potentially be applied in order to show retrieved
documents in parallel to the prefix, rather than be-
fore it, possibly improving the utilization of the
external knowledge during text generation. We
release all resources used for this paper, for the
community to use and improve over. We hope
that these resources will drive further research of



RALMs, that will enable wider adoption.
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A Query Length Ablations

Figure 6, Figure 7 and Figure 8 show ablations on
the optimal query length ℓ for off-the-shelf dense
retrievers (BERT, Contriever and Spider, respec-
tively). Consistently, using ℓ = 64 (tokens) is opti-
mal. This is in contrast to similar experiments we
conducted for BM25 (cf. Figure 4), where ℓ = 32
is optimal.
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Figure 6: An analysis of perplexity as a function of the
number of tokens in the query for an off-the-shelf BERT
retriever on the development set of WikiText-103.

Number of tokens in query (ℓ)

P
er

pl
ex

ity

10.0

20.0

30.0

40.0

16 32 64 128 256

GPT-2 117M (S) GPT-2 345M (M) GPT-2 762M (L) GPT-2 1.5B (XL)

Figure 7: An analysis of perplexity as a function of
the number of tokens in the query for Contriever on the
development set of WikiText-103.
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Figure 8: An analysis of perplexity as a function of
the number of tokens in the query for Spider on the
development set of WikiText-103.
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Model Reranking
Model

WikiText-103 RealNews Arxiv Stack Exch. FreeLaw

word ppl token ppl token ppl token ppl token ppl

GPT-2 345M (M) GPT-2 110M (S) 20.8 12.1 7.7 9.6 6.5
GPT-2 345M (M) 20.8 12.0 7.6 9.6 6.5

GPT-2 762M (L) GPT-2 110M (S) 17.7 10.7 7.0 9.1 6.3
GPT-2 762M (L) 17.6 10.6 7.0 9.1 6.2

GPT-2 1.5B (XL) GPT-2 110M (S) 16.2 9.9 6.6 8.9 6.0
GPT-2 1.5B (XL) 16.1 9.8 6.5 8.8 5.9

Table 3: Perplexity for zero-shot reranking (§6.1) where the reranking models is smaller than the LM, or the LM
itself. Reranking is performed on the top 16 documents retrieved by BM25. Using a GPT-2 110M (S) instead of a
larger language model as a reranker leads to only a minor degradation.


