Preclinical efficacy of LP-184, a tumor site activated synthetically lethal therapeutic, in glioblastoma

Bachchu Lal1, Aditya Kulkarni2*, Joseph Ryan McDermott2, Hernando Lopez-Bertoni1,3, Kishor Bhatia3, Panna Sharm2 and John Laterra1,3

1.*Presenter 2. The Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205; 2. Lantern Pharma Inc., 1200 McKinney Ave, 7th floor, Dallas TX 75201, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287

Background

- Temozolomide, the most effective standard-of-care chemotherapy for newly diagnosed glioblastoma, is ineffective in ~70% of patients due to MGMT-driven resistance and there is no effective chemotherapy for recurrent GBM [1, 2].
- New agents with activity against TMZ-resistant and recurrent GBM are desperately needed.
- The following findings support the potential for LP-184, a novel acylfulvene-derived DHA damaging small molecule therapeutic, to fill this void, and provide the preclinical foundation for testing LP-184 in GBM patients:
 1. nanomolar activity against multiple GBM cell models including TMZ-resistant cells
 2. favorable CNS penetration with Cmax levels well above in vivo IC50s
 3. durable response of tumor xenografts and animal survival prolongation
 4. synthetic lethality with Spironolactone, an FDA approved agent and clinically translatable inhibitor of nucleotide excision repair
 5. transgenic/pathway analyses predicting LP-184 sensitivity in clinical GBM subsets.

Objectives

- Evaluate the potency of LP-184 in an MGMT expressing GBM PDX-derived model in vitro with comparison to TMZ
- Determine the effects of LP-184 + Spironolactone combination treatment on GBM cell viability and pharmacodynamics in vitro and subcutaneous xenograft tumor responses in vivo
- Analyze gene expression and pathway biomarkers predicting LP-184 sensitivity in clinical GBM samples

Results

LP-184 inhibits GBM cell viability, results in durable regression of tumor xenografts and prolongs animal survival

LP-184 has nanomolar potency against a TMZ-resistant low passage PDX-derived GBM isolate. Cell viability in relative tumor burden units (RTBU) Data represents mean +/- SEM.

Spirinolactone sensitizes GBM cells and xenografts to LP-184

Figure 2A. Effect of combining 25 μM spirinolactone with LP-184 (74 h treatment) on viability of U87 or M1123 GBM cells. Co-treating GBM cells with LP-184 and SP decreased LP-184 IC50s 3-fold. Spironolactone (SP) is a blood-brain barrier permeable agent that inhibits TCN-ER by inducing ubiquitin-mediated proteolytic degradation of ERCC3 [4].

Figure 3A. Nuclei bearing pre-established subcutaneous xenografts derived from either meningeal M1123 GBM neurosphere cells or U87 cells received LP-184 (4 mg/kg i.v. q.o.d x 4). Tumor regressions were observed in both M1123 and U87 models beginning as early as post-treatment day 2 with complete response or halted tumor growth in all treated animals. 100% tumor growth inhibition (TGI) was observed in both the M1123 and U87 models. LP-184 treated U87 tumor bearing mice were entirely tumor-free from day 38 onwards until study termination. 3/4 LP-184 treated M1123 tumor bearing mice were entirely tumor-free from day 29 onwards until study termination.

Results Cont.

Activated EGFR signaling and downregulated DNA damage repair predict LP-184 sensitivity in clinical GBM subsets

Figure 6A. Pearson correlation plot between experimental and predicted LP-184 IC50s in GBM cell lines with full transcriptomic profiles available.

Figure 6B. Gene Set Enrichment Analysis of Reactome Pathways based on ranked-expression derived Pearson correlations of predicted IC50s and Gene Expression in TCGA GBM data. Subtrees indicates normalized enrichment scores.

Figure 6C. TCGA GBM clinical samples have greater predicted LP-184 sensitivity (p < 0.0013) in samples with lower ERCC3 expression. Clinical RNA-seq samples were divided into groups with ERCC3 expression above the mean (ERCC3 high) or below the mean (ERCC3 low).

Summary

- LP-184 is effective in TMZ-resistant preclinical GBM models and agonistic to MGMT methylation status
- ERCC3-dependent TC-NER activity was identified as a determinant of LP-184 synthetic lethality predicting that LP-184's therapeutic potential will be enhanced in patients with intrinsic or spironolactone-induced NER deficient tumors.
- LP-184 is a promising chemotherapeutic with potential clinical translation in GBM patients.
- Future directions include testing LP-184 + spironolactone combination in an intracranial xenograft model of GBM and assessing survival, tumor response and PK, and completing IND-enabling pharmac/tox studies to initiate clinical trials.

References

[2] Chauhan et al. 2012. Spironolactone sensitizes GBM cells and xenografts to LP-184 (74 h treatment) on viability of U87 or M1123 GBM cells. Co-treating GBM cells with LP-184 and SP decreased LP-184 IC50s 3-fold. Spironolactone (SP) is a blood-brain barrier permeable agent that inhibits TCN-ER by inducing ubiquitin-mediated proteolytic degradation of ERCC3 [4].

PTGR1 Expression Profile in GBM

Figure 5A. PTGR1 expression in different GBM subtypes represented in the TCGA GBM cohort, showing the highest expression in the Meningeal subtype.

Figure 5B. Line plots show tumor volumes vs time (μL) and sizes of individual tumors at end of experiment on post-implantation day 42. Data represents Mean +/- SEM.

PTGR1 Expression Profile in GBM

Figure 5A. QPCR amplified PTGR1 expression (10X) analysis of IHC normal brain and TCGA GBM highlights that PTGR1 is elevated in brain tumor tissue relative to normal brain.

Figure 5B. PTGR1 expression in different GBM subtypes represented in the TCGA GBM cohort, showing the highest expression in the Meningeal subtype.

Figure 1A. QPCR amplified PTGR1 expression (10X) analysis of IHC normal brain and TCGA GBM highlights that PTGR1 is elevated in brain tumor tissue relative to normal brain.

Figure 1B. QPCR amplified PTGR1 expression (10X) analysis of IHC normal brain and TCGA GBM highlights that PTGR1 is elevated in brain tumor tissue relative to normal brain.

PTGR1 Expression Profile in GBM

Figure 1A. QPCR amplified PTGR1 expression (10X) analysis of IHC normal brain and TCGA GBM highlights that PTGR1 is elevated in brain tumor tissue relative to normal brain.

Figure 1B. QPCR amplified PTGR1 expression (10X) analysis of IHC normal brain and TCGA GBM highlights that PTGR1 is elevated in brain tumor tissue relative to normal brain.