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general markers of poor prognosis unrelated to drug effect. To address this, we
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tumor immune response. In sum, we forecast elraglusib response for a variety of and features better suited to machine learning.

tumo.r_ histologieg anc! simultgneously reveal potential .m.echan_isms of equglusib e Patient genomics can be converted into input for machine learning models
sensitivity and biological action. In future work we will investigate the utility of Activated NTRK2 signals that accurately predict whether a patient will benefit from elraglusib.
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e POLE is proposed as a positive marker for elraglusib response, which is
consistent with the hypothesized role of GSK-3 inhibition in damaged DNA

using POLE and other identified biomarker candidates to predict the likelihood of

patient response to elraglusib, as well as whether our machine learning models
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will be an effective tool to guide patient enrichment or stratification. contribution response deficiency and activation of immune response.
e Mutations in Chromatin Modifying Enzymes appear to negatively impact
response.
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