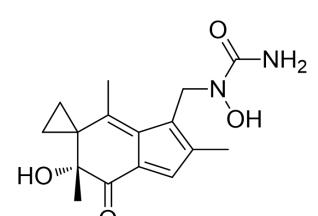
AACR Annual Meeting 2023

Background

Lantern

Pharma_®


- Approximately 30% of solid tumors (ovarian, breast, pancreatic, prostate cancers) harbor deficiency in some DNA Damage Repair (DDR) pathways, making them selectively vulnerable to DDR inhibitors [1].
- LP-184 is a next-generation acylfulvene prodrug that is metabolized to an active compound by prostaglandin reductase 1 (PTGR1) that is commonly elevated in multiple solid tumor types [2, 3].
- LP-184-induces DNA lesions are likely repaired by the Nucleotide Excision Repair (NER) and Homologous Repair (HR) pathways.
- Reduced activity of multiple DDR-related pathways in solid tumor models is strongly correlated with increased sensitivity to LP-184.
- LP-184 is synthetically lethal in tumors deficient in NER/HR pathways and expressing a threshold level of PTGR1 resulting from its ability to cause unresolvable DNA damage.
- The concept of synthetic lethality has been successfully applied to develop strategies to treat subsets of DDR-deficient tumors [4]. Clinically, PARP inhibitors (PARPi) have been successful in treating Homologous Recombination Deficiency (HRD) cancers.
- BRCA1/2 are typically involved in HR and ERCC1/2/3/6 underlie NER processes [5].
- Lantern is anticipating an IND filing with the FDA and Phase 1A trial launch for LP-184 in Q2 2023.

