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Future-Proofing with AI: Improving Decision-Making for the Future through AI
Model Building and Stakeholder Deliberation
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Research exploring how to support or improve human decision-making through historical data has often taken the form of using
machine learning to automate or assist human decision-making systems.We take an alternative approach for improving human decision-
making, using machine learning to help stakeholders surface ways to “future-proof”—improve and make fairer—decision-making
processes. We created Future-Proofing with AI, a tool that enables people to examine strengths and shortcomings of decision-making in
the past and deliberate on how to improve future decisions by creating and evaluating machine learning models. We apply this tool to
a context of people selection, having stakeholders—decision-makers (faculty) and decision-subjects (students)—use the tool to improve
graduate school admission decisions. We report the interactions and discourse during user studies, describing how participants used
the tool to discern patterns in past decision-making and engaged in deliberation to reach common understanding of admissions
decision-making. Our work offers a new application for human AI collaboration and advances efforts of using machine learning to
support human decision-making by illuminating: i) ways in which the tool was helpful to stakeholders as well as ideas for the future,
ii) challenges and considerations to bear in mind when future-proofing decision-making with different stakeholder types, and iii)
insights on expanding community-engaged participatory AI design.
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York, NY, USA, 20 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Past research has shown the effectiveness and advantages of using statistics and algorithms to make decisions—compared
to humans, these systematic methods can replicate outcomes on the same data and in many cases produce similar or
better accuracies [2, 11, 17]. Drawing on this potential and in conjunction with advances in machine learning (ML)
and artificial intelligence (AI), many systems are being developed to make more effective decisions at scale in both
the public and private sectors—from predicting risk for homelessness [43] and child maltreatment [10] to managing
work forces [6, 41] and allocating resources such as donations or vaccines [25, 32]. Many of these systems either
automate decision-making or present humans with recommendations at the time of decision-making. Despite the
promise and initial evidence, research has also shown that AI and ML models can result in biased or unfair decisions
and effect harm on communities. Addressing these issues, an active area of research investigates ways to create models
to be less biased, fairer, equitable, and more accountable to the community. These efforts include work around i)
understanding how to design fair ML models [12, 22, 33, 44], ii) algorithmic auditing [5, 35, 45], and iii) participatory
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and community-engagement approaches for AI design [20, 25, 37], and iv) constructing complementary relationships
between AI and humans at the time of decision-making [19, 21, 29].

We propose an alternative method aimed at improving human decision-making using machine learning. Rather
than trying to improve the design or performance of algorithmic systems, we explore the use of historical data and
stakeholder deliberation to future-proof—improve and make fairer—human decision-making. Analyzing historical
data can help reveal patterns of successes—a premise that many ML-decision systems are based on—but also missteps
and weaknesses such as human or systemic biases, non-inclusive practices and classifications, and lack of diverse
representation. An ML model can externalize these patterns by learning from historical data to make predictions
and displaying the results to humans. Pairing models with reflection—to help people realize behaviors to sustain or
change—and deliberation—to help groups share perspectives and/or make thoughtful decisions—can surface ways to
improve their decision processes, and enable people to imagine ways to leverage ML models for assisting their process
based on realistic understandings of such models’ benefits and risks.

As a first step toward this goal, we created a web-tool, Future-Proofing with AI, that helps stakeholders examine
strengths and shortcomings of decision-making in the past and deliberate on how to improve future decisions by
creating and evaluating ML models. We apply this tool to a context of people selection, having faculty and students use
it to improve master’s admissions decisions. We choose to use the master’s admissions review process as predictive
analytics are increasingly being used for college admissions to the concern of many due to the potential to inflict
disparate harms on populations. Thus, we turn our attention to this topical domain to explore how to improve human
decision-making. We found the tool was able to support participants to identify patterns from the data and model
outcomes, explore their own preferences, and establish a common understanding with colleagues. Based on our study,
we demonstrate three ways for how this tool can advance efforts of using ML to support human decision-making: i)
allowing participants hands-on practice with model building to make concrete their abstract or unclear preferences
around selections, ii) highlighting the similarities and differences in preferences and perceptions of fair decision-making
between stakeholder types, and iii) offering insights into how participatory AI design may be advanced through the
interactions with our tool, including the use of Future-Proofing with AI as a training or educational tool with community
stakeholders at the initial stages of participatory AI design.

Our work makes contributions to emerging literature on human-centered use of AI and fair decision-making in the
field of FAccT and human-computer interaction. We offer a new use case of AI, future-proofing with AI, for improved
human decision-making, and demonstrates its potentials and limitations. We also provide insights on how to expand
community-engaged participatory AI design and lessons for engaging with different stakeholder types.

2 RELATEDWORK

We first review prior work on using AI and ML to automate or assist human decision-making to situate our approach.
We then review work on participatory approaches to AI design, data-driven self-reflection and deliberation, particularly
in the context of stakeholder-centered AI design, and describe how they inform our method.

2.1 Designing Fair ML Models and Decision-Making

2.1.1 Designing Fair ML Models and Decision-Making. Efforts around the use of ML to support human decision-making
have often centered around advancing the creation of fair and equitable algorithms. Researchers have investigated how
to interpret and reflect the preferences of stakeholders into systems to more accurately predict outcomes [42, 44]. Others
have studied how AI and humans can work complementary with one another, such as having ML models learn when to
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defer to humans [21, 29] or designing AI analytic tools to augment human intuition [19]. In some instances, researchers
have tested if ML models can make better predictions than humans, even finding that accounting for additional human
unpredictability, models can outperform human decision-makers [22]. Additional work advancing fair algorithms has
focused on defining ethical AI guidelines for ML developers. Here, researchers have focused on understanding the
needs of practitioners when creating fair AI systems in order to inform techniques that can help them [18] such as
checklists [28] or toolkits [3, 4].

