ABSTRACT
Smartphone security research has produced many useful tools to analyze the privacy-related behaviors of mobile apps. However, these automated tools cannot assess people’s perceptions of whether a given action is legitimate, or how that action makes them feel with respect to privacy. For example, automated tools might detect that a blackjack game and a map app both use one’s location information, but people would likely view the map’s use of that data as more legitimate than the game. Our work introduces a new model for privacy, namely privacy as expectations. We report on the results of using crowdsourcing to capture users’ expectations of what sensitive resources mobile apps use. We also report on a new privacy summary interface that prioritizes and highlights places where mobile apps break people’s expectations. We conclude with a discussion of implications for employing crowdsourcing as a privacy evaluation technique.

Author Keywords
Mental model, Privacy as expectations, Privacy summary, Crowdsourcing, Android permissions, Mobile app.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI): Miscellaneous.

General Terms
Design, Human Factors.

INTRODUCTION
The number of smartphone apps has undergone tremendous growth since the inception of app markets. As of June 2012, the Android Market offered 460,000 apps with more than 10 billion downloads since the Market’s launch; the Apple App Store offered more than 650,000 apps with over 30 billion downloads since its launch. These mobile apps can make use of a smartphone’s numerous capabilities (such as users’ current location, call logs, and other information), providing users with more pertinent services and attractive features. However, access to these capabilities also opens the door to new kinds of security and privacy intrusions. Malware is an obvious problem[17], but a more prevalent problem is that a good number of legitimate apps gather sensitive personal information without users’ full awareness. For example, Facebook and Path, were found uploading users’ contact lists to their servers, which greatly surprised their users and made them feel very uncomfortable [21, 34].

A number of research projects have looked at protecting mobile users’ privacy and security by leveraging application analysis [10, 13-15, 19], or proposing security extensions that provide app-specific privacy controls to users [6, 22, 39]. These systems are useful for capturing and analyzing an app’s usage of sensitive resources. However, no purely automated technique today (and perhaps not ever) can assess people’s perceptions of whether an action is reasonable, or how that action makes users feel with respect to their privacy. For example, is a given app’s use of one’s location solely for the purpose of supporting its core functionality? It all depends on the context: for a blackjack game, probably not, but for a map application, very likely so. However, currently, users have very little support in making good trust decisions regarding what apps to install.

In this paper, we frame mobile privacy in the form of people’s expectations about what an app does and does not do, focusing on where an app breaks people’s expectations. There has been a lot of discussion about expectations being an important aspect of privacy [33]. We framed our inquiry on the psychological notion of mental models that first introduced by Craik [11] and later mentioned in other domains[29]. All people have a simplified model that describes what people think an object does and how it works (in our case, the object is an app). Ideally, if a person’s mental model aligns with what the app actually does, then there would be fewer privacy problems since that person is fully informed as to the app’s behavior. However, in practice, a person’s mental model is never perfect. We argue that by allowing people to see the most common misconceptions about an app, we can rectify people’s mental models and help them make better trust decisions regarding that app.
We believe that this notion of privacy as expectations can be operationalized by combining two ideas. The first is to use crowdsourcing to capture people’s mental models of an app’s privacy-related behaviors in a scalable manner. This requires some knowledge of an app’s actual behaviors, which can be obtained with app analysis tools such as TaintDroid. The second is to convey these expectations to users through better privacy summaries that emphasize the surprises that the crowd had about a given app.

Our long term goal is to build a system that leverages crowdsourcing and traditional security approaches to evaluate the privacy-related behaviors of mobile apps. This paper presents the first step to understand the design space and the feasibility of our ideas.

We make the following research contributions:

- We demonstrate a way of capturing people’s expectations using crowdsourcing. More specifically, we conducted user studies on Amazon Mechanical Turk (AMT) with 179 Android users, surveying their expectations and subjective feelings about different apps accessing sensitive resources (such as location, contact lists, and unique ID) in different conditions.
- We identify two key factors that affect people’s mental model of a mobile app, namely expectation and purpose, and show how they impact users' subjective feelings.
- We present an analysis which indicates that informing users of why a given resource is being used can allay their privacy concerns, since most users have difficulty figuring out these purposes.
- We present the design and evaluation of a new privacy summary that emphasizes behaviors that did not match the crowd’s expectations. Our results suggest that our interface significantly increases users’ privacy awareness and is easier to comprehend than Android’s current permission interface.

RELATED WORK

We have organized related work into three sections: an overview of the Android permission system; research on mobile app analysis and security extensions; and relevant work in mental model analysis and design for privacy-related user interfaces.

Android Permissions

The Android permission framework is intended to serve two purposes in protecting users: (1) to limit mobile apps’ access to sensitive resources, and (2) to assist users in making trust decisions before installing apps. Android apps can only access sensitive resources if they declare permissions in their manifest files and get approved by users during the installation time. On the official Android Market, before installing an app, users are shown a permission screen listing the resources an app will access. Users can choose to either install the app with all the requested permissions or not to install the app at all. Once granted, permissions cannot be revoked unless users uninstall the app.

There have also been several user studies looking at usability issues of permission systems in warning users before downloading apps. Kelley et al. [26] conducted semi-structured interviews with Android users, and found that users paid limited attention to permission screens, and had poor understanding of what these permissions imply. Permission screens generally lack adequate explanation and definitions. Felt et al. [18] found similar results from Internet surveys and lab studies that current Android permission warnings do not help most users make correct security decisions.

Our work leverages this past work investigating Android’s permissions. We extend their ideas in two new ways. The first is using crowdsourcing as a way of measuring people’s expectations regarding an app’s behavior, rather than relying solely on automated techniques. This allows us to capture a new aspect of mobile app privacy that past work has not. The second is the design and evaluation of a new privacy summary interface that emphasizes access to sensitive resources that people did not expect.

Mobile Application Analysis and Security Extensions

Researchers have also developed many useful techniques and tools to detect the sensitive information leakage in mobile apps [3, 10, 12-16, 19, 35, 36], by using permission analysis (e.g. [3, 16]), static code analysis (e.g. [12]), network analysis (e.g. [35]), or dynamic flow analysis (e.g. [14]). Their results identified the strong penetration of ads and analytics libraries, and other prevailing privacy violations including excessively accessing sensitive information. We used TaintDroid [14] in our work to investigate the ground truth of the top 100 popular Android apps on how and for what purpose sensitive resources were used. Amini et al. [2] offered an vision of an cloud-based service that leverages crowdsourcing and traditional security approaches to analyze mobile applications. Our work follows this vision and demonstrates the feasibility of incorporating crowdsourcing in application analysis.

Many security extensions have been developed to harden privacy and security. MockDroid [6], TISSA [39] and AppFence [22] substitute fake information into API calls made by apps, such that apps could still function but with zero disclosure of users’ private information. Nauman et al. [28] proposed Apex which provided more fine-grained control over the resources usage based on context and runtime constraints. To enable wide deployment, Jeon et al. proposed an alternative solution that rewrote the bytecode of mobile apps to enforce more privacy controls [24] instead of modifying the Android system as the previous solutions.
Though app analysis provides us with a better understanding of apps’ behaviors, it cannot infer people’s perceptions of privacy or distinguish between behaviors which are necessary for an app’s functionality versus behaviors which are privacy-intrusive. Similarly, while the security extensions above provide users with more control over their private data, it is unclear if lay users can correctly configure these settings to reflect their real preferences. Our work complements this past work by suggesting an alternative way of looking at mobile privacy from the users’ perspective. We study users’ mental models of mobile privacy, aiming to identify the most pertinent information to help users make better privacy-related trust decisions.

Expectations of Privacy, Mental Model Studies and Privacy Interface Design

The notion of expectations is fairly common in discussions of privacy [33]. For example, in Katz v. United States, Supreme Court put forward “reasonable expectation of privacy” to test reasonableness of legal privacy protections under the Fourth Amendment [1]. Palen and Dourish [30] and Barth et al. [4] discussed how expectations are governed by norms, past experiences, and technologies. Our notion of privacy as expectations is a narrower construct, focusing primarily on people’s mental models of what they think an app does and does not do. Our core contribution is in operationalizing privacy in this manner, in terms of using crowdsourcing to capture people’s expectations as well as reflecting the crowd’s expectations directly in a privacy summary to emphasize places where an app’s behavior did not match people’s expectations.

Past work has looked at understanding people’s mental models regarding computer security. For example, Camp [9] discussed five different high-level metaphors for how people think about computer security. Wash [38] identified eight mental models (‘folk models’) of security threats that users perceived and how these models can justify why users ignored security advice. Bravo-Lillo et al. [8] conducted studies to explore the psychological processes of users involving perceiving and responding to computer alerts. Sadeh et al. also studied the complexity of people’s location sharing privacy preferences[5, 32]. This past research has a similar flavor as ours in terms of trying to understand the mental models people used to make trust decision. Our work extends this past work to a new domain, namely mobile app privacy.

Kelley et al. proposed simple visualizations called “privacy nutrition labels” [25] to inform user how their personal information is collected, used and shared by a web site. Our new proposed mobile privacy summary interface is inspired by their work. Our work differs in how we acquire privacy-related information. In their work, the expectation is that a ‘nutrition label’ would be generated by the owner of the web site. In our case, information is gathered through both crowdsourcing users’ mental models and profiling mobile apps using dynamic taint analysis (e.g. using TaintDroid).

CROWDSOURCING USERS’ MENTAL MODELS

In this section, we present the design and results of our study using crowdsourcing to capture users’ mental models about a mobile app’s behavior.

Taking a step back, there are four reasons why crowdsourcing is a compelling technique for examining privacy. Past work has shown that few people read End-User License Agreements (EULAs) [20] or web privacy policies [23], because (a) there is an overriding desire to install the app or use the web site, (b) reading these policies is not part of the user’s main task (which is to use the app or web site), (c) the complexity of reading these policies, and (d) a clear cost (i.e. time) with unclear benefit. Crowdsourcing nicely addresses these problems. It dissociates the act of examining permissions from the act of installing apps. By paying participants, we make reading these policies part of the main task and also offer clear monetary benefit. Lastly, we can reduce the complexity of reading Android permissions by having participants examine just one permission at a time rather than all of the permissions, and by offering clearer explanations of what the permission means.

Study Design

We recruited participants using Amazon’s Mechanical Turk (AMT). We designed each Human Intelligence Task (HIT) as a short set of questions about a specific Android app and resource pair (see Figure 1). Participants were asked to read the provided screenshots and description of an app, as retrieved from the official Android market. Then they were asked if they have used this app before and what category this app belongs to. The categorization questions were designed as an easy check to detect if participants were gaming our system (e.g., clicking through HITs without answering questions).

After these two questions, participants were shown one of two sets of follow-up questions. One of the conditions (referred to as the expectation condition) was designed to capture users’ perceptions of whether they expected a given app to access a sensitive resource and why they thought the app used this resource. Participants were also asked to specify how comfortable they felt letting this app access the resource, using a 4-point Likert scale ranging from very comfortable (+2) to very uncomfortable (-2). In the other condition (referred to as the purpose condition), we wanted to see how people felt when offered more fine-grained information. Participants were told that a certain resource would be accessed by this app and given specific reasons, e.g. user’s location information is accessed for target advertising. We identified these reasons by examining TaintDroid logs and using knowledge about ad
Please read the application description carefully and answer the questions below.