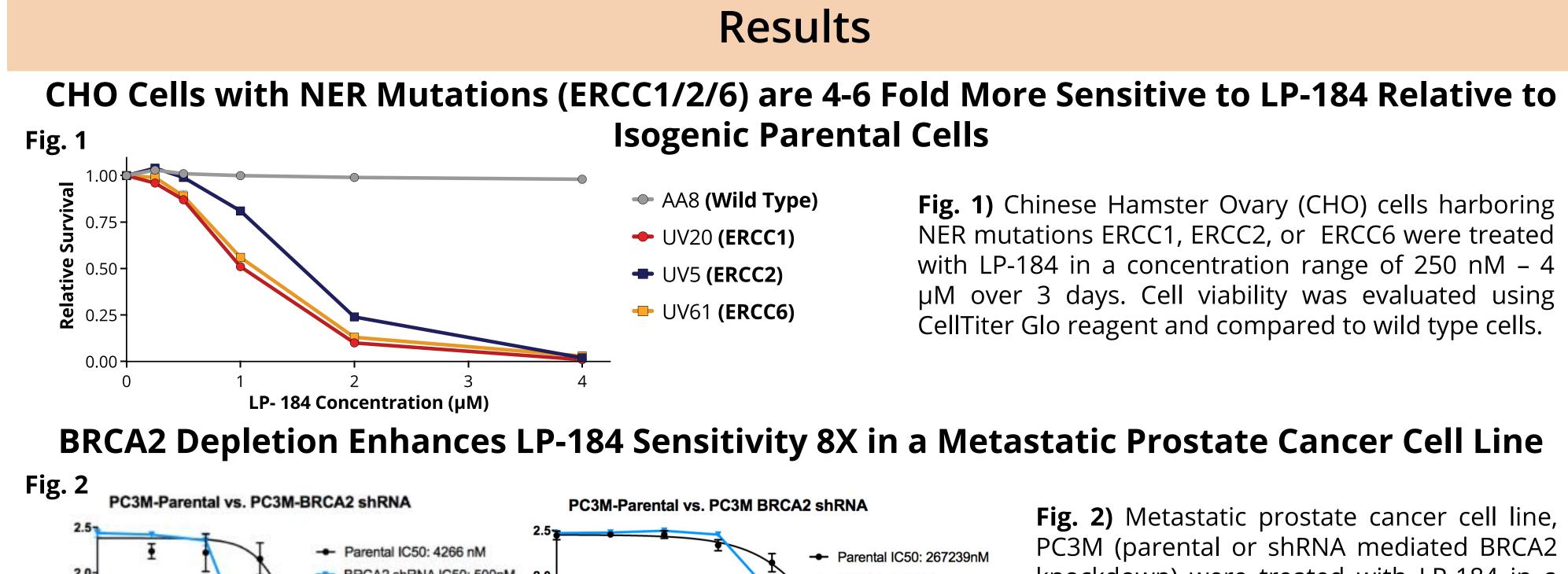
Objectives

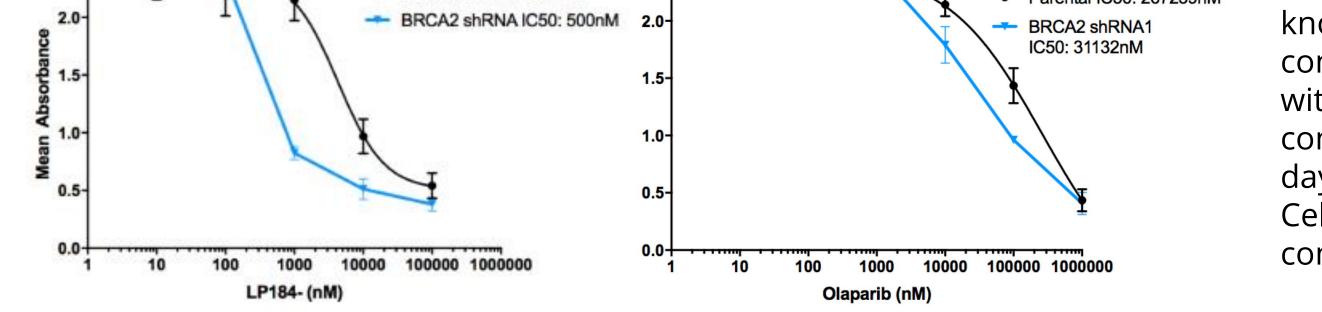
- . Evaluate the anti-tumor efficacy profile of LP-184 in HR/NER deficient in vitro and in vivo tumor models.
- 2. Compare LP-184 potency with standard-of-care PARP inhibitors across preclinical tumor models.
- 3. Identify drug combinations that are potentially synergistic with LP-184.

LP-184 Drug Profile

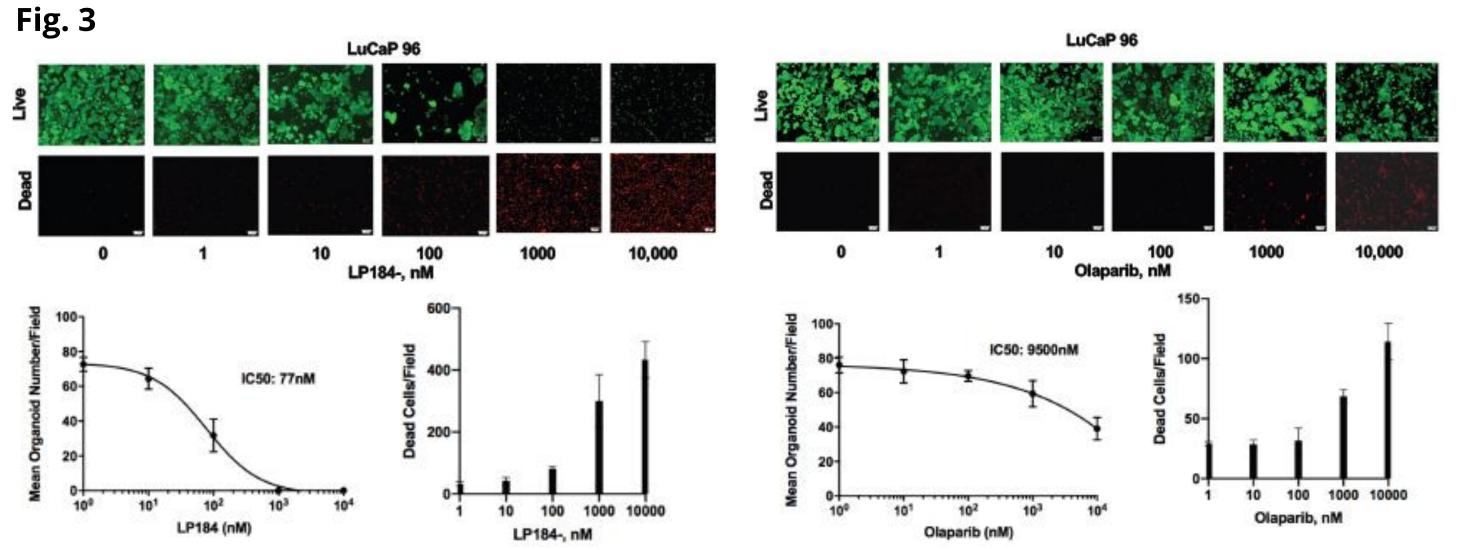
• LP-184 (hydroxyurea methylacylfulvene) is a prodrug belonging to the acylfulvene class of naturally derived small molecule therapeutics [6, 7].