2.1.2 Stakeholder Involvement in AI/ML design. One critique of automated decision-making systems is that impacted
stakeholders are rarely consulted in the design of them. The lack of involvement can lead to not only harmful systems [1]
but also lowered trust in individuals who perceive algorithmic unfairness [46]. In response, a line of research studies how
to incorporate community members into the process, and whether community engagement or participatory approaches
can lead to fair designs of ML. Researchers have investigated working with stakeholders to uncover contextualized
notions of fairness [8], design participatory algorithms [25], and analyze algorithms in practice [37] in order to create
ML systems that more accurately reflect stakeholder beliefs and preferred outcomes.

Yet, designing responsible ML decision-making tools or processes is a uniquely challenging task for stakeholders
not be trained or versed in ML ("non-experts"). In order to assist stakeholders in understanding automated decisions
or creating ML models, researchers have explored creating various tools and interfaces. Yang et al. [48] engaged with
non-experts who use ML to surface design implications of ML, while [50] and [49] created data visualizations to convey
algorithmic trade-offs in more understandable ways for designers and other users. Similarly, Shen et al. [40] tested
different representations of Confusion Matrices to support non-experts in evaluating ML models.

These studies advance importance work around the construction of fair algorithmic decision-making, but center on
the same end result—creating automated decision-making to support humans. We draw inspiration from these works,
but we focus on improving human decision-making as our outcome instead, through the use of machine learning.

2.2 Supporting Reflection and Deliberation

Self-reflection and group deliberation are two ways that can help stakeholders surface insights from data and formulate
individual and organizational goals and concerns.

2.2.1 Data-Driven Reflection. Self-reflection is a process to support individuals in making realizations about themselves
and even changes to their behavior. Researchers have explored how to aid self-reflection through design of technologies
and strategies that help individuals collect and probe their own data [9, 24, 27]. Lee et al. [24] observed how a reflective
strategy (e.g., reflective questions) increased participants’ motivation to set higher goals. Choe et al. [9] found that data
visualization supports helped participants recall past behaviors and generate new questions about their behaviors to
explore in the data. In our tool, we purposefully include designs to support self-reflection, such as reflective questions
and data visualizations, so participants can more critically analyze their personal decision-making preferences and past
data for insights.

2.2.2 Deliberation. Group deliberation can be traced back to public deliberation or deliberative democracy, where
citizens gather to thoughtfully discuss policies that will impact them [15]. By bringing together different stakeholder
types, deliberation can help groups to share perspectives, discuss disagreements, and make thoughtful decisions.
Deliberation has been pursued in the implementation of technological tools through mediums such as chatrooms,
forums, and synchronous video sessions. These works demonstrate how deliberation can help increase the accuracy
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of crowdworking tasks ([7, 13, 39]), improve perceptions of procedural justice [14], and support building consensus
amongst participants [26, 38, 44, 47]. Data-driven and organizational deliberation have been less explored for supporting
participatory algorithm design, though an exception is WeBuildAI [25] which incorporates stakeholder deliberation in
ML model design. As part of our sessions with Future-Proofing With AI, we incorporate deliberation so that participants
can share opinions and more deeply consider organizational decision-making preferences and goals.

3 FUTURE-PROOFINGWITH AI

3.1 Designing for Future-Proofing

Future-Proofing refers to “the process of anticipating the future and developing methods of minimizing the negative
effects while taking advantage of the positive effects of shocks and stresses due to future events” [36]. It has previously
been associated with sectors including technology, infrastructure [31], energy [16], and business [30] with regards to
building systems that will be resilient to as-yet unknown needs or trends. For example, future-proofing a business
may refer to being more data-driven, investing in the workforce, and staying on top of the evolving digital age. We
interpret “future-proofing” human decision-making as creating or improving systems to be fair, inclusive, and effective
for present and future communities.

With the goal of future-proofing, we designed our web-tool to enable stakeholders to build and evaluate an ML
model using data that captures historical decision patterns in their organization. This tool walks people through the
primary stages of building a machine learning model: 1) Data Exploration, 2) Feature Selection, 3) Model Training, 4)
Model Evaluation. (See Figure 1 for the web-tool and session flow.). While it can be used by an individual user, this
tool is designed to be used by multiple people who are in a same decision-maker role, or those who are affected by the
decisions, so that the resulting recommendations reflect multiple people’s perspectives.

In each step, there are reflection questions and deliberation opportunities to help people i) explore past data to
identify possible patterns and/or surface their own or institutional biases, ii) deliberate with colleagues to come to a
common ground over what future-proofing should accomplish, and iii) generate ideas around how to future-proof
and/or incorporate AI/ML-driven decisions to improve decisions. To make the tool comprehensible for users of varying
algorithmic knowledge, we drew inspiration for our overall tool interface from the educational coding platform
Datacamp1 whose interface combines explanation side by side with exercises.

3.2 Tool Overview

The tool begins with an overview to explain AI and ML and introduce future-proofing. We emphasize that the goal is
not to create a perfect model for automated decision-making, but to identify gaps and patterns and imagine other ways
to leverage ML to improve future decisions.

3.2.1 Data Exploration. The tool first allows users to examine past data (i.e., input and decision outcomes) and shows
a predictive model trained on the data (AllFeaturesModel) which shows factors that played a role in outcomes and
to what degree. This design is to help them understand and reflect past decision patterns. To assist this process, the
tool asks them reflective questions around admissions. To encourage users to explore and become familiar with the
dataset but not be overwhelmed by data, we borrow elements from the data repository Kaggle2 to display features in a
digestible way (see Figure 1).

1https://www.datacamp.com/
2https://www.kaggle.com/
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Fig. 1. Future-Proofing with AI and Session Flow. Content of the web-tool components are to the left, numbered in the order that the
participants worked through them. Screen captures of the MIRO boards used in deliberation are to the right.

3.2.2 Feature Selection. Users can then select what factor, or features, they believe should be used, regardless of whether
those features played a role in the AllFeaturesModel. This design helps users externalize their ideal decision criteria by
having them choose to include or exclude each feature, share their reasoning, and/or flag if they are unsure. We ask
for their reasoning and whether they are unsure on each feature to encourage self-reflection and provide material for
group deliberation later. Users can also explore the dataset further by reviewing bivariate distributions between pairs of
features to help generate hypotheses to explore later. For example, a user can select the feature Ethnicity and GPA to
view box plots of GPA by ethnicity. In deliberation, each user’s decision (include or exclude) per feature, their reasons,
and whether they are unsure are displayed on a MIRO3 board to provide a basis for deliberation; through deliberation,
users finalize a set of features to include in the group model.