App Name: Toss it

Toss a ball of crumpled paper into a waste bin. Surprisingly addictive! Join the MILLIONS of Android gamers already playing Toss It, the most addictive casual game on the market -- FREE!
- Simple yet challenging game play: toss paper balls into a trash can, but don't forget to account for the wind!
- Challenge your friends to a multiplayer game with Scoreloop
- Toss that paper through 9 unique levels -- you can even throw an iPhone! -- Glob
And if you like Toss It, check out these other free games from myYearbook: - Tic Tac Toe LIVE! - aMinesweeper (Minesweeper) - Line of 4 (multiplayer game like Connect Four)

1. Have you used this app before? (required)
 - Yes
 - No

2. What category do you think this mobile app should belong to? (required)
 - Game
 - Application
 - Book, music or video

The Expectation Condition: OR **The Purpose Condition**

Please provide any comments of this app you may have below.

3. Suppose you have installed Toss it on your Android device, would you expect it to access your precise location? (required)
 - Yes
 - No

4. Toss it does access users’ precise location information.
 - Yes
 - No

5. Could you think of any reason(s) why this app would need to access this information? (required)
 - precise location is necessary for this app to serve its major functionality.
 - precise location is used for target advertisement or market analysis.
 - precise location is used to tag photos or other data generated by this app.
 - precise location is used to share among your friends or people in your social network.
 - other reason(s), please specify
 - I cannot think of any reason.

5. Do you feel comfortable letting this app access your precise location? (required)
 - Very comfortable
 - Somewhat comfortable
 - Somewhat uncomfortable
 - Very uncomfortable

Based on our analysis, Toss it accesses user’s precise location information for targeted advertising.

3. Suppose you have installed Toss it on your Android device, do you feel comfortable letting it access your precise location? (required)
 - Very comfortable
 - Somewhat comfortable
 - Somewhat uncomfortable
 - Very uncomfortable

Figure 1. Sample questions in our study to capture users’ mental models. Participants were randomly assigned to one of the conditions. In the *expectation condition*, participants’ were asked to specify their expectations and speculate the purpose for this resource access. In the *purpose condition*, the purpose of resource access was given to participants. In both conditions, participants were asked to rate how comfortable they felt having the targeted app access their resources.

We focused our data collection on four types of sensitive resources (as suggested by AppFence [22]): unique device ID, contact list, network location, and GPS location. We also restricted the pool of apps to the Top 100 most downloaded mobile apps on the Android market. Overall, 56 of these apps requested access to unique phone ID, 25 to the contact list, 24 to GPS location, and 29 to Network Location. This resulted in 134 app and resource pairs, i.e. 134 distinct HITs. For each HIT, we recruited 40 unique participants to answer our questions (20 per condition).

We used the following qualification test to limit our participants to Android users, as well as to filter out people who were not serious. Crowd participants were asked to provide the Android OS version of their device, with instructions on where to find this information on their Android devices. When reviewing participants’ qualification requests, we also randomly assigned qualified participants to different conditions by giving them different qualification scores. In this way, we could ensure a between-subject design where a participant would only be exposed to one condition.

To prevent other confounding factors such as cultural or language issues, we restricted our participants to those who were located within the U.S. To guarantee the quality of our data, we also required participants to have a lifetime approval rate higher than 75% (i.e. the rate of successfully completing previous tasks).

All the HITs of this study were completed over the course of six days. We collected a total of 5684 responses. 211 were discarded due to incomplete answers, and 113 were discarded due to failing the quality control question, yielding 5360 valid responses. There were 179 verified Android users in our study, with an average lifetime approval rate of 97% (SD=8.79%). The distribution of Android versions our participants used was very close to Google’s official numbers [37]. On average, participants spent about one minute per HIT (M=61.27, SD=29.03), and were paid at the rate of $0.12 USD per HIT.

The Most Unexpected and the Most Uncomfortable

Our first analysis looked at what sensitive resource usages were least expected by users based on data from the expectation condition. For each app and resource pair, we aggregated the data by calculating the percentage of participants who expected the resources to be accessed, and averaging the self-reported comfort ratings (ranging
from very comfortable +2.0 to very uncomfortable -2.0). Table 1 summarizes the resource usages that less than 20% of participants said that they expected. For example, only 5% of participants expected the Brightest Flashlight app would access users’ network location information, and overall, participants felt uncomfortable about this resource usage (M=-1.25, SD=0.39). Similarly, only 10% of participants expected the Talking Tom app would access users’ device ID, and 20% of people expected Pandora to access their contact list.

Generally speaking, when participants were surprised by an access to a sensitive resource, they also found hard to explain why this resource were needed. Note that in the expectation condition, participants were only informed about which resources were accessed without the purpose of access. This is similar to what the existing Android permission list conveys to users. In this condition, we observed a very strong correlation (r=0.91) between the percentage of expectations and the average comfort ratings. In other words, the perceived necessity of the resource access was directly linked to their subjective feelings, thus guiding the way users make trust decisions on mobile apps. As many participants also mentioned in their comments, these surprises prompted them to take different actions. For example, participant W27 said about Brightest Flashlight app, “Why does a flashlight need to know my location? I love this app, but now I know it access my location, I may delete it.” W92 said, “I didn’t know Pandora can read my phone book. But why? Can I turn it off? I’ll search for other internet radio app.” Similarly, W56 showed a similar concern (for the Toss It game), “I do not feel that games should ever need access to your location. I will never download this game.”

Lay Users Have a Hard Time Identifying the Reason an App Accesses a Resource

Another way to look at the expectation condition is that it presented users with information comparable to what is provided by the Android permission system, namely what resources may be accessed. We wanted to see to what extent people understand the behaviors of apps in this optimal case, where they were paid to read the privacy summaries. Based on our results, even if users were fully aware of which resources were used, they still had a hard time understanding why these resources were needed.

We used TaintDroid [14] to analyze all the mobile apps in our study to identify the actions that triggered the sensitive resource access and where the sensitive information was sent to. We then manually categorized each app and resource pair into three categories: (1) for major functionality, (2) for sharing and tagging (or supporting other minor functions), (3) for target advertising or market analysis. Many resource usages fell into more than one category. For example, the

<table>
<thead>
<tr>
<th>Resource</th>
<th>App name</th>
<th>% Expected</th>
<th>Avg Comfort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Location</td>
<td>Brightest Flashlight</td>
<td>5%</td>
<td>-1.25</td>
</tr>
<tr>
<td></td>
<td>Toss It</td>
<td>10%</td>
<td>-1.15</td>
</tr>
<tr>
<td></td>
<td>Angry Birds</td>
<td>10%</td>
<td>-0.43</td>
</tr>
<tr>
<td></td>
<td>Air Control Lite</td>
<td>20%</td>
<td>-0.55</td>
</tr>
<tr>
<td></td>
<td>Horoscope</td>
<td>20%</td>
<td>-1.05</td>
</tr>
<tr>
<td>GPS Location</td>
<td>Brightest Flashlight</td>
<td>10%</td>
<td>-0.95</td>
</tr>
<tr>
<td></td>
<td>Toss It</td>
<td>5%</td>
<td>-0.95</td>
</tr>
<tr>
<td></td>
<td>Shazam</td>
<td>20%</td>
<td>-0.05</td>
</tr>
<tr>
<td>Device ID</td>
<td>Brightest Flashlight</td>
<td>5%</td>
<td>-1.35</td>
</tr>
<tr>
<td></td>
<td>TalkingTom Free</td>
<td>10%</td>
<td>-0.78</td>
</tr>
<tr>
<td></td>
<td>Mouse Trap</td>
<td>15%</td>
<td>-0.85</td>
</tr>
<tr>
<td></td>
<td>Dictionary</td>
<td>15%</td>
<td>-0.69</td>
</tr>
<tr>
<td></td>
<td>Ant Smasher</td>
<td>20%</td>
<td>-1.13</td>
</tr>
<tr>
<td></td>
<td>Horoscope</td>
<td>20%</td>
<td>-1.03</td>
</tr>
<tr>
<td>Contact List</td>
<td>Backgrounds HD</td>
<td>10%</td>
<td>-1.35</td>
</tr>
<tr>
<td></td>
<td>Wallapers</td>
<td>10%</td>
<td>-0.70</td>
</tr>
<tr>
<td></td>
<td>Pandora</td>
<td>20%</td>
<td>-0.75</td>
</tr>
<tr>
<td></td>
<td>GO Launcher EX</td>
<td>20%</td>
<td>-0.75</td>
</tr>
</tbody>
</table>

Table 1. The most unexpected resource usages identified in the expectation condition, i.e. resource usage expected by no more than 20% of participants. Users felt uncomfortable with these unexpected app behaviors. For each app and resource pair, 20 participants were surveyed. The comfort rating was ranging from -2.0 (very uncomfortable to +2.0 (very comfortable). For all the apps we surveyed, there was a strong correlation (r=0.91) between people’s expectation and their subjective feelings.

WeatherBug application uses location for retrieving local weather information as well as for targeted advertising.

We compared the reasons our participants provided in the expectation condition against the ground truth from our analysis as shown in Table 2. In most cases, the majority of participants could not correctly state why a given app requested access to a given resource. When the resources were accessed for functionality purposes, participants generally had better answers; however, the accuracy never exceeded 80%. When sensitive resources were used for multiple purposes, the accuracies tended to be much lower. We also note that, participants had slightly better answers of why their location information was needed compared to the other two types of sensitive resources.

Note that, these results are for the situation where participants were paid to carefully read the description. Many of them had even already used some of these apps before. We believe for general Android users, their ability to guess would be even worse. This also indicates that simply informing users of what resources are used (as today’s Android permission screen does) is not enough for users to make informed decision.

Clarifying the Purpose May Ease Worries

Given the lack of clarity of why their resources are accessed, users have to deal with significant uncertainties when making trust decisions regarding installing and
We were informed that the location was only used to search.

We observed that for all four types of sensitive resources,

Table 2. Participants had a difficult time speculating on the purposes of their sensitive resource usages. The first column shows the type of resource accessed and the total number of apps accessing that resource. The second column shows the ground truth of why the resource is accessed, the third column shows the percentage of apps in each category (e.g. 20 apps access contact list for reason [1]). The third column shows the percentage of participants stated the purpose correctly. The last column shows the percentages of participants who had no idea why the resource is accessed.

