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 Abstract 

   Pharmacogenetic-pharmacogenomic development from a single gene 
approach to incorporate pathway-based and genome-wide approaches 
has been benefi tted from the emergence of several parallel technologies, 
such as genomics, transcriptomics, metabolomics, and proteomics 
which have contributed to and enhanced signifi cantly propensities for 
generation and testing of pharmacogenomic hypotheses both paralleled 
and followed by associated developments in the clinical practice for 
treating Parkinson’s disease (PD). The notion of “personalized medi-
cine,” incorporating the customization of healthcare, with decisions and 
practices that suited to each individual patient through application of 
genetic, biomarker, gene- environment interactive, or other information, 
involves principles through which drugs, drug combinations, and drug 
administration properties are optimized for each individual’s unique 
genetic makeup. The personalized medication of antiparkinsonian drug 
therapy; the symptomatic and regional disruptions; genetic, epigenetic, 
and biomarkers of the disorder; and the pharmacogenomics of neuro-
leptic drug-induced parkinsonism provide outlets for eventual under-
standing and management. As a case study in personalized medicine in 
the laboratory, physical exercise combined with the electromagnetic 
wavelength treated  Saccharomyces cerevisiae  yeast, Milmed, was dem-
onstrated to abolish the marked hypokinesia induced by the dopamine 
(DA) neurotoxin, MPTP, as well as the severe loss of DA in the striatal 
region of the C57/BL6 mice studied. The Exercise-Milmed coadminis-
tration induced also a profound increase in brain-derived neurotrophin 
levels (BDNF) in the mouse parietal cortex region that included the 
motor cortex. 
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           1 Introduction 

 Pharmacogenomics is defi ned by the branch of 
pharmacology which deals with the infl uence of 
genetic variation on drug response in patients, in 
the present case parkinsonian, by correlating 
gene expression or single-nucleotide polymor-
phisms with a drug’s effi cacy or toxicity (Wang 
 2010 ). Weinshilboum and Wang ( 2006 ) have 
defi ned pharmacogenomics as the study of the 
role of inherited and acquired genetic variation 
in response to drug interventions. A major 
focus of pharmacogenomics is the development 
of suitable methods that facilitate the effi cacy of 
drug therapy, in association with individuals’ 
genotype, so that maximum effi cacy is bal-
anced against minimal adverse effects thereby 
the attainment of viable therapeutic windows 
(Becquemont  2009 ). Current attempts at attain-
ment of bioinformatics, including genomics, 
proteomics, and metabolomics, should expedite 
identification of proteins/enzymes, activated 
proteins, genes, and gene variations facilitating 
drug therapies (Becquemont et al.  2011 ), e.g., 
those that contribute to the etiopathogenesis of 
Parkinson’s disease (PD) and related therapeutic 
measures    (Clayton  2012 ; Kaiser et al.  2003 ; 
Wang et al.  2011 ). Pharmacogenomics facilitates 
the identifi cation of biomarkers, not only to facil-
itate derivation of “disorder staging” but also to 
allow optimal possibilities for therapeutic drug 
selection and targets, dose windows, drug dispo-
sitions, treatment duration, and projections of 
adverse reactions that may be avoidable (Evans 
and McLeod  2003 ; Weinshilboum  2003 ; 
Woodcock  2010 ). The technologies involved 
have led greater effectiveness in drug selection 
and administration accompanied by reductions in 
adverse/side effect profi les through investiga-
tions of neuroscientifi c, regulatory, and neuro-
psychological agents (Wang et al.  2000    ). 

 PD is a relatively common, idiopathic neuro-
degenerative movement disorder characterized 
by impaired motor function, including resting 
tremors, rigidity, akinesia/bradykinesia, and 
postural instability as the cardinal symptoms 
(Gaggelli et al.  2006 ; Jankovic  2008 ; Lees et al. 