3.2.3 Model Training. The features that individuals select are used to train Individual Models; those the group selects
through deliberation are used to train a Group Model. While models are trained, users watch a video to get a basic
understanding of ML model training. We simplify the details while retaining the core steps to balance not overwhelming
the user with complex concepts while providing sufficient information of how a model is trained.

3.2.4 Model Evaluation. The tool provides users with multiple ways of evaluating the models, so that they can
understand what factors ML models use, kinds of errors ML models can make, and how fairness can be conceptualized
in ML. This is to provide people with an understanding of ML capability, risk, and associated tradeoffs, so that they can
imagine ways to leverage ML to strengthen future decision-making if they desire. On each page, a reflective question

3https://miro.com/
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prompts users to think about the costs and benefits of human vs. automated decision-making. For example, on Personas,
the question is, "If the prediction from the models and the actual admission decision differs, which do you agree with
and why?" For each page, group deliberations are also held for participants to share answers to the reflective question
and reactions to the model and tool activities.

Feature Weights. The tool displays the feature weights of the individual vs. group model. If a user did not select a
feature that the group did or vice versa, no weight will be shown for the corresponding model.

Personas. To provide a tangible idea on who is receiving correct vs erroneous predictions, the tool allows people
to retrieve personas—profiles of anonymized applicants displaying their values for all features. Users can retrieve
personas that were rejected or admitted by their ML models and/or past committees; matching applicant profiles are
displayed with a score and model confidence; filtering allows users to narrow down the results by features such as
gender, ethnicity, GPA range, etc. This allows people to probe further to see whether certain groups of applicants are
impacted by the decisions.

Model Performance. Users can see metrics (e.g., accuracy, recall) for their individual vs. group model. We include a
contextualized confusion matrix similar to [40] to help users understand terms like “False Positives” in the context of
admissions, augmented with textual explanations inspired by [50]. We also apply visual changes to the display so if the
user selects to see how a metric is calculated, only the relevant quadrants of the confusion matrix remain on the page.

Fairness.We provide two definitions of mathematical fairness—equal opportunity and demographic parity—as an
introduction for users to consider what fair or unfair model outcomes look like in ML. We include graphs based on
confusion matrix visualizations of [50] to demonstrate whether disparities exist in group treatment under different
fairness definitions.

3.2.5 Implementation. The web-tool is built with React and Material-UI on the frontend, and Flask and MongoDB
in the backend. The plotly.js package is used for displaying graphs to users. In addition to the user functions of the
main web-tool, an “Admin View” provides functions for facilitating the session (e.g., downloading a flat file of all user
feature selections), abstracting the needs of facilitators from highly technical tasks such as dropping a database or
creating a JSON file from a JavaScript object. For group deliberation, we use MIRO boards to take advantage of existing
technologies designed for virtual collaboration.

3.3 Dataset and ML Model Training

We apply this web-tool in the context of the master’s admissions review process of a specific discipline at a public
university. We submitted an IRB that allowed us access to historical admissions data, and we worked with the graduate
school office to obtain anonymized applicant data with admission decisions. We were unable to obtain letters of
recommendation or essays for privacy and thus could not include them. We removed incomplete or pending applications,
anyone who was not a master’s applicant, and applicants with GRE scores before scoring changes in 2011. The final
dataset consisted of 2207 applicants, from Fall 2013 to Fall 2019 cycles. Next, we removed irrelevant columns (e.g.,
timestamps) and engineered features such as using parental education to construct First Generation, or having researchers
code features using external knowledge, such as Tier of Undergrad Inst. (see full details on Table 2 in the Appendix.)
Although gender and ethnicity are not permissible for use in admissions decisions, we included them for discussion
purposes. This resulted in the 18 features shown in Table 1.

Given the likelihood that our participants would be of varying ML knowledge levels, we used a simple machine
learning model. We tested training different models (i.e., Decision Tree, Ridge Regression, Lasso Regression, and

6



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Future-Proofing With AI Woodstock ’18, June 03–05, 2018, Woodstock, NY

Linear Regression) with our dataset, achieving a similar baseline accuracy of 75%-80% for all models when using
all 18 features. We chose to use linear regression with a 70/30 train-test split because it is fast to train, provides us
with easy-to-understand insight into the model through feature coefficients, and is comparatively easier to explain to
participants than more complex models. The fast training time allowed us to create models during sessions in real time,
and the feature coefficients and straightforward nature of the model made it a preferable choice to use with participants.

3.4 Method

3.4.1 Participants. In order to explore how Future-Proofing with AI can affect fair and responsible human decision-
making, we conducted group study sessions with nine student participants (decision-subjects) and seven faculty
participants (decision-makers) at a public university. Historically, master’s admissions review committees have consisted
solely of faculty members. Via email, we recruited those with experience on the committee and those without for
varying perspectives. Although students do not currently serve on the review committee, we felt it was important to
include the perspectives of impacted stakeholders. We recruited master’s students by posting a sign-up with details to a
general Discord channel and Pride Discord channel for current students. We held separate sessions for faculty and
students so as to not exacerbate the power differentials between the groups, especially given the possibility that some
students may have taken or may take a faculty participant’s course in the future.

To protect the identities of the participants, we only provide aggregate statistics. Participants’ ages ranged from
18-74, and 62.5% identified as female (37.5% as male). Three are of Hispanic, Latino, or Spanish origin. Ten described
their ethnicity as white, three as Asian, one as American Indian or Alaska Native, one as Black or African American,
and one answered "Other-Jewish Tejana, mixed race”. Nine participants (56.25%) reported a Bachelor’s degree as their
highest degree completed at the time of the study, one (6.25%) reported a master’s degree, and six (37.5%) reported a
Doctorate. We also asked the participants about their current knowledge on programming and computational algorithms
[23]. The average participant programming knowledge reported was 2.5 (between 2-"A little knowledge-I know basic
concepts in programming" and 3-"Some knowledge-I have coded a few programs before"). The average participant
computational algorithm knowledge was 2.1 (between 2-"A little knowledge-I know basic concepts in algorithms" and
3-"Some knowledge-I have used algorithms before").