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Resource used for</th>
<th>cnt</th>
<th>% of accurate guess</th>
<th>% of no idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact List (25)</td>
<td>[1] Major functionality</td>
<td>20</td>
<td>56%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>[2] Tagging or sharing</td>
<td>2</td>
<td>28%</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>[3] Advertising or market analysis</td>
<td>2</td>
<td>19%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>[1]+[2]</td>
<td>2</td>
<td>27%</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>[1]+[2]+[3]</td>
<td>1</td>
<td>15%</td>
<td>27%</td>
</tr>
<tr>
<td>GPS Location (24)</td>
<td>[1]</td>
<td>14</td>
<td>74%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>[2]</td>
<td>4</td>
<td>80%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>[3]</td>
<td>2</td>
<td>35%</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td>[1]+[3]</td>
<td>3</td>
<td>15%</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td>[2]+[3]</td>
<td>1</td>
<td>15%</td>
<td>40%</td>
</tr>
<tr>
<td>Network Location (29)</td>
<td>[1]</td>
<td>15</td>
<td>77%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>[2]</td>
<td>2</td>
<td>55%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>[3]</td>
<td>7</td>
<td>29%</td>
<td>63%</td>
</tr>
<tr>
<td></td>
<td>[1]+[3]</td>
<td>3</td>
<td>15%</td>
<td>22%</td>
</tr>
<tr>
<td></td>
<td>[2]+[3]</td>
<td>2</td>
<td>13%</td>
<td>25%</td>
</tr>
<tr>
<td>Device ID (56)</td>
<td>[1]</td>
<td>1</td>
<td>51%</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td>[3]</td>
<td>30</td>
<td>22%</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td>[1]+[3]</td>
<td>12</td>
<td>7%</td>
<td>55%</td>
</tr>
</tbody>
</table>

Table 3. Comparison of comfort ratings between the expectation condition (2nd column) and the purpose condition (3rd column). Standard deviations are shown between parentheses. When participants were informed of the purpose of resource access, they generally felt more comfortable. The differences were statistically significant for all four types of resources. The comfort ratings were ranging from -2.0 (very uncomfortable) to +2.0 (very comfortable).

\[
\delta > 1.0 \text{ in comfort rating when the purpose of a resource access was explained.}
\]

This finding suggests that providing users with the reasons why their resources are used not only gives them more information to make better trust decisions, but can also ease their concerns caused by uncertainties. Note that informing users about the “purpose” for collecting their information is a common expectation in many legal and regulatory privacy frameworks. Our results confirm the importance of this information. This finding also provides us with strong rationale for including the purpose(s) of resource access in our new design of privacy summary interface.

Impact of Previously Using an App

We also wanted to see how previous experiences with an app impacted participants’ expectations and level of comfort. To answer this question, we compared the responses between participants who had and hadn’t used the app before. The ratio of people who had and had not used the apps in our study varied greatly. Some apps (such as Facebook and Twitter) saw high usage among our participants, while others (such as Kakao Talk Messenger and Horoscope) had fairly low usage. To make the comparison fair, we only examined apps that had at least 5 responses in both the used and not used categories. In our data, the differences between participants who had and had not used these apps before were not statistically significant with respect to their expectation of sensitive resource access. Regarding their comfort level, the only significant difference we observed is the average comfort ratings for accessing the contact list. Participants who used an app before felt more comfortable letting that app access their contact list (t(20)=2.68, p=0.015). For the other three types of resources, the experiences with apps didn’t cause any statistically significant differences in participants’ subjective feelings.
This finding suggests that people who use an app do not necessarily have a better understanding of what the app is actually doing, in terms of accessing their sensitive resources. It also suggests that, if we use crowdsourcing to capture users’ mental models of certain apps, we do not have to restrict our participants to people who are already familiar with these apps, allowing us access to a potentially larger crowd.

NEW PRIVACY SUMMARY INTERFACE

In the previous section, we had identified that purpose and expectation are two key factors that impact users’ subjective feelings. Based on this finding, we present the design of a new privacy summary interface highlighting the purposes of sensitive resource usage and people’s perceptions about app’s behaviors.

Design Rationale

Privacy summary interfaces, such as the permission screen in current Android, are designed for users to review before downloading mobile apps. By that time, users have limited information to form their mental model of the targeted mobile app since they haven't had any interaction with it. In contrast with our crowdsourcing study, we cannot rely on general users to carefully examine an app's description or screenshots to understand how this app works in reality. In our new design, we directly leverage other users’ mental models. The underlying rationale is similar to the idea of Patil et al. [31] in the sense of incorporating others’ opinions in making privacy decisions. Our work differs from their work by aggregating users’ subject feedback from crowds instead of from one’s social circle and highlighting users’ surprises. By presenting the most common misconceptions about an app, we can rectify people’s mental models and help them make better trust decisions. We consider users’ expectations and the purposes of resource access as the two key points that we want to convey to users in our new summary interface.

Previous research has discussed several problems with the existing Android permission screens [18, 26], including:

- The wording of the permission list contains too much technical jargon for lay users.
- They offer little explanations and insight into the potential privacy risk.
- A long list of permissions make users experience warning fatigue.

With these problems in mind, in addition to the two identified key features, we proposed several principles for our own design:

- Using simple terms to describe the relevant resources; e.g., instead of using “coarse (Network) location”, we use the term “approximate location”.
- Only displaying the resources that have greater impact on users’ privacy, such as location, device ID, storage, contact list etc. Users could choose to check out other low-risk resources by clicking “See all”.
- Sorting the list based on expectation as captured through crowdsourcing. We order the list so that the more surprising resource usages are shown first.
- Highlighting important information. We bold the sensitive resources mentioned in text, and use warning sign and striking color to highlight the suspicious resource usages, i.e. when the surprise value exceeds a certain threshold.

Figure 2 shows two examples of our new privacy summary interface. To make the comparison more symmetric, our design uses the same background color and pattern are used in the current Android permission screen. The surprise numbers (i.e. “% of users were surprised”) used in these mockups were obtained from our crowdsourcing study where possible. The surprise numbers for other resources (such as camera flashlight, SD card) were reasonable estimates made by our team.

Evaluation

We used AMT to conduct a between-subject user study to evaluate our new privacy summary interface. Participants were randomly assigned to one of the two conditions in the same way as our previous study. In the permission condition, participants were shown the permission screen that the current Android Market uses; in the other condition (referred as the new interface condition), participants were shown our new interfaces. We used the data we collected in our previously described crowdsourcing study to mock up the privacy summary.
interfaces for five mobile apps, namely Brightest Flashlight, Dictionary, Horoscope, Pandora, and Toss it.

In both conditions, the app’s name, screenshots, description and the quality control question were presented the same way as in previous study. The privacy summary was then shown (either the current permission screen or our newly proposed interface). Participants were asked whether they would recommend this app to a friend who might be interested in it, and why (or why not). We used JavaScript to keep track of the time participants spent on reading the privacy summary before making their recommendation choices. After this question, privacy summary screens were covered by grey rectangles. Participants could recheck the privacy summaries by moving their mice over the grey rectangles. In this way, we could accurately record the additional time participants spent on viewing privacy summary screens by monitoring the mouse hovering events. We then added up all these time fragments to compute the total time participants spent on reading the privacy summary. Participants were tested on their understanding of the presented privacy summary screen by specifying the resource(s) usages suggested by the privacy summary.

For each condition per app, 20 unique participants were recruited. Participants could evaluate multiple apps within the same condition. A total of 237 responses were submitted, 19 of which were discarded due to incompletion and 18 of which were discarded due to failing the quality control question. Sixty-seven Android users participated in this study with an average lifetime approval rate of 96.31% (SD=6.27%). Thirty-five participants were assigned to the permission condition, and thirty-two were assigned to the new interface condition. Participants on average spent 2 min and 41.4 sec (SD=77.3 sec) in completing each evaluation task, and were paid at the rate of $0.20/HIT.

We evaluated the new privacy summary interface from three perspectives to test its effectiveness and usability. The first is privacy awareness, i.e. whether users are more aware of the privacy implications. This is measured by counting the number of participants who mentioned privacy concerns when justifying their recommendation decisions. The second is comprehensibility, i.e. how well users understood the privacy summary. This is measured by the accuracy in answering questions about the app’s behavior. The third is efficiency, i.e. how long it took participants to understand the privacy summary, measured by the number of seconds they spent on reading the privacy summary screens.

The comparisons between the two conditions are summarized in Table 4. Generally speaking, participants in the new interface condition weighted their privacy more when they made decisions about whether the app was worth recommending. More people in this condition mentioned privacy-related concerns when they were justifying their choices. When we asked people in both conditions to specify the resources used by the target apps of the target apps, people in the new interface condition also demonstrated a significantly higher accuracy compared to their counterparts. Furthermore, except for the Pandora app, participants in the new interface condition on average spent less time reading the privacy summaries on average, though the time difference was not always statistically significant. This finding suggests that we can provide more useful information without requiring users to spend more time to understand it.

In our future work, we plan to conduct lab studies to evaluate our new privacy summary interface in depth. We will focus on the effectiveness of the new interface when users only look at it briefly (e.g. for 5-10 secs), since in reality general users are not likely to devote a lot of time to reading.

DISCUSSION

In this section, we discuss the potential implications of our work and how it fit into our vision of leveraging crowdsourcing for application analysis.

Implications for Privacy Analysis

A Potential Win-Win A major finding of our work is that users feel more comfortable when they are informed of the reasons why their sensitive resources are needed. In some cases, it might be again tied to users’ expectations. For example, the “trending, popular and nearby search” functionality provided by the Dictionary app uses location information to retrieve the words that people nearby are looking up. It is a relatively minor function of this app and may not be expected even for users who are familiar

<table>
<thead>
<tr>
<th>App Name</th>
<th>Permission</th>
<th>New Interface</th>
<th>Permission</th>
<th>New Interface</th>
<th>p</th>
<th>Permission</th>
<th>New Interface</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightest Flashlight</td>
<td>4</td>
<td>6</td>
<td>0.58</td>
<td>0.86</td>
<td>**</td>
<td>74.59</td>
<td>65.11</td>
<td></td>
</tr>
<tr>
<td>Dictionary</td>
<td>1</td>
<td>3</td>
<td>0.73</td>
<td>0.91</td>
<td>**</td>
<td>68.21</td>
<td>43.92</td>
<td>**</td>
</tr>
<tr>
<td>Horoscope</td>
<td>3</td>
<td>7</td>
<td>0.75</td>
<td>0.95</td>
<td>*</td>
<td>68.41</td>
<td>48.72</td>
<td></td>
</tr>
<tr>
<td>Pandora</td>
<td>3</td>
<td>3</td>
<td>0.68</td>
<td>0.94</td>
<td>**</td>
<td>76.86</td>
<td>76.82</td>
<td></td>
</tr>
<tr>
<td>Toss it</td>
<td>4</td>
<td>13</td>
<td>0.61</td>
<td>0.88</td>
<td>**</td>
<td>67.43</td>
<td>57.10</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Comparisons between the existing Android permission screen (permission condition) and our newly proposed privacy summary (new interface condition). Our new interface makes users more aware of the privacy implications and is easier to understand. Users in general spent less time on these newly proposed interfaces but got more fine-grained information.
with this app. Therefore, when we asked participants to
state the reasons for accessing location information, most
of them thought it was for targeted advertising purpose,
that when dealing with uncertainties, users tend to be
more concerned or even paranoid about their privacy. Our
results provide evidence that properly informing users
with the purposes of resource usage can actually ease
their worries. In other words, it would potentially benefit
all parties, including app developers, market owners, and
advertisers.