 2009 ). It is a progressive neurodegenerative 
disorder and, compared with familial forms, 
is associated most often with advanced age 
(>55 years of age). The pathophysiology of 
PD involves dopaminergic neuron death and 
 accumulation of Lewy bodies associated with 
mutations in α-synuclein, a 14-kDa protein 
predom inantly expressed in the brain and CNS 
(Rasia et al.  2005 ). PD patients show decreased 
levels of presynaptic dopamine (DA) neuron 
terminal markers in the basal ganglia (Felicio 
et al.  2009 ), consistent with loss of dopaminergic 
terminals due to degeneration of neuronal cell 
bodies in the substantia nigra pars compacta 
(Hattori et al.  2006 ). PD patients exhibit decreased 
levels of DA transporters (DATs) and vesicular 
monoamine transporter type 2 (VMAT2), as well 
as reduced activity of dopa decarboxylase, 
assessed by striatal conversion of  l -dopa to DA, 
according to PET and SPECT analyses (Al Hadithy 
et al.  2008 ; Lewitt et al.  2012 ). Wu et al. ( 2012 ) 
using MRI showed that the substantia nigra pars 
compacta expressed a decreased connectivity 
with several regions, including the striatum, 
globus pallidus, subthalamic nucleus, thalamus, 
supplementary motor area, dorsolateral prefrontal 
cortex, insula, default mode network, temporal 
lobe, cerebellum, and pons in patients compared 
to controls. They found that  l -dopa administra-
tion partially normalized the pattern of connec-
tivity to a similarity such as that expressed by the 
healthy volunteers involving causal connectivity 
of basal ganglia networks from the substantia 
nigra pars compacta. Postsynaptic D 2  DA recep-
tors (D 2 Rs) are either unaffected or increased in 
the striatum of untreated PD patients (Antonini 
et al.  1994 ). Oxidative injury appears to be one 
effect of α-synuclein (α-Syn) aggregates and 
could ultimately produce neuronal cell death. 
α-Syn, a 140 residue, intrinsically disordered 
protein is localized in presynaptic terminals of 
DA neurons (Yang et al.  2010 ). Autonomic ner-
vous system involvement occurs at early stages in 
both PD and incidental Lewy body disease and 
affects the sympathetic, parasympathetic, and 
enteric nervous systems. It has been proposed 
that α-Syn pathology in PD has a distal to proxi-
mal progression along autonomic pathways. 
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According to Braakian notions, the enteric ner-
vous systems are affected before the dorsal motor 
nucleus of the vagus, and distal axons of cardiac 
sympathetic nerves degenerate before there is 
loss of paravertebral sympathetic ganglion neu-
rons. Cersosimo and Benarroch ( 2012a ) have 
shown that consistent with neuropathological 
fi ndings, some autonomic manifestations, such 
as constipation or impaired cardiac uptake of 
norepinephrine precursors, occur at early stages 
of the disease even before the onset of motor 
symptoms (cf. Braak et al.  2007 ; Cersosimo and 
Benarroch  2012b ; Hawkes et al.  2007 ). 

 The evolution of pharmacogenetics- pharmaco-
genomics from a single gene approach to 
incorporate pathway-based and genome-wide 
approaches has been described comprehensively 
(Wang  2009 ; Wang and Weinshilboum  2008 ). 
Prolifi cally, several parallel technologies, such as 
genomics, transcriptomics, metabolomics, and 
proteomics, have contributed to and enhanced 
signifi cantly propensities for generation and 
testing of pharmacogenomic hypotheses fol-
lowed by associated developments in clinical 
practice (Lesko and Woodcock  2004 ; Wang and 
Weinshilboum  2006 ). The incorporation of tran-
scriptomic and metabolomic fi ndings has offered 
an important tactic for assessing and predicting 
variation in drug-response phenotypes and 
“translational” variants (Dettmer and Hammock 
 2004 ; Hughes et al.  2009 ; Lindon et al.  2004 ; 
Mendes  2006 ). Studies that focus upon pharma-
cogenomics involve the rapid scanning of markers 
across the genome of individuals affected by a 
certain disorder, e.g., PD, or drug-response phe-
notype, in comparison with unaffected individuals, 
with tests for association that compare genetic 
variations in case–control settings (Manolio  2010 ). 
Several oxidative phosphorylation (OXPHOS) 
system complex activities and quantities are 
reduced in PD. Toxicogenomics, combining toxi-
cology with genomics, describes the collection, 
interpretation, and storage of information about 
gene and protein activity within particular cell or 
tissue of an organism in response to toxic sub-
stances in order to elucidate molecular mechanisms 
evolved in the expression of toxicity and to derive 
molecular expression patterns (i.e., molecular 