3.4.2 Group Session Procedure. We conducted four virtual Zoom sessions: two with faculty members and two with
students. The participants interacted with the tool to create and evaluate admissions decision-making models. Sessions
lasted 2-2.5 hours each, with 3-5 participants each, and participants were compensated with $80 Amazon gift cards for
their time. Group segments took place in the main room; individual segments were held via breakout rooms where each
participant worked on the tool with a facilitator who prompted think-aloud or interview questions so that participants
could describe experiences they may not have wished to share in a group setting.

The facilitator began with an overview of the activity while participants opened the web-tool on their computers. In
the sessions4, the facilitator displayed the feature weights of the AllFeaturesModel, a linear regression model trained
with all 18 features of the dataset to help participants get familiar with working with ML models. Participants then
worked through Data Exploration. Next, participants worked on Feature Selections for their individual model in breakout
rooms. Everyone returned to the main room to discuss features selections for the group model. The facilitator exported
the participant feature selections into a shared MIRO board (see Figure 3) and guided participants through deliberation.

4The first two sessions began with Data Exploration. Upon reflection from session debriefs, the facilitator modified the remaining two sessions so that
displaying the AllFeaturesModel preceded this
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Due to timing, the decision to include a feature was based on the majority of votes once discussion abated or if no
noticeable agreement was observed from ongoing conversations. Although not ideal, the primary facilitator acted as a
tiebreaker to ensure enough time for the remaining activities. Once completed, the group’s feature selections were
input to the tool, and all models were trained. Everyone watched the Model Training video together before moving
onto Model Evaluation as a group. Then participants explored the Personas page of Model Evaluation individually with
their facilitator guiding them through how to use the page so as to test the tool without distractions. Everyone returned
in the main room to share the personas they explored or patterns they observed. The session concluded with wrap-up
interviews in breakout rooms and an exit survey on Qualtrics.

3.4.3 Analysis. All sessions were screen-recorded using the Zoom recording feature. Recordings were transcribed in
Otter.ai with errors fixed manually. Using the qualitative data analysis method [34], the primary researcher reviewed
transcripts and MIRO board text, and generated initial codes based on the tool components and questions asked during
sessions; and the codes were then further synthesized.

4 FINDINGS

Our participants were thoughtful in their reflections and discussions, indicating genuine interest in the subject matter
and explorations of the tool. Below, we detail how participants interacted with the session components, their reactions
and interactions with the activities. Faculty participants are denoted with an F-prefix, and students with a P.

4.1 Identifying Prospective Applicants

We asked participants5 to describe what matters to them in applicants and the overall admitted class for the master’s
program to help ground their thinking about admissions from a holistic perspective. A common thread in nearly
everyone’s answer about what mattered to them in an incoming class was diversity. This was defined by some as
diversity in race and ethnicity (P5, F1, F2), gender (F1, F2), age (P5, F1), socioeconomic background (F1), work background
(P5, P6), and general background and experiences (P1, P2, P3, P4, P7, P8, F3). P8 emphasized the importance of a class
that mirrored the real world: “especially since we’re going to be working a lot in groups, it would be nice to have like
a pretty good representative of, I guess, just the world around us." Student participants also shared a preference for
incoming students to have a collaborative nature. As P1 described, he hoped to see “students from different backgrounds
who are able to work with people from different backgrounds themselves”, perhaps reflective of coursework or work
experiences requiring group work.

Participants mentioned a few quantifiable, academic-related qualities ("education background" -F5, "high grades and
GPAs" -F1, "rating of college from which app[licant] has a degree" -F2), the vast majority of applicant attributes were
abstract and harder to define or measure. Participants highlighted that applicants needed to exhibit a clear purpose for
grad school (P7, F3, F1, P1, P9), be passionate or excited to learn (P2, P3, F3), and be “other-oriented” or service-driven (F2).
This overwhelming emphasis on conceptual qualities indicates the nuances in human decision-making and potential
challenges a tool may have in assisting or improving human decision-making.

4.2 Data Exploration and the "AllFeaturesModel"

The AllFeaturesModel assisted participants in identifying patterns or trends from past decision-making. Students were
surprised at some feature weights, such as a small but negative weight for Awards: Research and a comparatively strong
51 of the 4 groups did not discuss these questions due to time constraints.
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positive weight forWork Experience. P7 observed the weights of the 3 GRE components were all positive and higher
than the weight of Tier of Undergrad Inst. and shared her surprise and conjectures for how features may be correlated:
“I’m actually really surprised at how much the GRE is taken into account...so I know that the Tier of Undergraduate
Institution is kind of largely determined by your, your class background...so I’m like, I’m wondering if like the GRE
weight is meant to like, balance that out.” This point was revisited later in the session as another participant shared
how they perceived GREs balancing out a low GPA or a low tiered school.

Faculty participants displayed some but less surprise over the weights, perhaps because the majority had previously
served on an admissions committee and felt the model was reflective of the patterns they’d observed. But similar to
P7, F3 observed the positive weights on the GRE features. She suggested an interpretation about what past data may
indicate about decision-makers: “We’re not using GRE anymore, but it points out the reliance on the GRE in past
decisions.” She also observed how these patterns could inform how to advise prospective applicants after seeing the
comparatively high weight the model placed on work experience: “It’s almost as if you were to recommend to a student
based again, on past [admission’s] experience, how best to prepare for a master’s degree, it would be to get some work
experience.”

Participants generated new ideas for analyzing applicant data as they assessed the AllFeaturesModel. P6 and P9
wondered whether feature weights would vary if broken out by additional criteria such as degree concentration or
work experience field. F7 asked whether separate models should be considered for domestic versus international
students given the difference in admissions prerequisites for the two (e.g., requirement of TOEFL scores for international
students). F5 wanted to see information about an applicant’s past institutions in a more comprehensive manner than
Tier of Undergrad Inst. explaining, “I’d really like to know public schools versus private schools, and size of institution,”
expounding later that she valued the experiences of students who come from regional or community colleges.