• The FDA has granted LP-184 orphan drug designations (ODD) for the treatment of pancreatic cancer, malignant gliomas, and atypical teratoid rhabdoid tumors (ATRT).


Patient PTGR1 & DDR Gene Profiles


Table 1. Analysis of TCGA Patient Data[#] for Cancers with High PTGR1 Expression and Deleterious DDR Gene Mutation Status Considering a Panel of 135 curated commonly recognized DDR genes

Cancer type	Patient (%) with High PTGR1 Expression	Transcript levels of PTGR1 High Patients [*]	Patient (%) with Elevated PTGR1 and Del. DDR Mutations	
Pancreatic (N = 179)	40.8	9.7 - 11.9	29.1	
Prostate (N = 498)	84.9	9.7 - 13.9	26.7	
NSCLC (N = 517)	35.6	9.7 - 14.5	26.7	
Breast (N = 1100)	38.2	9.7 - 12.0	15.6	
Ovarian (N = 307)	45.3	9.7 - 12.0	28.3	
Bladder (N = 408)	57.1	9.6 - 14.7	46.3	
Gastric (N = 415)	21.2	9.7 - 11.9	13.2	
Head and neck (N = 522)	52.5	9.7 - 14.7	41.8	
Renal Clear Cell (N = 534)	81.3	9.7 - 13.4	22.8	


*Microarray # The results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga

LP-184, an acylfulvene class small molecule therapeutic, is synthetically lethal in DNA damage repair deficient cancers Aditya Kulkarni¹, Jianli Zhou¹, Umesh Kathad¹, Drew Sturtevant¹, Neha Biyani¹, Kishor Bhatia¹, Partha Banerjee², Panna Sharma¹ ¹Lantern Pharma Inc., 1920 McKinney Ave, 7th floor, Dallas, TX 75201; ²Georgetown University, Washington DC

LP-184 Showed 120 Fold Higher Potency than Olaparib in a Prostate Cancer Organoid Model LuCaP 96 Harboring BRCA2/ CHEK2 Inactivating Mutations

LP-184 Showed Strong ex vivo Nanomolar Potency Across 14 Patient-Derived Tumor Models Harboring a Variety of HR Mutations

Tumor Type	Model ID	LP-184 IC ₅₀ (nM)	Max Inhibition (%)	Olaparib IC ₅₀ (nM)	Max Inhibition (%)	HR Genes Mutated
Non-small Cell Lung Cancer	CTG-1194	31	91	ND	52	ATM
	CTG-2532	54	99	17000	81	CHEK1, FANCA, NBN, RAD50
	CTG-0166	57	97	720	77	ATM, FANCD2, NBN
	CTG-1680	140	99	48000	88	PARP2
	CTG-0192	200	88	2900	73	BRCA1, RAD54L
Pancreatic Cancer	CTG-1522	45	97	7900	81	ATR, BRIP1, PARP1
	CTG-1643	57	77	ND	65	BRCA1, BRIP1
	CTG-0302	110	91	ND	46	BRCA2, ATM, BLM, FANCA
	CTG-0314	270	82	1700	80	BRCA2, CDK12, PALB2
Prostate Cancer	CTG-2440	31	95	ND	59	PMS2
	CTG-3167	54	97	4200	48	BRCA2, ATM, FANCA, FANCI, FANC
	CTG-3537	54	98	ND	29	BRCA2, CDK12, FANCI, RAD54L
	CTG-2429	92	92	18000	68	ATM, ATR, PALB2
	CTG-3337	230	99	3700	73	RAD51C

LP-184 and Olaparib Have Strong in vitro Synergy in HRD/NERD Ovarian Cancer Cells