Currently, the default Android permission screen doesn’t
contain any explanations. One possible approach for
getting this information is to scale up our crowdsourcing
app, though there is the potential for errors, as we saw
in Table 2. Another approach is to require app developers
to include a rationale, but this is an optimistic approach
assuming that developers won’t lie. This also suggests
that better tools are still needed for analyzing apps’
behaviors in a more scalable and automated manner, as
envisioned in [2].

Privacy Concerns of Mobile Advertising We observed
that mobile advertising services were a consistent privacy
concern for the most participants. For all four types of
resources, users felt the least comfortable when they were
used for advertising or market analysis. We understand
that many developers rely on ads for income. However,
there is still space for app developers and ad networks to
improve the user experience, such as by providing users
with more informed consent and more explanations on
how and why their personal information is used. Other
potential ways include tweaking the sensitive resource
usage to a coarser level, or using hashing or other
methods to conceal users’ identities. These technical
methods can address users’ privacy concerns without
sacrificing too much on the ads’ quality.

Leveraging Crowd for Application Analysis

The long term vision of our work is to design a scalable
privacy evaluation system for mobile apps by combining
automated application analysis with crowdsourcing
techniques. The automated techniques are meant to
capture an app’s behaviors involving sensitive resources,
whereas the crowdsourcing techniques capture people’s
perceptions and expectations about an app’s behaviors.

One important contribution of this paper is to demonstrate
the feasibility of using crowdsourcing to capture users’
perceptions, and to identify the strength and weakness of
the crowd in evaluating privacy. Based on our data, users
were not very good at speculating on the purpose of
resource access, which is not surprising and might be
compensated by leveraging existing mobile app analysis
techniques. However, specifying their expectations is a
relatively easy job for most people but cannot be
addressed by existing app analysis tools.

As the first work of this kind, we simplified the problem
by focusing only on privacy, although we realize that
users may weigh utility over privacy when making
decisions about installing an app. Future research will
need to take utility into account in understanding how
people make trust decisions.

We also only captured people’s perceptions at a coarse
granularity and with limited types of sensitive resources.
We will extend our work to finer-grained interactions, e.g.
whether users expect the Yelp app to send their location
to yelp.com when they press 'Search nearby restaurant'
button. We envision that this level of analysis could
provide us more detailed information for evaluating
mobile apps, and could possibly lead to better results
when asking the crowd why an app accesses a given
resource.

In our crowdsourcing study, it cost us $2.40 USD and
about 20-25 minutes (deducted from the effective hourly
rate reported by AMT) to examine one app and resource
pair with input from 20 participants. There is ample room
to improve the crowdsourcing efficiency. Examples
include extending the participant pool to all smartphone
users, minimizing the number of questions, and so on.
There are also several techniques suggested by previous
crowdsourcing work [7, 27] that we can leverage to
improve the overall efficiency, e.g. dynamically
publishing HITs, adaptively adjusting the compensation
rate and the number of required responses. Given that it
only took about one minute for our participants to
complete a crowdsourcing task, we believe this method
would scale well, though formal scalability analysis is
still an open issue and will be included in our future work.

Alternatively, crowdsourcing users’ perceptions could be
achieved in conjunction with the exiting app rating
mechanism. When users rate a mobile app, they can also
optionally specify their expectations of one aspect of the
target app. As the number of rating grows, the aggregated
perceptions will be more representative.

CONCLUSION & FUTURE WORK

A great deal of past work in mobile security and privacy
research has focused on providing tools for automated
analysis. However, there is still no easy way to
distinguish whether accessing certain sensitive resource is
necessary, or how that action makes users feel with
respect to their privacy. Our work demonstrates a new
way for evaluating mobile app’s privacy. We explore
users’ mental models of mobile privacy by crowdsourcing
users’ expectations of mobile apps’ sensitive resource usage. Our results suggest that both users’ expectation and the purpose of why sensitive resources are used have a major impact on users’ subjective feelings and their trust decisions. Another major finding is that properly informing users of the purpose of resource access can ease users’ privacy concerns to some extent. Based on our findings, we proposed a new privacy summary interface that highlights common misconceptions that other users have and the purpose of a resource access. Compared to the existing Android permission screen, our interface is much easier to understand and provides users with more pertinent information for users to make better trust decision.

ACKNOWLEDGEMENT

This research was supported by CyLab at Carnegie Mellon under grants DAAD19-02-1-0389 and W911NF-09-1-0273 from the Army Research Office and by Google. Support was also provided by the National Science Foundation under Grants CNS-1012763 and CNS-0905562.

REFERENCES

[34] A. Thampi. “Path uploads your entire iPhone address book to its servers.” Available: http://mclow.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
Modeling Users’ Mobile App Privacy Preferences:
Restoring Usability in a Sea of Permission Settings

Jialiu Lin Bin Liu Norman Sadeh Jason I. Hong
School of Computer Science, Carnegie Mellon University
{jialilu, bliu1, sadeh, jasonh}@cs.cmu.edu

ABSTRACT
In this paper, we investigate the feasibility of identifying a small set of privacy profiles as a way of helping users manage their mobile app privacy preferences. Our analysis does not limit itself to looking at permissions people feel comfortable granting to an app. Instead it relies on static code analysis to determine the purpose for which an app requests each of its permissions, distinguishing for instance between apps relying on particular permissions to deliver their core functionality and apps requesting these permissions to share information with advertising networks or social networks. Using privacy preferences that reflect people’s comfort with the purpose for which different apps request their permissions, we use clustering techniques to identify privacy profiles. A major contribution of this work is to show that, while people’s mobile app privacy preferences are diverse, it is possible to identify a small number of privacy profiles that collectively do a good job at capturing these diverse preferences.

1. INTRODUCTION
As of December 2013, the Google Play Store offered more than 1,130,000 apps; the Apple App Store offered more than 1,000,000 apps. Each store has reported more than 50 billion downloads since its launch [1, 2]. The growth in the number mobile apps has in part been fueled by the increasing number APIs made available to developers, including a number of APIs to access sensitive information such as a user’s current location or call logs. While these new APIs open the door to exciting new applications, they also give rise to new types of security and privacy risks. Malware is an obvious problem [3, 4]; another danger is that users are often unaware of how much information these apps access and for what purpose.

Early studies in this area have shown that privacy interfaces, whether for iOS or for Android, did not provide users with adequate information or control [5-7]. This was quickly followed by research exploring solutions that offered users finer grain control over the use of these APIs [8-10]. Perhaps because of this research, iOS and Android have now started to offer their users somewhat finer control over mobile app permissions, enabling them for instance to toggle permissions on and off on an app-by-app basis (e.g. iOS5 and above, and also App Ops in Android 4.3). However, with users having an average of over 40 apps on their smartphone [11] and each app requiring an average of a little over 3 permissions [12], systematically configuring all these settings places an unrealistically high burden on users.

This paper investigates the feasibility of organizing end-users into a small set of clusters and of identifying default privacy profiles for each such cluster as a way of both simplifying and enhancing mobile app privacy. We use data obtained through static code analysis and crowdsourcing, and analyze it using machine learning techniques to highlight the limitations of today’s interfaces as well as opportunities for significantly improving them. Specifically, our results were obtained by collecting 21,657 preference ratings from 725 users on 837 free Android apps. These preference ratings were collected on over 1200 app-permission-purpose triples. Each such preference rating captures a user’s willingness to grant a given permission to a given app for a particular purpose. Identification of the purpose(s) associated with a given app’s permission was inferred using static code analysis, while distinguishing between different types of 3rd-party libraries responsible for requesting access to a given permission. For example, if location data is used by an app only because of an ad library bundled with the app, we can infer that location is used for advertising purposes.

Our analysis indicates that a user’s willingness to grant a given permission to a given mobile app is strongly influenced by the purpose associated with such a permission. For instance a user’s willingness to grant access to his or her location will vary based on whether the request is required to support the app’s core functionality or whether it is to share this information with an advertising network or an analytics company. Our analysis further shows that, as in many other privacy domains, people’s mobile app privacy preferences are diverse and cannot adequately be captured by one-size-fits-all default settings. Yet, we show that it is possible to cluster users into a small number of privacy profiles, which collectively go a long way in capturing the diverse preferences of the entire population. This in turn offers the prospect of empowering users to better control their mobile app permissions without requiring them to tediously review each and every app-purpose-permission for the apps on their smartphones. Beyond just mobile apps, these results open the door to privacy interfaces that could help reconcile tensions between privacy and user burden in a variety of domains, in which explosion in functionality and usage scenarios are stretching demands on users (e.g. browser privacy settings, Facebook settings, and more).

The contribution of this research is threefold. First, we provide an in-depth analysis of mobile app permissions that is not limited to the types of sensitive resources an app requests (e.g. location, contact lists, account information) but also includes the “purpose” associated with these requests – with purpose identified through static analysis of third party libraries and their API calls. Second, we describe the results of a larger-scale version of the crowdsourcing methodology originally introduced by Lin et. al. [13], collecting over 21,000 privacy preferences associated with different permissions and purposes. This allows us to quantitatively link users’ mobile app preferences to different...
types of app behaviors that involve sensitive resource usage. Third, we present a clustering analysis of the privacy preferences of 725 smartphone users, and show that, while these preferences are diverse, a relatively small number of privacy profiles can go a long way in simplifying the number of decisions users have to make. This last contribution offers the promise of alleviating user burden and ultimately increasing their control over their information.

2. RELATED WORK
A great deal of past work analyzing smartphone apps has focused on developing useful techniques and tools to detect and manage leakage of sensitive personal information [8-10, 14-26] or studying how users react to these usages [6, 13, 27, 28]. In this section, we summarize the relevant mobile privacy literature, which we organize around three themes.

2.1 Finer Grain Privacy Controls
In Android, apps can only access sensitive resources if they declare permission requests in manifest files1 and obtain authorization from users to access these permissions at download time. Several studies have examined usability issues related to the permission interface displayed to users as they download Android apps [5-7]. The studies have shown that Android permission screens generally lack adequate information, with most users struggling to understand key terms and the implications associated with the permissions they are requested to grant.

Android 4.3 saw the introduction of a hidden permission manager referred to as a “App Ops” that allows users to review and manipulate settings associated with the permissions of the apps they have downloaded on their smartphones [29, 30]. This feature was later removed in Android 4.4 presumably due to usability problems – namely the unrealistically large number of permission decisions already mentioned in Section 1. Similar fine grain control over permissions has also been offered by third party privacy manager apps, such as LBE privacy guard [31], though it is only available on rooted Android devices. Similar settings are also available in iOS (iOS 5 and above), where users have the ability to turn on and off access to sensitive data or functionality (such as location, contacts, calendars, photos, etc) on an app-by-app basis. ProtectMyPrivacy [32] offers similar settings to jailbroken iPhone users and also provides recommendations based on majority voting (effectively looking for popular one-size-fits-all settings, when such settings can be identified).