4.3 Feature Selection

Participants sometimes provided personal experience and beliefs behind including or excluding features, highlighting
their diverse backgrounds and experiences. P2 explained that since she did not have to submit GRE scores, she did not
think it was necessary especially when through essays, reviewers could "see their story rather than just a number”.
Conversely, P5 included GRE features because as a first generation student, she worked multiple jobs to support herself
during school, affecting her GPA, thus “for me, it was like important to submit my [GRE] score so that the admissions
committee can see, hey, this person has a 2.8 GPA, but 8 years later...they’ve taken this test and like are a competent
reader and math person and writer.” Similarly, F7 shared that growing up in a country that strongly stressed testing had
conditioned him to feel the same around including GRE scores.

A handful of participants excluded features based on the limitations they believed an ML model would have when
interpreting it. F6 explained that he would personally use descriptive information about awards for making decisions
but that the quantified features were insufficient for a model. P7 omitted Awards: Arts after seeing the data and feeling
it was inadequate for a model. P3 chose not to include Gender based on concerns that the model would leave students
out: “The only options there were, were male and female, which leaves out a bunch of people...I don’t know what a
model would do if someone said like they were non-binary, like, would it just automatically exclude them because it
wasn’t an option in the past data?”

Some participants wished to update models with custom feature weights to account for different scenarios. F3
suggested that a model handle if-then scenarios when evaluating applicants, where if the value for a feature fell in
one range, the model would re-weight another feature in order to balance the first. Some student participants also
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expressed a desire to customize feature weights. P1 explained wanting for features "a sliding scale of like how weighted
or important it is.” P2 agreed, thinking how applicants with lower GPAs but harder coursework should not be penalized.

Participants sometimes included features for the nuanced context they felt the features would provide the model.
This often arose when discussing gender, ethnicity, and class-related features. The feature First Generation and the topic
of socioeconomic class were openly discussed by faculty and students for inclusion in decision-making. In fact, all but
one participant chose to include it in the model. A few student participants explained they viewed First Generation as
the closest (but "not imperfect") proxy to class, sharing concerns of how these applicants face disadvantages around
affording school or navigating the application process. Gender and Ethnicity were approached differently by students
and faculty. While both said decisions should not be made solely based on gender or ethnicity, students were more
open to discussing the use of them in order to ensure fairness and diversity and contextualize students’ experiences,
whereas faculty members tended to avoid discussing the features in detail. F5 had difficulty articulating why including
ethnicity was important for her. A few like F3 wanted to know the features for keeping a check of the diversity of the
applicants, but that it otherwise did not factor into her decisions. F6 began sharing that gender and ethnicity should
only be evaluated holistically as part of an applicant’s positionality, but discussion over the two features stalled after.
We do not suggest that this reflects how faculty members feel about how gender and ethnicity factor into admissions,
but instead is more reflective of the rules or expectations that come with such bureaucratic tasks. A few expanded on
their personal feelings during interviews, such as F2 sharing he felt the school had a ways to go in improving ethnic
diversity and F4 commenting that historically ethnicity and diversity have been topics of avoidance for admissions.

4.4 Model Outcome Evaluation

4.4.1 Model Performance. Participants shared their impressions of their model performances and were asked for their
thoughts on potential harms of models in terms of false positives (i.e., students admitted by the model but rejected by
past committees) and false negatives (i.e., students rejected by the model but accepted by past committees).

In contrast to faculty participants who preferred low false positives, nearly all students shared a preference for
models that had high false positives. We observed students displayed thoughtful inclusion-oriented reasoning, such as
P1, P3, and P4 preferring a model that made more false positives, thus “erring on the side of giving people a chance” (P1).
P3 felt admitting an “unqualified” candidate would not harm others but could benefit the applicant. Faculty members
shared differing opinions. F3 worried about mistakenly admitting a student: “It’s more detrimental to bring a student
who cannot succeed. And I think that is, you know, kind of falls on the university.” F5 felt that the pressing potential
harm of admissions lay in lack of time or human resources for review, encouraging a pivot of thinking of “how do we
help committees in the future, as opposed to reinforcing the committees of the past?”

A few participants felt that non-perfect accuracy scores could be useful signals to identify areas of decision-making
for further investigation. P6 thought a non-perfect accuracy could be used identify whether specific groups of applicants
are being unfairly denied: “to find out if there are...certain features of students that fall into that group that humans have
denied...that the model accepts or that the humans accept that the model denied.” P9 added that non-perfect accuracy
scores could be used to improve the model by identifying additional features to include: “if you allow for a gap, we do
allow for more of that less specific information. So you can see what was relevant that you need to add into your model
in the future.” F3 actually wanted to see a high accuracy on her model, however she shared similar feelings that a gap in
accuracy represented an opportunity to improve admissions and the model creation process.
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4.4.2 Personas. On the Personas page, participants browsed student profiles and generated hypotheses for the decision-
making patterns they were observing. P5 was interested in whether past committees did in fact balance features such
as GPAs and GREs. She observed that many applicants with high GRE Quant scores and low GPAs were accepted in
reality. However, after she found a persona with a high GPA/low GRE who was rejected in reality but admitted by the
models, she wondered whether reviewers did not actually balance low GREs with high GPAs and penalized the low
score. F2 also began noticing a pattern where students accepted in reality but rejected by models had high GRE Quant

but lower scores elsewhere, saying “I wonder why we accepted them? Looks like we overvalued the GRE quant".
Some used persona exploration to determine what context to seek out on the rest of an applicant’s package. F1

noticed that the scores of one persona (high GRE, low GPA) resembled someone returning to school from working,
and wanted to know more about their work experience background: “Have they been working? Maybe they’ve been
working in a library for the last couple of years.” F6 walked through a persona, suggesting possible context for the
details he was viewing (“Tier 1 undergraduate institution, so probably a regional schooler”), explaining that his next
step would be going into their personal essay for the full story. P6 was confused by two personas that the models
rejected but the actual decisions were acceptances. Because of the lack of evidence from the features he could see on
the screen for accepting them, he was left to conclude that data such as essays made a difference. He felt models could
be improved by having access to the reasons behind these candidates’ acceptances: “That would help to understand and
improve the model better.”