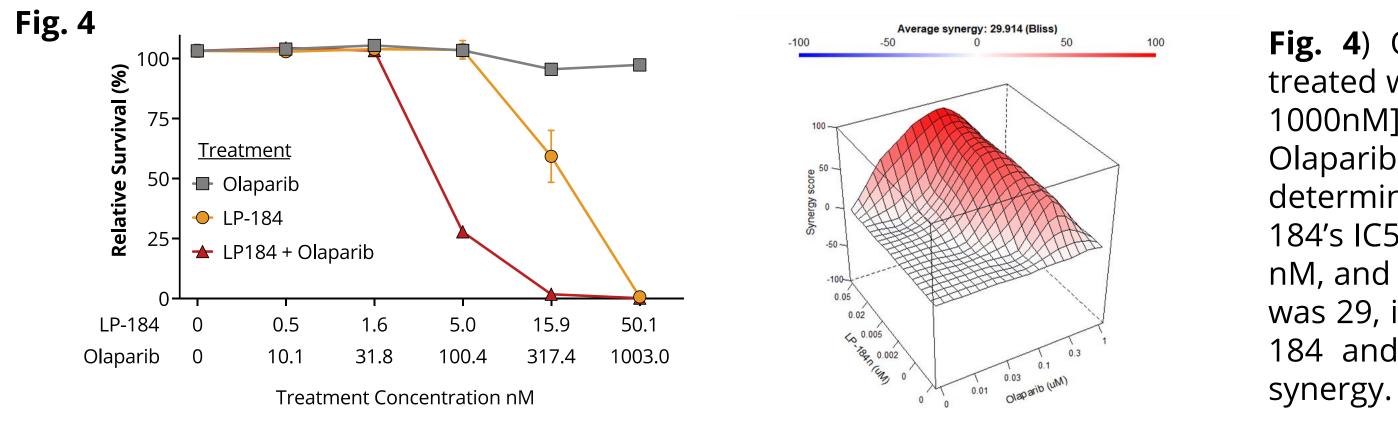


Fig. 1) Chinese Hamster Ovary (CHO) cells harboring NER mutations ERCC1, ERCC2, or ERCC6 were treated with LP-184 in a concentration range of 250 nM – 4 µM over 3 days. Cell viability was evaluated using CellTiter Glo reagent and compared to wild type cells.

Fig. 2) Metastatic prostate cancer cell line, PC3M (parental or shRNA mediated BRCA2 knockdown) were treated with LP-184 in a concentration range of 1 nM – 100 µM or with the PARP inhibitor Olaparib in concentration range of 1 nM – 1 mM over 3 days. Cell viability was evaluated using CellTiter Glo reagent and IC50 values computed in GraphPad Prism.

> Fig. 3) LuCaP 96 organoids [8] were plated with growth factor reduced Matrigel in DMEM/10% FBS growth media and treated with either LP-184 [1 nM – 10 μM] or Olaparib [1-nM – 10 μM] over 5 days. Organoid spheres were stained with Calcein AM, a viability stain, fluorescent light photographed by microscopy and counted using Image

Fig. 4) Ovarian cancer cells, OVCAR3, were treated with LP-184 [0.5–50 nM], Olaparib [10– 1000nM], or a combination of LP-184 and Olaparib over 10 days. Cell viability was determined using CellTiter Glo reagent. LP-184's IC50 was 13 nM, Olaparib's IC50 was 145 nM, and their combination Bliss Synergy Score was 29, indicating strong synergy between LP-184 and Olaparib. Bliss Scores > 10 reflect

LP-184 Treatment Resulted in Complete Tumor Regression in HRD and Standard of Care **Resistant Triple Negative Breast Cancer (TNBC) Models**