A number of research prototypes have also offered used fine grain controls over the permissions [8, 10, 32-35]. MockDroid [8] and TISSA [10] also allow users to object fake information in response to API calls made by apps. AppFence [9], a follow-up to TaintDroid [17], also allows users to specify resources, which should only be used locally. Apex proposed by Nauman et al. [34] provides fine-grained control over resource usage based on context and runtime constraints.

These proposed privacy extensions aim to provide users with finer control over the data accessed by their apps. However, these extensions also assume that users can correctly configure all the resulting settings. We argue that asking users to specify such a large number of privacy preferences is unrealistic. In addition, we show that controlling permissions on an app-by-app basis without taking into account the purpose of these permissions does not enable one to capture important differences in people’s mobile app privacy preferences. The present paper complements prior work in this area by identifying a small number of manageable privacy profiles that takes into account purpose and offers the promise of empowering users to manage their mobile app privacy without imposing an undue burden on them.

2.2 Modeling People’s Mobile App Privacy Preferences
A second line of research has focused on studying users’ mobile app privacy concerns and preferences. For example, Felt et al. [28], Chin et al. [27], and Egelman et al [36] conducted surveys and interviews to understand mobile users’ mobile privacy concerns as well as their over understanding of the choices they are expected to make.

Several efforts have researched interfaces intended to improve the way in which users are informed about mobile app data collection and usage practices. Kelley et al. evaluated the benefits of including privacy facts in an app’s description in the app store, effectively enabling users to take into account privacy considerations prior to download time [7]. Choe et al. showed that a framing effect can be exploited to nudge people away from privacy invasive apps [37]. The National Telecommunications and Information Administration (NTIA) released guidelines for a short-form mobile app privacy notice in July 2013, aiming to provide app users with clear information about how their personal data are collected, used and shared by apps [38, 39]. Work by Balebako et al. [40], suggests that more work may be required for these interfaces to become truly effective. More generally, Felt et al. discussed the strengths and weaknesses of several permission-granting mechanisms and provided guidelines for using each mechanism [41].

Studies have also shown that users are often surprised when they find out about the ways in which information collected by their apps is being used [13, 42, 43], e.g. what type of data is requested, how often, and for what purpose. In [13], we used crowdsourcing to identify app-permission-purpose triples that were inconsistent with what users expected different apps to collect. We further showed that such deviations are often closely related with lack of comfort granting associated permissions to an app. Our paper builds on this earlier work by scaling up our crowdsourcing framework and performing more advanced data analysis to allow for the development of finer privacy preference models. Our main contribution here is not only to show how mobile app privacy preferences vary with the purpose of app permission pairs but also in the form of a taxonomy of purposes, which we can later leverage to identify clusters of like-minded users.

2.3 Privacy Preference Learning
A first data mining study of mobile app permissions was presented by Frank et al., where they authors looked for permission request patterns in Android apps [44]. Using matrix factorization techniques, they identified over 30 common patterns of permission requests. Rather than looking for patterns of

1 The Android manifest file of each app presents essential information about this app to the Android system, information the system must have before it can run any of the app's code.
permission requests, our work in this area aims to identify patterns in user privacy preferences, namely in the willingness of users to grant permissions to mobile apps for different purposes.

This work more closely aligned with an earlier study published by three of the co-authors, looking at patterns among the Android permission settings of 239,000 LBE Privacy Guard [31] users for around 12,000 apps [12]. In this earlier work, the three co-authors showed that it was possible to define a small number of privacy profiles that collectively captured many of the users’ privacy settings. It further explored mixed initiative models that combine machine learning to predict user permission settings with user preferences when the level of confidence associated with certain predictions appears too low. In contrast to analyzing actual user privacy settings, our work focuses on deeper privacy models, where we elicit people’s privacy preferences in a context where they are not just about the permissions requested by an app but also about the one or more purposes associated with these requests (e.g. to enable the app’s core functionality versus to share data with an advertising network or an analytics company).

While our results bear some similarity with those presented in [12], they are significant because: (i) they show that the purpose for which an app requests a certain permission has a major impact on people’s willingness to grant that permission., and (ii) using these more detailed preference models elicited from better-informed users, it is possible to derive a small number of privacy profiles with significant predictive power.

To the best of our knowledge, our work on quantifying mobile app privacy preferences is the first of its kind. It has been influenced by earlier work by several of the co-authors on building somewhat similar models in the context of user location privacy preferences. [45-52]. For example, Lin et al. [45] suggested that people’s location-sharing privacy preferences, though complicated, can still be modeled quantitatively. Early work by Sadeh et al. [52] showed that it was possible to predict people’s location sharing privacy preferences and work by Benisch et al. explored the complexity of people’s location privacy preferences [51]The work by Ravichandran et al. [46] suggested that providing users with a small number of canonical default policies can help reduce user burden when it comes to customizing the fine-grained privacy settings. The work by Cranshaw et al. [47] applied a classifier based on multivariate Gaussian mixtures to incrementally learn users’ location sharing privacy preferences. Kelley et al [49] and later Mugan et al. [48] also introduced the notion of understandable learning into privacy research. They used default personas and incremental suggestions to learn users’ location privacy rules, resulting in a significant reduction of user burden. Their results were later evaluated by Wilson et al. [50] in a location sharing user study.

As pointed out by Wilson et al. with regard to location sharing privacy in [50], “... the complexity and diversity of people’s privacy preferences creates a major tension between privacy and usability...” The present mobile app privacy research is motivated by a similar dilemma, which extends well beyond just location. It shows that approaches that worked well in the context of location sharing appear to offer similar promise in the broader context of mobile app privacy preferences, with a methodology enhanced with the use of static analysis to identify the purpose of mobile app permissions.

3. DATA COLLECTION

Before analyzing people’s privacy preferences of mobile apps, it is necessary to gain a deeper understanding of mobile apps with regard to their privacy-related behaviors as well as the implication of these behaviors. In this section, we provide technical details of how we leveraged static analysis to dissect apps and what we learnt.

3.1 Downloading Android Apps and Their Meta-data

We crawled the Google Play web pages in July 2012 to create an index of all the 171,493 apps that were visible to the US users, among which 108,246 of them were free apps. We obtained the metadata of these apps, including the app name, developer name, ratings, number of downloads, etc. We also downloaded all the binary files of free apps through an open-source Google Play API [3]. Note that Google has strict restrictions on app purchase frequency and limits the number of apps that can be purchased with a single credit card. Because of these restrictions, we opted to only download and analyze free apps in this work. Additional analysis using similar method of our work can be applied to paid apps as well.

3.2 Analyzing Apps’ Privacy-Related Behaviors

We used static analysis tools given that they are more efficient and easier to automate. We chose Androguard [53] as our major static analysis instrument. Androguard is a Python based tool to decompile Android apk files and to facilitate code analysis. We focused our analysis on the top 11 most sensitive and frequently used permission as identified earlier [19]. They are: INTERNET, READ_PHONE_STATE, ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, CAMERA, GET_ACCOUNTS, SEND_SMS, READ_SMS, RECORD_AUDIO, BLUE_TOOTH and READ_CONTACT. We created our own analysis scripts with the Androguard APIs and identified the following information related to apps’ privacy-related behaviors: 1) permission(s) used by each app; 2) The classes and segments of code involved in the use of permissions; 3) All the 3rd-party libraries included in the app; 4) Permissions required by each 3rd-party library. The analysis of 3rd-party libraries provided us more semantic information of how users’ sensitive data were used and to whom they were shared.

We obtained permission information of each app by parsing the manifest file of each apk file. We further scanned the entire decompiled source code and looked for specific Android API calls to determine the classes and functions involved in using these permissions. We identified 3rd-party libraries by looking up package structures in the de-compiled source code. It is possible that we may have missed a few libraries, though we are pretty confident that we were able to correctly identify the vast majority of them and in particular the most popular ones. For the sake of simplicity, we did not distinguish between different versions of the same third party library in our analysis. Similar to the permission analysis step described above, the permission usage of each 3rd-party library was determined by scanning through all the Android standard API calls that relate to the target permission in the de-compiled version of the library’s source code.

We further leveraged five Amazon EC2 M1 Standard Large Linux instances to speed up our analysis of this large quantity of
Table 1. Nine categories of 3rd-party libraries

<table>
<thead>
<tr>
<th>Type</th>
<th>Examples</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility</td>
<td>Xmlparser, hancrest</td>
<td>Utility java libraries, such as parser, sql connectors, etc</td>
</tr>
<tr>
<td>Targeted Ads</td>
<td>admob, adwhirl</td>
<td>Provided by mobile behavioral ads company to display in-app advertisements</td>
</tr>
<tr>
<td>Customized UI Components</td>
<td>Easymock, kankan</td>
<td>Customized Android UI components that can be inserted into apps.</td>
</tr>
<tr>
<td>Content Host</td>
<td>Youtube, flickr</td>
<td>Provided by content providers to deliver relevant image, video or audio content to mobile devices.</td>
</tr>
<tr>
<td>Game Engine</td>
<td>Badlogic, cocos2dx</td>
<td>Game engines which provide software framework for developing mobile games.</td>
</tr>
<tr>
<td>SNS</td>
<td>Facebook, twitter,</td>
<td>SDKs/ APIs to enable sharing app related content on SNSs.</td>
</tr>
<tr>
<td>Mobile Analytics</td>
<td>Flurry, localitics</td>
<td>Provided by analytics company to collect market analysis data for developers.</td>
</tr>
<tr>
<td>Secondary Market</td>
<td>Gfan, ximad, getjar...</td>
<td>Libraries provided by other unofficial Android market to attract users.</td>
</tr>
<tr>
<td>Payment</td>
<td>Fortumo, paypal, zong...</td>
<td>E-payment libraries</td>
</tr>
</tbody>
</table>

In the static analysis, we identified over a thousand 3rd-party libraries used by various apps. We looked up the top 400 3rd-party libraries that are most frequently used in all these apps to understand the purpose or functionality associated with each, based on which we organized these 3rd-party libraries into 9 categories as detailed in Table 1. These categories include Targeted Advertising, Customized UI Components, Content Host, Game Engine, Social Network Sites (SNS), Mobile Analytics, Secondary Market, Payment and Other Utilities. We also analyzed how different types of resources (permissions) were used for various purposes. For all the apps we analyzed, we observed an average usage of 1.59 (σ = 2.82, median=1) 3rd-party libraries in each app. There were some extreme cases where an app used more than 30 3rd-party APIs. For example, the app with the package name “com.wikilibs.fan_tattoo_design_for_women” used 31 3rd-party libraries, 22 of which were targeted advertising libraries, such as adwhirl, mdotm, millenialmedia, tapjoy, etc. In the majority of cases (91.7%), apps are bundled with less than or equal to 5 different 3rd-party libraries. The targeted advertising libraries are found in more than 11.2% of the app market, and mobile analytics libraries had an average penetration of 9.8% of the app market.

In addition to these nine categories of sensitive data uses by third parties, we also used “internal use” to label sensitive data usages caused by the application itself rather than a library. It should be noted that, for these internal uses, we currently cannot determine why a certain resource is used (e.g., whether it is “for navigation”, “for setting up a ringtone”, etc.). Based on existing practices, the fact that the API call is within the app’s code rather than in a 3rd party library indicates a high probability that the resource is accessed because it is required by the mobile app itself rather than to collect data on behalf of a third party.