4.4.3 Fairness. We observed that the fairness definitions page of the tool was challenging for participants to grasp, as
they struggled during think-alouds and group discussions to share their thoughts. F3 said, “I’ll admit, I didn’t really,
yeah this one was a bit above me.” This may have been because we provided two mathematical definitions of fairness,
equal opportunity and demographic parity, which may not be the most intuitive way of thinking about an abstract
concept as demonstrated by [42]. We observed participants found it easier to talk about attributes that contribute to
fair decisions rather than discussing quantitative measures of fairness. So we shifted our objective to using Model
Evaluation pages as discussion points for surfacing participant concerns and thoughts on fairness considerations for
admissions decision-making.

Participants, particularly students, were outspoken about the ways they wanted to see fairness incorporated into
decision-making. Students wanted to ensure applicants from traditionally marginalized backgrounds were not disad-
vantaged. They suggested additional features such as disabilities and veteran status (P2), a more reliable indicator for
class other than First Generation (P3, P5, P7, F3), and improving features such as making gender more inclusive (P1,
P3). P1 wanted gender to include more options than “male” and “female” in order to acknowledge the exclusion that
non-binary, gender non-conforming, or trans people face in opportunities: “It has the potential to really sort of like
disrupt somebody...(their) ability to participate fully in school...and all the extracurricular type stuff.” P3 explained first
generation students are disadvantaged compared to others when applying for higher education, as related to parental
help, and should be a consideration for fair admissions practices. P7 insisted that class was an essential consideration in
fair admissions, could not be substituted by First Generation, and needed to be included as a separate feature in the
dataset.

5 DISCUSSION

We expand on our findings to discuss the implications of our results from using Future-Proofing with AI, namely: i) ways
the tool was helpful to stakeholders as well as ideas for the future, ii) challenges and considerations to bear in mind when
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future-proofing decision-making with different stakeholder types, and iii) insights on expanding community-engaged
participatory AI design.

5.1 Future-Proofing With AI

We discuss the ways the tool supported stakeholders and the ideas participants came up with to help humans make
fairer and more effective decisions.

5.1.1 Putting Abstract into Practice. We intended Future-Proofing with AI as a tool to assist participants in uncovering
gaps in past decisions so they could identify ways to improve human decisions. We found the tool also helped
participants gain a better sense of their own decision-making patterns, understand the perspectives of others, and begin
to comprehend how ML models work.

Activities in the model evaluation stage helped participants better understand their own decision-making patterns
and gain insight into how features might be used by a model. For P7, the hands-on practice of reviewing personas
helped her recognize differences in which features she cared about when thinking about them abstractly (in Feature
Selection) compared to when she saw them as attributes of an applicant. For P1 and P3, comparing their individual
and group models’ feature weights help them see how a model interpreted features they were unsure about earlier. P3
decided she would have included First Generation in her individual model after seeing in the group model that including
it did not penalize those students from being admitted.

Group deliberation was central to helping participants think critically about their own preferences, and often surface
the limitations of historical data for a model as well. On a couple occasions, group deliberation led to several participants
experiencing a change of heart for including or excluding a feature. Student participants in the first session were split
on whether to include Gender and Ethnicity in a model though all of their justifications were based on the same goal:
ensuring future classes were diverse and equal and that decision-making did not exhibit biases. After P3 pointed out
concerns that the data was not representative enough of ethnicity or inclusive of non-binary gender identities, all
the student participants chose to exclude these for the group model with P4 referencing the discussion later as what
convinced him. Even though deliberation did not result in unanimous agreement for every feature, participants all
found it helpful in identifying gaps in their perspectives and establishing an understanding about one another. Faculty
members even felt this was something that review committees could benefit from.

5.1.2 Ideas from Future-Proofing. We asked participants how they thought AI tools and non-technological tools could
and should assist them in decision-making. Student participants suggested support centered on assisting reviewers in
identifying their potential biases. P1 suggested models from Future-Proofing with AI could be used to act as a “bias
check”, P3 expanding that reviewers could use the tool after making decisions to check their personal biases and then
provide decision rationale. Faculty though, focused on implementations to help decision-makers review more effectively
and efficiently, such as ML summarizing and then describing important characteristics about an applicant to assist
reviewers, identifying which applicants were wildcards and the “Larry Birds” of the bunch, and nudging reviewers
about pacing themselves or reviewing certain components.

Students and faculty also had different approaches when discussing non-technological implementations to improve
decision-making. While students focused on improving diversity outside of the review process, most faculty members
were concerned with training or review support tools. Students insisted on improving recruitment and outreach
programs in order to expose a wider audience to the program earlier. P7 emphasized that “if you want more students
like me, if you want more Hispanic students”, outreach, mentorship, or pathway programs were necessary. P3 pointed
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out the importance of downstream efforts as well, once a student is accepted, and the need to expand funding so that
enrollment is not limited to “just those who can afford to pay the tuition”. Their ideas were all striking reminders about
how efforts of improving decision-making are not siloed to the one area of selections, and that other parts impact how
outcomes ultimately play out.

Most faculty participants focused on tech-related aids, likely because they face the immediate task of reviewing
hundreds of applications holistically. However, F4 shared three reflections about how non-tech based methods could
improve the review process. First, she explained that dialogues around school diversity are not often held amongst
faculty, but open conversations about AI, its biases, and the importance of diversity are necessary to start raising
people’s awareness. Second, she suggested a variation of futuring—designing futures and imagining what citizens of
the future need—could be used by committees for envisioning future classes. Finally, she shared recruitment efforts
must be more intentional than a checklist of schools to visit and described her own experiences of recruiting students
of color by building meaningful relationships with prospective students early.