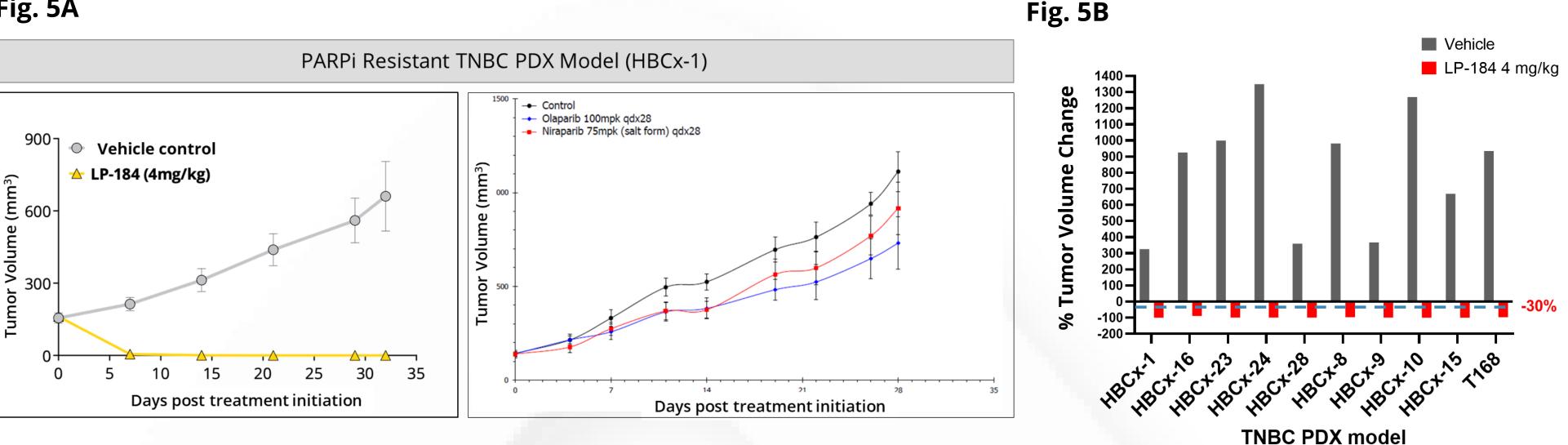


Fig. 5A) Average tumor volumes (mm³) over days post treatment initiation in HBCx-1 subcutaneous PDX tumor model as a representative example treated with vehicle control (N = 3) and LP-184 (4 mg/kg i.v.) (N = 3). Error bars represent SEM. LP-184 dosing on days 0, 2, 4, 6, 8, 16, 18, 20, 22, 24. Historical Olaparib/ Niraparib treatment data from the same model. B) LP-184 treatment resulted in complete tumor regression (107-141% TGI) in 10/10 HR Deficient (BRCA1 LOH) TNBC PDX models of which 7/10 were resistant to Olaparib/ Niraparib and to Doxorubicin/ Cyclophosphamide.