Our static analysis provided a systems-oriented foundation for us to better understand mobile apps in terms of their privacy-related behaviors, which enabled us to study users’ preferences in regard to these app behaviors in the later part of this paper. Note that, although we only collected users’ preferences of 837 apps among the apps we disected as described in the following subsection, the static analysis of 89,000 + apps was necessary for us to understand the bigger picture of sensitive data uses and to identify the nine categories of 3rd-party libraries.

3.3 Crowdsourcing Users’ Mobile App Privacy Preferences

To link users’ privacy preferences to these app behaviors we identified through static analysis, we leveraged Amazon Mechanical Turk (AMT) to collect users’ subjective responses through a study similar what Lin et al. did in [13]. Participants were shown the app’s icon, screen shots, and description of apps. Participants were asked if they expected this app to access certain type of private information and were also asked how comfortable (from “-2” very uncomfortable to “+2” very comfortable) they felt downloading this app given the knowledge that this app accesses their information for the given purposes. Each HIT (Human Intelligence Task) examined one app – permission – purpose triple that we identified as described in the previous section. For example, in one HIT, participants were asked to express their level of comfort in letting Angry Birds (app) access their precise location (permission) for delivering targeted ads (purpose). We added one qualification question in each HIT, asking participants to select from a list of three app categories, to test whether they had read the app’s description and whether they were paying attention to the questions. The template of the HIT is shown in Appendix A.

In total we published 1200 HITs on AMT, probing 837 mobile apps that we randomly sampled from the top 5000 most popular free apps. For each HIT, we aimed to recruit 20 unique participants. The total analysis required 2035 instance hours, i.e. approximately 1.23 minutes per app. Among all the 108,246 free apps, 89,903 of them were successfully decompiled (83.05%). Upon manual inspection of a few failure examples, we observed that failure to de-compile was primarily attributed to code obfuscation.

In the static analysis, we identified over a thousand 3rd-party libraries used by various apps. We looked up the top 400 3rd-party libraries that are most frequently used in all these apps to understand the purpose or functionality associated with each, based on which we organized these 3rd-party libraries into 9 categories as detailed in Table 1. These categories include Targeted Advertising, Customized UI Components, Content Host, Game Engine, Social Network Sites (SNS), Mobile Analytics, Secondary Market, Payment and Other Utilities. We also analyzed how different types of resources (permissions) were used for various purposes. For all the apps we analyzed, we observed an average usage of 1.59 (σ = 2.82, median=1) 3rd-party libraries in each app. There were some extreme cases where an app used more than 30 3rd-party APIs. For example, the app with the package name “com.wikilibs.fan_tattoo_design_for_women” used 31 3rd-party libraries, 22 of which were targeted advertising libraries, such as adwhirl, mdotm, millenialmedia, tapjoy, etc. In the majority of cases (91.7%), apps are bundled with less than or equal to 5 different 3rd-party libraries. The targeted advertising libraries are found in more than 11.2% of the app market, and mobile analytics libraries had an average penetration of 9.8% of the app market.

In addition to these nine categories of sensitive data uses by third parties, we also used “internal use” to label sensitive data usages caused by the application itself rather than a library. It should be noted that, for these internal uses, we currently cannot determine why a certain resource is used (e.g., whether it is “for navigation”, “for setting up a ringtone”, etc.). Based on existing practices, the fact that the API call is within the app’s code rather than in a 3rd party library indicates a high probability that the resource is accessed because it is required by the mobile app itself rather than to collect data on behalf of a third party.

Our static analysis provided a systems-oriented foundation for us to better understand mobile apps in terms of their privacy-related behaviors, which enabled us to study users’ preferences in regard to these app behaviors in the later part of this paper. Note that, although we only collected users’ preferences of 837 apps among the apps we disected as described in the following subsection, the static analysis of 89,000 + apps was necessary for us to understand the bigger picture of sensitive data uses and to identify the nine categories of 3rd-party libraries.

Table 2. Participants’ demographic summary

<table>
<thead>
<tr>
<th>Education %</th>
<th>Age Group %</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School</td>
<td>Under 21</td>
</tr>
<tr>
<td>Bachelor</td>
<td>21-35</td>
</tr>
<tr>
<td>Degree</td>
<td>36-50</td>
</tr>
<tr>
<td>Graduate</td>
<td>51-65</td>
</tr>
<tr>
<td>Degree</td>
<td>Over 65</td>
</tr>
<tr>
<td>Gender %</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>41%</td>
</tr>
<tr>
<td>Male</td>
<td>59%</td>
</tr>
</tbody>
</table>
participants to answer our questions. Participants were paid $0.15 per HIT. We restricted our participants to U.S. smartphone users with previous HIT approval rate higher than 90%.

The study ran for 3 weeks starting on June 15th, 2013. After the data collection period, we first eliminated responses that failed the qualification questions (~7%), and then we eliminated 39 HITs because they had less than 15 responses. This yielded a dataset of 21,657 responses contributed by 725 AMT workers.

4. DESCRIPTIVE RESULTS

4.1 Participants

We collected demographic information of our participants including gender, age and education background to help us analyze our data, though we did not specifically control the gender ratio or any other demographic composition of our participants. Among these participants, 41% of them were female; 69% of participants were between 21 and 35, 16% of them are between 36 and 50 (see Table 2). We also observed that more than 60% of the participants were reported to have a bachelor’s degree or equivalent and 6% had a master’s degree or PhD. The average education level of our participants was significantly higher than the average education level of the entire U.S. population as reported in [54]. Compared to the demographics of crowd workers as reported in [55], our participant pool contains more people with bachelor’s degrees and fewer with graduate degrees.

This difference in demographics may be caused by self-selection, since usually crowd workers would be more likely to work on HITs that interest them. However, other data collection methods, such as Internet surveys, often have similar sampling problems. While this sample bias has to be taken into account when interpreting our results, we suspect that our study is no worse than most others in terms of the representativeness of our participant pool.

4.2 Users’ Average Preferences and Their Variances

To visualize our results, we aggregated self-reported comfort ratings by permission and purpose. Figure 1 (a) shows the average preferences of all 725 participants, where white indicates participants were very comfortable (2.0) with the disclosure, and red indicates very uncomfortable (-2.0). In other words, darker shades of red indicate a higher level of concern. Entries with a short dash indicate the absence of data for a particular permission-purpose.

The three use cases with the highest levels of comfort were: (1) apps using location information for their internal functionality (fine location: $\mu = 0.90$, coarse location: $\mu = 1.16$); (2) SNS libraries bundled in mobile apps using users’ location information so this context information can be used in sharing (fine location: $\mu = 0.28$, coarse location: $\mu = 0.30$); (3) apps accessing smartphone states, including unique phone IDs, and account information for internal functionality ($\mu = 0.13$).

For the remaining cases, users expressed different levels of concerns. Users were generally uneasy with (1) targeted advertising libraries accessing their private information, especially for their contact list ($\mu = -0.97$) and account
information\(^3\) (\(\mu = -0.60\)); (2) SNS libraries that access their unique unique phone ID (\(\mu = -0.42\)), contact list (\(\mu = -0.56\)), as well as information related to their communication and web activities such as SMS (\(\mu = -0.17\)) and accounts (\(\mu = -0.23\)); and (3) mobile analytic libraries accessing their location (\(\mu = -0.29\)) and phone state\(^4\) (\(\mu = -0.09\)).

This aggregation of data gave us a good starting point to spot general trends in users’ privacy preferences. At the same time, these are averages and, as such, they do not tell us much about the diversity of opinions people might have. An important lesson we learnt from previous literature of location privacy is that users’ privacy preferences are very diverse. To underscore this point, we plotted the variances of user preferences of the same use cases, as shown in Figure 1 (b). Here, darker shades of yellow indicate higher variance among users’ comfort rating for different purposes.

Figure 1 (b) shows that users’ preferences are definitely not unified. Variances are larger than 0.6 (of a rating in a [-2, +2] scale) in all cases. In 25% of cases, variances exceeded 1.8. Users’ disagreements were highest in the following cases, including: (1) SNS libraries accessing users’ SMS information as well as their accounts; (2) targeted advertising libraries accessing users’ contact list; (3) users’ location information being accessed by all kinds of external libraries.

This high variance in users’ privacy preferences suggests that having a single one-size-fits-all privacy setting for everyone may not work well – at least for those settings with a high variance. We cannot simply average the crowdsourced user preferences and use them as default settings as suggested in [32]. This begs the question of whether users could possibly be subdivided into a small number of groups or clusters of like-minded individuals for which such default settings (different settings in different groups) could be identified. We discuss this idea in the next section.

5. LEARNING MOBILE APP PRIVACY PREFERENCES

Given the large variances identified above, a unified default setting evidently cannot satisfy all the users’ privacy preferences. Therefore, we chose to investigate methods for segmenting the entire user population into a number of subgroups that have similar preferences within the subgroups. Then by identifying the suitable default settings for each of these groups and the group each user belongs to, we can suggest individual users with more accurate default settings.

5.1 Pre-processing

To identify these groups, we need to properly encode each user’s preferences into a vector and trim the dataset to prevent overfitting. More specifically, we conducted three kinds of preprocessing before feeding the dataset into various clustering algorithms. First, we eliminated participants who contributed less than 5 responses to our data set, since it would be difficult to categorize participants if we know too little about their preferences. This step yielded a total number of 479 unique participants with 20,825 responses. On average, each participant contributed 43.5 responses (\(\sigma = 38.2\), Median=52). Second, we aggregated a participant’s preferences by averaging their indicated comfort levels of letting apps use specific permissions for specific purposes. “NA” is used if a participant did not have a chance to indicate his/her preferences for a given permission-purpose pair. Lastly, for each missing feature (“NA”), we found the k (k=10) nearest neighbors that had the corresponding feature. We then imputed the missing value by using the average of corresponding values of their neighbor vectors.

After these preprocessing steps, we obtained a matrix of 77 columns (i.e. with regard to 77 permission-purpose pairs) and 479 rows, where each row of the matrix represented a participant. Each entry of the matrix was a value between [-2, +2]. This preference matrix was free of missing values.

5.2 Selection of Algorithms and Models

We opted to use hierarchical clustering with an agglomerative approach to cluster participants’ mobile app privacy preferences. In the general case, the time complexity of agglomerative clustering is \(O(n^3)\) [56]. Though its time complexity is not as fast as k-means or other flat clustering algorithms, we chose hierarchical clustering mainly because its resulting hierarchical structure is much more informative and more interpretable than unstructured clustering approaches (such as k-means). More specifically, we experimented with several distance measures [56], including Euclidean distance, Manhattan distance [57], Canberra Distance [58], and Binary distance [59]. We also experimented with four agglomerative methods, including Ward’s method [60], Centroid Linkage Method [61], Average Linkage method [61], and McQuitty’s Similarity method [62].