5.2 Working with Different Stakeholder Types

5.2.1 Decision-Makers vs. Decision-Subjects. Faculty (decision-makers) and students (decision-subjects) exhibited
similarities and differences to their views of certain features and how decision-making should be conducted. Early on,
both faculty and students expressed a shared desire for decision outcomes to reflect diversity, and this often emerged
during group discussions and the ideas they came up with around future-proofing. Both faculty and students also used
similar approaches for their reasoning around including features, drawing on personal experiences or choosing to
include features for the context they hoped it would provide a model.

However, faculty and students differed in a few ways such as how they viewed the risks of applying automated
decision-making. Students overwhelmingly believed accepting an unqualified candidate (i.e., someone who was rejected
by the past committees) was less harmful while faculty members felt the opposite. Students viewed the former as giving
“people a chance”, with P1 adding that he felt false positives could be a way of “correcting for the bias in the data” given
potential historical biases. However, faculty believed accepting students who had previously been rejected was more
harmful, F3 explaining that if the student was not successful, the fault would lie with the institution for not providing
the support. For other faculty, the urgency was simply around how to support future committees given the influx
of applications in recent cycles. Another factor for why faculty and students differ may be attributed to how faculty
currently lack measurements to assess whether students they accepted were successful. In that sense, it may be harder
for faculty to conceptualize potential harms of admission "misses", whereas students have recently been applicants and
can imagine being accepted or rejected.

5.2.2 Accountability of Decision Practices by Decision Subject. These differences in how decision-makers and decision-
subjects view potential harms and where they believe efforts are needed to improve decision-making present unique
challenges for decision-making practices. First, the difference in how faculty and students viewed harms of admitting
someone who is "unqualified" and rejecting someone who is "qualified" signifies a consequential difference in decision-
making practices. Faculty took on the perspective of institutions of how "mistakes" may impact the school while students
took the perspective of applicants and the effects on them. This difference in perspective around harm translates to
perceptions of fairness and trustworthiness of a decision process. It raises questions around how these differences should
be accounted for in the creation of models or decision practices to be considered trustworthy by decision-subjects. It
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also raises questions around if/how decision-makers and decision-subjects should work together to inform human
decision-making.

Second, faculty and students presented different ideas for how technological or non-technological tools can help,
which may indicate a potential tension over where resources should be used as they relate to admissions. For example,
as related to non-technological support: is it more important to expend money and effort to ensure future classes come
from as diverse of communities as possible? Or is it more important to devote resources to the immediate issue of hiring
and training faculty reviewers. How should the input of both decision-makers and decision-subjects be combined so
both feel supported in their goals, especially as decision-subjects may take on a different role after graduating?

5.3 Community-Engaged Participatory AI Design

While the goal of Future-Proofing with AI was not to help people build an algorithm for the purpose of automating
decision-making, our studies offer insights into developing community-engaged, participatory AI design.

5.3.1 A Precursor to Designing AI/ML. Participatory AI design has thus far explored how to create AI models with
individuals or groups. But often stakeholders involved are non-ML experts who may struggle with understanding how
their decisions, such as feature selections, actually impact the outcomes of the model. To support non-ML experts,
researchers have explored ways such as improving visualizations or other tools to make ML more understandable.

Based on our observations, we propose that Future-Proofing with AI or a similar tool can fill the role in participatory
AI design of an educational precursor to the actual design of models with stakeholders for the real world. We designed
the tool to follow the traditional ML model building pipeline because we wanted participants to get the full scope, albeit
simplified, of how a model is created. We observed this framing and hands-on practice with models helped participants
uncover ideas for how ML can assist decision-making responsibly or ways it fell short. These are important realizations
for participants to make as a preparatory step to ensure thoughtful design once they engage in AI design.

We also highlight that using this tool as a precursor can help advance community-engaged participatory AI design
by transforming the experience for stakeholders into a low-pressure situation. Because the goal of Future-Proofing
with AI is to uncover patterns or nuances in preferences, the stakes of creating an infallible model are removed and
participants can feel more at ease with sharing explanations (or lack there-of) about feature selections, or critiquing the
models they create. As P7 commented, while hesitating over a feature selection and then deciding to include it simply
out of curiosity, "this is just like a first draft!" We agree: the model does not have to be perfect to allow participants to
engage with it and surface ways to improve decision processes. Integrating a component of education and practice as a
part of participatory AI design can go a long way in revealing early patterns of historical data and ideas around the use
of AI/ML by stakeholders or community members.

5.3.2 Reflections: Care in Design. Although all of our participants were able to complete the session and create an
ML model, we stress the importance around use of this tool with care. While the methods of data exploration and
deliberation that we used were able to support our participants in making sense of past data, data analysis can still be a
daunting task for many, intimidating to attempt alone and in front of others.

Some of our participants shared insecurities about exploring data due to their background or participant nerves. In
these instances, facilitators worked to ameliorate apprehensions by breaking down concepts or focusing on qualitative
questions. P5 shared, “I’m really not familiar with working with datasets at all, so I don’t know if I’ll make any intelligent
decisions.” She began to enjoy using the tool though, particularly the Personas, exclaiming as breakout rooms closed, “I
want to keep working!” F2 indicated frustration at the start of Model Evaluation, explaining, "I’m not 100% sure I’m
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going to be able to figure it out.” With facilitator guidance, he began to gain confidence as he explored the various pages.
However, facilitator assistance was not always enough: F1 declined to explore parts of the tool, saying, “that makes
me feel stupid”, and sharing during the interview that, “this could have been like an all day thing, and I still probably
wouldn’t have had enough time to figure it out.”

Additionally, the topic of admissions may be unsettling for participants who feel uncomfortable sharing their personal
views with groups or strangers or have had negative past experiences. We attempted to reduce negative associations
for participants such as interjecting when needed, redirecting questions that stirred anxiety, and reassuring them that
there was no right or wrong answer. It may not be obvious though, during group discussions, if there is a discomfort. F4
shared in her debrief that when hearing a colleague explain his inclusion of GREs, “I did feel very, actually had to look
away from the screen...that was very hurtful for me to hear that because it tells me that we should require...a Blackfeet
person living in a rural area in Montana to do what we did.” She also commented about the power dynamics that existed
in the room of participants amongst faculty members given varying experience in admissions, as a faculty member,
and tenure at the school. This within-group power dynamic surprised us as we had previously only been cognizant of
ensuring students and faculty did not overlap given that asymmetry of power, but is another consideration for how to
responsibly engage with communities and different stakeholder types in the design of participatory algorithms.