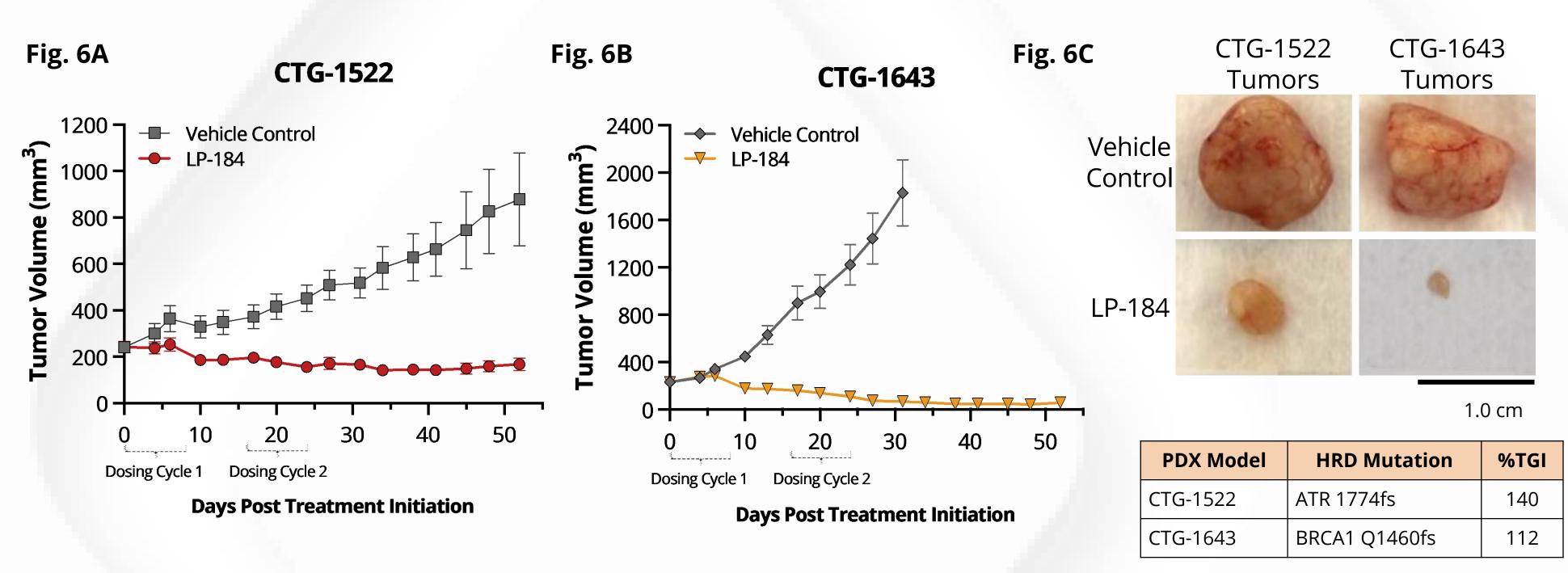


Fig. 6A-B) Average tumor volumes (mm³) over days post treatment initiation in CTG-1522 and CTG-1643 subcutaneous PDX tumor models treated with vehicle control (N = 6) and LP-184 (4 mg/kg i.v.) (N = 6). Error bars represent SEM. LP-184 dosing on days 0, 2, 4, 6, 8, 16, 18, 20, 22, 24. C) Excised terminal tumors. Mice bearing either CTG-1522 or CTG-1643 PDX tumors were treated with either vehicle control or LP-184 (4mg/kg i.v.). Scale bar represents 1.0 cm.

- approaches likely with PARP inhibitors.

References

- Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer. 2023;23(2):78-94. doi:10.1038/s415
- Yu X, Erzinger MM, Pietsch KE, et al. Up-regulation of human prostaglandin reductase 1 improves the efficacy of hydroxymethylacylfulvene, an antitumor chemotherapeu agent. J Pharmacol Exp Ther. 2012;343(2):426-433. doi:10.1124/jpet.112.195768
- Published 2021 Aug 6. doi:10.3389/fphar.2021.717730 Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer. 2015;15(3):166-180. doi:10.1038/nrc38
- vitro and in vivo cancer models carrying a broad spectrum of DNA repair pathway mutations are highly sensitive to LP-184. Staake MD, Kashinatham A, McMorris TC, Estes LA, Kelner MJ. Hydroxyurea derivatives of irofulven with improved antitumor efficacy. Bioorg Med Chem Lett. 2016;26(7):1836-1838. doi:10.1016/i.bmcl.2016.02.028
- refractory mutations. Oncotarget. 2021;12(8):791-806. Published 2021 Apr 13. doi:10.18632/oncotarget.27943 Beshiri ML, Tice CM, Tran C, et al. A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and herapeutic Screening. Clin Cancer Res. 2018;24(17):4332-4345. doi:10.1158/1078-0432.CCR-18-0409

Published Abstract Number: 6241

Results Cont.

LP-184 Treatment Resulted in Complete Tumor Regression in HR Deficient Pancreatic **Cancer PDX Models**

Summary

Approximately 50% of clinical solid tumor samples represented in TCGA express elevated PTGR1 of which about 28% on average have some pathogenic DDR gene mutation. These subsets are highly likely to benefit from LP-184 based therapy. 2. In vitro and in vivo cancer models carrying a broad spectrum of DNA repair pathway mutations are highly sensitive to LP-184.

3. LP-184 is synthetically lethal in multiple contexts when combined with genetic DDR pathway aberrations.

4. LP-184 shows potential to extend therapeutic opportunities for a large subset of cancer patients with synergistic combination

Wang X, Yin G, Zhang W, Song K, Zhang L, Guo Z. Prostaglandin Reductase 1 as a Potential Therapeutic Target for Cancer Therapy. Front Pharmacol. 2021;12:717730 Cleary JM, Aguirre AJ, Shapiro GI, D'Andrea AD. Biomarker-Guided Development of DNA Repair Inhibitors. Mol Cell. 2020;78(6):1070-1085. doi:10.1016/j.molcel.2020.04.035In Kulkarni A, McDermott JR, Kathad U, et al. The acylfulvene alkylating agent, LP-184, retains nanomolar potency in non-small cell lung cancer carrying otherwise therapy-

Connect with Lantern

Scan our QR code to connect with Lantern on LinkedIn, Twitter, and our website.