We limited our exploration to the above-mentioned distance functions and agglomerative methods, since other distance functions or agglomerative methods either produce similar results as the above-mentioned ones or are not appropriate for our tasks based on the characteristics of our data. As research on clustering techniques continues, it is possible that new techniques could provide even better results than the ones we present. We found however these techniques were already sufficient to isolate very different categories of mobile apps, when it comes to their permissions and the purposes associated with these permissions.

To select the best model, we experimented with various ways of combining the four agglomerative methods and four distance measures and also varied the number of clusters k from 2 to 20 by using the R package “hclust” [63]. We conducted all the experiments on a Linux machine which has XeonE5-2643 3.3GHz CPU (16 cores) and 32G memory. We had two selection criteria in determining which combination of distance function and agglomerative method to use. First, the combination should not generate clusters with extremely skewed structures in dendrograms. A dendrogram is a tree diagram frequently used to illustrate the arrangement of the clusters produced by hierarchical clustering. The tree structure in the dendrogram illustrate how clusters merged in each iteration. We check this by heuristically inspecting the dendrograms of each clustering result. The other criteria is the combination of three internal measures, namely connectivity [64], Silhouette Width [65] and Dunn Index [66].

3 GET_ACCOUNTS permission gives apps the ability to discover existing accounts on managed by Android operating system without knowing the passwords of these accounts.

4 READ_PHONE_STATE permission gives apps the ability to obtain unique phone id and detect if the users is currently calling someone.
Compared to the variances in Figure 1, the variance of each figure show the corresponding variances within the cluster. The right grids in each, whereas shades of red indicate discomfort, with darker shades of red corresponding to greater discomfort. The left grids represent the centroid of the cluster. We use two colors to indicate the cluster composition when $k=4$. We also overlay the cluster names on the dendrogram which will be explained in Section 6.1.

These three internal measures validate the clustering results based on their connectivity, compactness and degree of separation.

5.3 Resulting Clusters

Based on the two criteria described in the previous sub-section, we obtained the best clusters by using Canberra distance and Average Linkage method with $k=4$.

Figure 2 illustrates the resulting dendrogram produced by the above-mentioned clustering configurations, where four different colors indicate the four clusters when $k=4$. Among the four identified clusters, the largest one (colored in black in Figure 2) includes 47.81% of instances, whereas the smallest cluster (colored in red) includes 11.90% instances. We assigned a name to each cluster based on its outstanding characteristics and overlaid these names on the dendrogram as well. The explanation of these names and the interpretation of our clustering results are discussed in the following section.

6. RESULT INTERPRETATION

To make sense of what these clusters mean, we computed the centroid of each cluster by averaging the feature vectors of instances within the cluster. Note that we computed the centroid of each cluster based on the non-imputed data points, i.e. only averaging the entries when there were true values, since they better estimate the true average preferences of users in each category.

6.1 Making Sense of User Clusters

We used a heat map to visualize these clusters\(^5\) as shown in Figure 3 – Figure 6. The vertical dimension of these heat maps represents the uses of different permissions, and the horizontal dimension represents why a certain permission is requested. In each figure, the left grids represent the centroid of the cluster. We use two colors to indicate people's preferences. White indicates that participants feel comfortable with a given permission-purpose whereas shades of red indicate discomfort, with darker shades of red corresponding to greater discomfort. The right grids in each figure show the corresponding variances within the cluster. Compared to the variances in Figure 1, the variance of each clusters are significantly smaller. Some of them are almost negligible.

We have labeled each cluster with a name that attempts to highlight its distinguishing characteristics. The labels are (privacy) “conservatives”, “unconcerned”, “fence-sitters”, and “advanced users”.

The (Privacy) Conservatives: Although conservatives form the smallest group among the four clusters, they still represent 11.90% of our participants (see Figure 3). Compared to the heat maps of other clusters, this cluster (or “privacy profile”) has the largest area covered in red and also the overall darkest shades of red (indicating the lack of comfort granting permissions). In general, these participants felt the least comfortable granting sensitive information and functionality to third parties (e.g., location and unique phone ID). They also felt uncomfortable with mobile apps that want to access their unique phone ID, contacts list or SMS functionality, even if for internal purposes only.

The Unconcerned: This group represents 23.34% of all the participants and forms the second largest cluster in our dataset (Figure 4). The heat map of this privacy profile has the largest area covered in light color (indicate of comfort). In general, participants who share this privacy profile showed a particularly high level of comfort disclosing sensitive personal data under a wide range of conditions, no matter who is collecting their data and for what purpose. The only concerning (red) entry in the heat map is when it comes to granting SNS libraries access to the GET_ACCOUNTS permission (e.g. information connected to accounts such as Google+, Facebook, YouTube). A closer analysis suggests that it might even be an anomaly caused by the lack of sufficient data points for this particular entry. Another possible interpretation might be that a considerable portion of participants did not understand the meaning of this permission and mistakenly thought this permission gives apps ability to know their passwords of all accounts.

The Fence-Sitters: We labeled participants in this cluster as "Fence-Sitters" because most of them did not appear to feel strongly one way or the other about many of the use cases (Figure 5). This cluster represents nearly 50% of our population. Unsurprisingly, this group of participants felt quite comfortable letting mobile apps access sensitive personal data for internal functionality purposes. When their information is requested by 3rd-party libraries such as for delivering targeted ads or conducting mobile analytics, their attitude was close to neutral (i.e. neither comfortable nor uncomfortable). This is reflected in the heat map with large portions of it colored in light shades of pink (close to the middle color in the legend). This group of participants also felt consistently comfortable disclosing all types of sensitive personal data to SNS libraries. Further research on why so many participants behave in this way is challenging and necessary. We suspect that this might be related to some level of habituation or warning fatigue, namely they might have gotten used to the idea that this type of information is being accessed by mobile apps and they have not experienced any obvious problem resulting from this practice.

This cluster of participants also reminds us of the privacy pragmatist group identified by Westin in producing privacy

\(^5\) Again, in these visualizations, we only display the most important six permissions and four purposes that strongly differentiate participants.
Westin found that while small numbers of users would fall at both extremes of the spectrum (i.e. privacy fundamentalist, and unconcerned), the majority of users tend to be in-between (pragmatists). An interesting finding of our analysis is that the preferences of these middle-of-the-road users can generally be captured with just two profiles, namely the “fence-sitters” and the “advanced users” (see next subsection).

The Advanced Users: The advanced user group represents 17.95% of the population (see Figure 6). This group of participants felt comfortable disclosing context information at a coarser level of granularity (i.e. coarse location). This observation again suggests that this group of users have better insight when it comes to assigning privacy risks to different usage scenarios.

6.2 Estimating the Predictive Power of the Clusters

As discussed above, the clusters we have identified give rise to significant drops in variance. Could these or somewhat similar clusters possibly help predict many of the permission settings a user would otherwise have to manually configure? Providing a definite answer to this question is beyond the scope of this paper, in part because our data captures preferences (or comfort levels) rather than actual settings and in part also because answering such a question would ultimately require packaging this functionality in the form of an actual UI and evaluating actual use of the resulting functionality. Below we limit ourselves to an initial analysis, which suggests that the clusters we have identified have promising predictive power and that similar clusters could likely be developed to actually predict many permission settings – for instance in the form of recommendations.
reductions in user burden. We assumed that all testing participants of expected increase in accuracy and in terms of expected used to evaluate the benefits of the learned profiles – both in terms permission-purpose pair). The remaining fold of participants was summarized below show promise both in terms of potential would likely be somewhat different, we believe that the results clusters and profiles one would likely derive from actual settings While we acknowledge that an analysis under these assumptions them as proxies for actual settings users would want to have.

We now turn to our estimation of the potential benefits that could configure nearly 87% of the triples if one were to rely on a single one-size-fits-all grand profile. For users in the “advanced” and “conservative” categories, user burden drops below 20%. All numbers were averaged over 10 runs using different partitions of training and testing data and were weighted by the usages of all permission-purpose pairs among the 837 apps.

Specifically, as part of our analysis, we transformed the four cluster centroids into four “privacy profiles” (i.e. sets of recommendations) by quantizing the [-2, 2] comfort rating into three options, namely “Accept” (average comfort rating higher than or equal to 0.67), “Reject” (average comfort rating lower than or equal to -0.67), and “Prompt” (average comfort rating between -0.67 and +0.67 exclusively). In other words, in our analysis, we assumed that “Accept” meant the corresponding purpose-permission pair would be automatically granted. Similarly a “Reject” value is interpreted as automatically denying the corresponding permission-purpose pair. Cases with values falling in between are simply assumed to result in a user prompt, namely asking the user to decide whether to grant or deny the corresponding permission-purpose pair. In short, under these assumptions, a user would be assigned a profile, which in turn would be used to automatically configure those permission-purpose settings for which the profile has an “Accept” or “Reject” entry, with the remaining settings having to be manually configured by each individual user.

We randomly split all the participants into 10 folds of (almost) identical sizes. We then used each possible combination of 9 folds of participants to compute cluster centroids and generate privacy profiles (in terms of “Accept”, “Deny”, and “Prompt” for each permission-purpose pair). The remaining fold of participants was used to evaluate the benefits of the learned profiles – both in terms of expected increase in accuracy and in terms of expected reductions in user burden. We assumed that all testing participants were able to choose a privacy profiles that closely captured their preferences (which will be discussed in Subsection 6.3-6.4). We averaged the following two metrics across all 10 runs:

1. **Accuracy**: the percentage of time that the selected privacy profile agreed with the comfort rating provided by each individual participants in the testing group for each of the app-permission-purpose triples available in the data set for that user. (Figure 7).

2. **User burden**: the percentage of time the participants in testing sets would be prompted to specify their decisions, weighted by the usages of all permission-purpose pairs among all apps (Figure 8). These usages were measured by calculating the percentage of apps in crowdsourcing study (837 in total) that use a specific permission for a specific purpose.

To evaluate the benefits of the profiles, we compare both of these metrics, as obtained using our profiles, with identical metrics obtained using a single one-size-fits-all grand profile for all users (as shown in Fig. 1 (a)). This is referred to as “Grand average profile”.

As can be seen in Figure 7, the profiles result in an overall accuracy of nearly 80% (79.37%). In comparison predictions based on a single one-size-fits-all model result in an accuracy of merely 56%, which is not much better than simply prompting users all the time. In particular, using our four profiles, accuracies for people falling in the “unconcerned” and “conservative” groups are higher than 85%.

Figure 8 shows how under our assumptions applying privacy profiles as default settings could significantly reduce user burden. In particular, when using a single- one-size-fits-all model, users would on average have to be prompted for nearly 87% of all their app-permission-purpose triples. In contrast, when using the four privacy profiles, the number of prompts drops to 36.5% of the user’s total number of app-permission-purpose triples. This clearly represents a significant reduction in user burden. For users falling in the “advanced” and “conservative” categories the number of prompts drops below 20%. While we acknowledge that further research is required, using actual permission settings
rather than measures of comfort levels, we believe that the results of our analysis show great promise and warrant further work in this area.

6.3 Do Demographics Matter?
Now we want to see how to assign users to the privacy profiles that most closely capture their privacy preferences. Here we first look at whether users’ demographic information – including gender, age and education level – is sufficient to determine which privacy profile a user should be assigned. This included looking at the distribution of gender, age and education level in each user cluster and also looking at variance (ANOVA) to see if there are significant differences in these distributions.