6 LIMITATIONS

Our study has limitations. Our tool used only quantitative data due to the privacy issues associated with qualitative
data. We set sessions to 2-2.5 hours due to the challenges of scheduling and recognizing that longer sessions would
lead to more fatigued participants. This limited the time for participants to digest and fully explore the information
on the tool; splitting the session into a series can be one way to allow participants to gradually build knowledge and
comfort using models in future studies. Due to the unknown variance in baseline ML knowledge of our participants and
the explainability of linear regression algorithms, we use linear regression to minimize cognitive load on participants;
catering our explanations to those with little ML knowledge may have made the tool and model overly simplistic
to participants with greater ML experience and limited what they were able to contribute. Due to the limited time,
we had to omit more sophisticated designs such as allowing a non-linear or iterative use of the tool. Future studies
should explore iterative use of the tool—people changing features, retraining, and examining the models. Finally, we
were only able to recruit from students who were accepted and enrolled; future studies may be done with those who
have not yet but plan to apply, applied and were rejected, and were accepted but chose not to come. We intentionally
held sessions for only faculty members or only students due to the inherent power dynamics between the two. Future
work can explore ways to account for power dynamics in deliberation as mixing stakeholder types may affect different
deliberation outcomes and group models.

7 CONCLUSION

Many important lines of research are working towards ensuring algorithmic decision-making systems are created
equitably and fair. While these approaches focus on how to improve or create a machine learning or automated system,
we propose using machine learning to improve human decision-making. We created a web-tool, Future-Proofing With

AI, to explore how to support stakeholders in identifying insights about past decisions to inform the practices of human
decision-makers; we demonstrate how faculty and students used the tool to explore historical data about master’s
applicants, engage in reflection and deliberation to create ML models, and evaluate models to discern past human
decision-making patterns.
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8 APPENDICES

Fig. 2. Screen captures of the full tool interface, displaying here the (a) Data Exploration and (b) Feature Selection pages.

Fig. 3. Enlargened screen capture of a MIRO deliberation session.
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Feature Name Description

Incl.
by Stu-
dents

Incl. by
Faculty

GRE Verbal % Percentile of the applicant’s GRE Verbal score. 78% 57%
GRE Quant % Percentile of the applicant’s GRE Quantitative score. 67% 57%
GRE Analytical % Percentile of the applicant’s GRE Analytic (Writing) score. 67% 57%

Tier of Undergrad Inst.
Tier 4 being top institutions and 1 being bottom. Primarily
determined by aggregating several US News rankings. 44% 86%

GPA

Upper level grade point average of the applicant, as calcu-
lated by their grades in senior level courses (e.g., typically
taken in their third year and beyond if considering their
bachelor’s experience) 89% 86%

Master’s Held Whether the applicant holds a master’s degree 11% 86%
Doctorate Held Whether the applicant holds a doctorate degree 11% 43%
Special Degree Held Whether the applicant holds a special degree 11% 43%

Awards: Arts
The number of awards or honors that the applicant listed,
related to the arts (e.g., creative writing, English, music, etc.) 78% 43%

Awards: Scholastic

The number of awards or honors that the applicant listed,
related to receiving scholarships or being holding top stu-
dent rankings such as valedictorian. 100% 86%

Awards: Research

The number of awards or honors that the applicant listed,
related to research experience such as independent study,
research grants, or writing a thesis. 89% 86%

Awards: Service
The number of awards or honors that the applicant listed,
related to service or volunteering. 67% 71%

Awards: Leadership
The number of awards or honors that the applicant listed,
related to holding leadership positions. 78% 57%

Awards: Competition

The number of awards or honors that the applicant listed,
related to competitions or contests relevant to academia
(e.g., creative writing, English, music, etc.) 78% 71%

Gender
Applicant’s self-reported gender. Historically, this has been
limited to two choices, male or female. 11% 57%

Ethnicity
Applicant’s self-reported ethnicity. Historically, this has
been limited to five race/ethnicity categories. 44% 71%

First Generation

Whether the applicant is the first in their family to receive
a bachelor’s degree. Inferred by the education level of an
applicant’s parent(s). 89% 100%

Work Experience

How many years an applicant has worked, defined by the
time between the applicant’s earliest work start date and
most recent work end date. 100% 100%

Table 1. Set of 18 features displayed in the tool during Feature Selection as well as in the AllFeaturesModel.
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Feature Names Description

GRE Verbal %, GRE Quant %,
GRE Analytical %

Directly mapped from GRE percentile columns in the
dataset.

Tier of Undergrad Inst.

Mapped by taking the undergraduate institution the ap-
plicant most recently matriculated from to a tier. 4 is the
highest tier, while 1 is the lowest. Tiers were formed by
aggregating National, Regional, Country, and International
school ranking lists from US News.

GPA
Mapped from the GRE column in the dataset that the gradu-
ate school calculated from an applicant’s upper level classes.

Master’s Held, Doctorate
Held, Special Degree Held

Mapped as a binary from whether the applicant reported
obtaining one of these degrees in their education history.

Awards: Arts, Competition,
Leadership, Research, Scholas-
tic, Service

Formed by hand-coding the 3 free-form text fields each
applicant could use to report honors/awards into categories
and summing these categories for each applicant.

Gender
Mapped directly from the gender column of the dataset,
historically limited to only male or female.

Ethnicity Mapped from the primary ethnicity column of the dataset.

First Generation

Formed by the education history columns of the applicant’s
parents/guardians. If all reported history is below a Bache-
lor’s Degree, this value is Yes.

Work Experience

Calculated from the applicant’s reported work history dates,
by subtracting their earliest work start date from their most
recent end date.

Table 2. Logic for how the 18 features were formed from the original dataset.
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