In general, we found that in regard to the gender distribution, a one-way analysis of variance yield NO significant differences between groups, $F(3, 475)=2.049, p=0.106$. For age distribution, we encoded the age groups as (1:= under 21, 2:= age 21-35, 3:=age 36-50, 4:=age 51-65, 5:=above 65) in our calculation. A one-way analysis of variance reveals significant differences between groups in regard to age distribution, $F(3, 475)=4.598, p=0.003$. Post hoc analyses also reveal that the unconcerned group on average are younger ($\mu = 1.69, \sigma = 0.57$) than other groups combined ($\mu = 1.91, \sigma = 0.76$), and the advanced user group on average are older ($\mu = 2.05, \sigma = 0.61$) than other groups combined ($\mu = 1.83, \sigma = 0.71$).

We also performed a similar test on the education level of all four groups of participants. We encoded the education levels such that “1” stands for high school or lower level of education, “2” stands for bachelor or equivalent level of degrees, and “3” stands for master’s or higher level of degrees. An ANOVA test shows that the effect of education level was strongly significant, $F(3, 475)=7.52, p=6.3E-05$. Post hoc analyses show that the conservatives ($\mu = 1.65, \sigma = 0.48$) and the unconcerned ($\mu = 1.67, \sigma = 0.54$) have lower education levels compared to the remaining groups combined ($\mu = 1.85, \sigma = 0.57$), and the advanced users ($\mu = 2.01, \sigma = 0.60$) are more likely to have a higher level of education.

Although there are statistically significant effects in demographics, a regression from demographic information to the cluster label yields accuracy no better than directly putting every user as Fence-Sitters. In other words, we should not directly use gender, age, or education level to infer which privacy profile should be applied to individual user. This does not mean however that in combination with other factors, these attributes would not be useful. Below, we seek more deterministic methods to assign privacy profiles in the following sub-section.

6.4 Possible Ways to Assign Privacy Profiles
We start with a typical scenario where a privacy profile can be assigned to a user. When a user boots up her Android device for the first time (or possibly at a later time), the operating system could walk her through a “wizard” and determine which privacy profile is the best match for her. The profile could then be used to select default privacy settings for this user. As the user downloads apps on the smartphone, “App Ops” or some equivalent functionality would then be able to automatically infer good default settings for the user. The major challenge here is how we can accurately determine which cluster this user belongs to without any previous data about this user.

One possible way is to ask users to label a set of mobile apps. We could present users with a small set of example apps together with detailed descriptions such as the sensitive data collected by these apps and for what purposes. Users could rate each app based on its sensitive data uses. We could then classify users based on these ratings. This would work well if we could identify a small number of particularly popular apps that can differentiate between users - say just asking people whether they feel comfortable sharing their location with Angry Birds game for advertising purpose and whether they feel comfortable posting their location on Facebook through the Scope app. Further research on selecting the most effective set of apps would make this process more effective and stable.

Alternatively, we might probe users’ privacy preferences by asking them a small set of general questions. Similar ideas have been suggested for helping users set up their location sharing rules [46] [48]. In particular Wilson et al. in [50] described a simple wizard for the Locaccino system, where a small number of questions were asked to guide users through the selection of good default location sharing profiles. A similar method could be used to identify a small number of questions to help determine appropriate mobile app privacy profiles for individual users.

Given the four privacy profiles that we identified, we note several observations that could be used to differentiate between different groups of users. For example, the reported comfort ratings with regard to sharing data with advertising agencies can be used to separate the unconcerned group from the privacy conservatives and the advanced users; we could use people’s preferences with regard to sharing coarse location information for mobile analytics to further differentiate between the latter two groups; or we can isolate the privacy conservatives based on their extreme negative comfort rating with SNS libraries. One should be able to identify a small number of questions based on these or similar observations. The ideal scenario would be that, based on their answers to these questions, users could be accurately assigned to the most appropriate cluster. For example, we can ask one question with regard to targeted advertising, such as “How do you feel letting mobile apps access your personal data for delivering targeted ads?” or questions about mobile analytics, such as “How do you feel about letting mobile apps share your approximate location with analytics companies?” The exact wording and expressions used in these questions would obviously need to be refined based on user studies.

The privacy profiles we extracted are a good estimation but might not perfectly match individual user preferences. It is necessary to clarify that applying privacy profiles does not prevent users from further personalizing their privacy decisions. In addition to choosing an appropriate privacy profile as a starting point, users could be provided with user-oriented machine learning functionality or just interactive functionality that helps them iteratively refine their settings [47-49].

7. DISCUSSION
7.1 Limitations of This Work
This work has several limitations. For example, our study focused solely on free apps downloaded from the Google Play. Apps that require purchase might exhibit slightly different privacy-related behaviors with regard to what sensitive resources to request and for what purpose. There are two major challenges that prevented us to investigate paid apps: (a) the monetary cost of purchasing a large number of paid apps would be substantial (we estimate over $80K to get all the paid apps); (b) there is no way to programmatically do batch purchasing on Google Play, since...
Google limits the frequency of app purchases using a single credit card in a single day. It should also be noted that free apps represent the majority of app downloads, and paid apps tend to request fewer permissions — in other words, they give rise to a somewhat smaller number of privacy decisions. This being said, there is no reason to believe that the models derived for free apps could not be extended to paid apps — while people’s privacy preferences might be different, there is no reason to believe that similar clusters could not be identified.

In determining why certain sensitive resources are requested, our study used a relatively coarse classification. Our static analysis cannot give finer-grained explanations, such as requesting location for navigation vs. requesting location for nearby search. We acknowledge that our approach is not perfect. However, comparing to a finer analysis relying on manual inspection, using libraries to infer the purpose of permissions enables us to conduct our analysis at large scale. Additional techniques could possibly be developed over time to further increase accuracy. For example, the tool described by Amini et al. [26] that combines crowdsourcing and dynamic analysis might be able to provide this level of details, through it has not been publicly available yet.

Among all the four clusters we identified, the Fence-Sitter cluster has a relatively high variance. By using more advanced clustering techniques better clusters could likely be generated with even smaller intra-cluster variances. However, we consider the primary contribution of this work is to demonstrate the feasibility of profile-based privacy settings. As part of future work, we hope to extend our data collection and experiments, such that we can further refine our clusters and possibly obtain even better results.

7.2 Lessons Learned and Future Prospects

Users’ mobile app privacy preferences are not unified. This paper quantitatively proved that mobile app users have diverse privacy preferences. This suggested that simply crowdsourcing people’s average preferences as suggested by Agarwal and Hall in the PMP privacy settings [32] might not be optimal. In spite of the diversity, we also show that there is a relatively small number of groups of like-minded users that share many common preferences. Using these identified groups, we derived mobile app privacy preferences profiles, find for each user a profile that is a close match, and use this information to automate the privacy setting process.

Purpose is more important. Previous work in mobile app analysis as well as on users’ privacy concerns focused more on identifying the what sensitive information is accessed by apps [17, 42] as well as how often sensitive information is shared with external entities [43]. Lin et al. [13] pointed out the purpose of why sensitive resources are used is important for users to make privacy decision, though they did not quantitative backup this statement. Our work provides crucial evidence to support this statement. The clusters we identified in our participants are more differentiated in the dimension of why these resources are accessed. This finding also provides important implications to privacy interface design in the sense that properly informing users the purposes of information disclosures are at least as important as informing them what information is disclosed. Unfortunately, the current privacy interfaces, such as the Google Play’s permission list, fall short in making good explanation of the purposes. We strongly suggest mobile app market owners to consider notifying this important information to their customers.

Make use of the naturally crowdsourced data. In our study, we use Amazon Mechanical Turk as the major platform to collect users’ privacy preferences. In reality, given the availability of “App Ops” in Android 4.3, “ProtectMyPrivacy” on jailbroken iPhone, or other similar extensions in rooted Android devices, the operating system or the third-party privacy managers could naturally crowdsourced users’ privacy preferences without extra effort. These valuable datasets also presumably have better user coverage and are more representative than what we can collect with the limited resources we have. A significant portion of the methodologies discussed in this work can be directly applied to these dataset to build models of mobile users in the wild. We encourage industry to make fully uses of the findings we present in this paper to make real impact in providing users with better privacy controls.

In short, the findings that we present provide important lessons about mobile app users, and also point out a way to make privacy settings potentially usable to end users. However, there is still much work that needs to be done to model users’ privacy preferences. We are also aware that users’ privacy preferences might keep on evolving and are influenced by the introduction of new technologies and the habituation effect that formed through interacting with the same practices for a long time. Therefore, in addition to all the techniques we proposed, we believe other prospects such as proper user education, improving and enforcing laws and regulations are also crucial and need to be promoted in the long run.

8. CONCLUSION

This paper complements existing mobile app privacy research by quantitatively linking apps’ privacy related behaviors to users’ privacy preferences. We utilized the static analysis with specific focus on how and why 3rd-party libraries use different sensitive resources and leveraged crowdsourcing to collect privacy preferences of over 700 participants with regard to over 800 apps. Based on the collected data, we identified four distinct privacy profiles, providing reasonable default settings to help users configure their privacy settings. Initial results intended to estimate the benefits of these profiles suggest that they could probably be used to significantly alleviate user burden, by helping predict many of a user’s mobile app privacy preferences. Under our proposed approach, users would still be prompted when the variance of the predictions associated with an entry in a given profile exceeds a certain threshold. More sophisticated learning techniques could possibly further boost the accuracy of such predictions.

9. ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foundation under grants CNS-1012763, CNS-1330596, CNS-1228813 and CNS-0905562, by CyLab under grants DAAD19-02-1-0389, by Army Research Office under W911NF-09-1-0273, by Carnegie Mellon Portugal ICTI 1030348, and by Google.
10. REFERENCES

APPENDIX A.

Template of Amazon Mechanical Turk Task
Please read the description carefully and answer the questions below. HIT will be rejected if you just click through.
[app name][app icon]
Developer: [developer name]
Average rating: [rating] / 5.0
Rating count: [count]
Description: [description text copied from Google Play]
[App Screenshot from Google Play #1]
[App Screenshot from Google Play #2]
[App Screenshot from Google Play #3]
You must ACCEPT the HIT before you can answer questions.

Have you used this app before? (Required)
 a. Yes
 b. No

What category do you think this mobile app belongs to? (Required)
 a. [Candidate category #1]
 b. [Candidate category #2]
 c. [Candidate category #3]

Suppose you have installed [app name] on your Android device, would you expect it to access your [describing permission in plain English]? (Required)
 a. Yes
 b. No

Based on our analysis, [app name] accesses user's [describing permission in plain English] for [explaining purpose]. Assuming you need an app with similar function, would you feel comfortable downloading this app and using it on your phone? (Required)
 a. Most comfortable
 b. Somewhat comfortable
 c. Somewhat uncomfortable
 d. Very uncomfortable

Please provide any comments you may have below, we appreciate your input!
[text box]