biomarkers) that predict toxicity or the genetic 
susceptibility to PD. OXPHOS functioning is 
affected by the mutations of PD-linked nuclear 
genes (Bar-Yaacov et al.  2012 ), and inactivation 
of other nuclear genes related to mitochondrial 
DNA replication and expression leads to PD 
(Pennington et al.  2010 ; Orth and Schapira  2001 ). 
Lopez-Gallardo et al. ( 2011 ) have described the 
extent to which nuclear and mitochondrial 
genetic and environmental factors, primary 
through gene- environment interplay, induce 
additive/synergistic effects thereby elevating the 
risk for PD. Population polymorphisms pertain-
ing to mitochondrial DNA replication and expres-
sion that infl uence interactions with different 
xenobiotics, substances in an individual but 
which are not normally produced or expected to 
be there, may present susceptibility factors that 
contribute to the etiopathogenesis of the disorder. 

 The notion of “personalized medicine,” a 
model that outlines the customization of health-
care, with decisions and practices that suited to 
each individual patient through application of 
genetic, biomarker, gene-environment interac-
tive, or other information (Shastry  2005 ,  2006 ), 
refers in which drugs and drug combinations are 
optimized for each individual’s unique genetic 
makeup (Squassina et al.  2010 ). A multitude of 
factors infl uence the emergence and progression 
of parkinsonism, motor symptoms, disability, 
outcome prognosis, and drug fl uctuations, in 
addition to the clinically signifi cant non-motor 
features such as depression, anxiety, sleep distur-
bances, smell and taste loss, compulsive behav-
iors, and dementia. Disorder staging diagnostic 
intervention optimizes early identifi cation and 
accurate diagnosis and management of patients. 
Therapy of PD is an achievable goal considering 
the recent advances in neuroimaging, genetic 
testing, and other evolving diagnostic measures. 
Successful intervention is facilitated by pro-
teomics, the comprehensive analysis and 
characterization of proteins and protein isoforms 
encoded by the human genome. Important 
biological functions, such as growth and devel-
opment of the brain and CNS involving migration, 
differentiation and synaptogenesis, neuronal death, 
cellular movement, localization and integrity, and 
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stem cell differentiation, are controlled by signal 
transduction, an epigenetic process modulated by 
protein enzyme activity (Clayton et al.  2006 ). 
Seventeen regions of the genome are present with 
common variations that affect the risk of devel-
oping Parkinson’s disease. Nine genes have been 
identifi ed that, when mutated, may cause the dis-
order (Annesi et al.  2011 ; Cooper-Knock et al. 
 2012 ; Dumitriu et al.  2012 ; Kumar et al.  2012 ; 
Lachenmayer and Yue  2012 ; Maruyama and Naoi 
 2012 ). In PD, the range of personalized medi-
cine, from physical exercise schedules (Archer 
et al.  2011a ,  b ; Schenkman et al.  2012 ) to person-
alized deep brain stimulation (Wagle Shukla and 
Okun  2012 ) to identifi cation of premotor popula-
tions (Streffer et al.  2012 ), continues to fl ourish.  

    2  Personalized Medication 
and Anti-PD Treatment 

 Anti-PD compounds, such as  l -dopa and direct- 
acting DA agonists, show an effi cacy dependent 
upon patient characteristics in reducing symp-
toms of movement disorder (Devos et al.  2009 ; 
van Hilten et al.  2000 ). The pharmacotherapy of 
PD has focussed upon dopaminergic compounds, 
largely the DA precursor,  l -dopa ( l -3,4- 
dihydroxyphenylalanine), which is very much 
the treatment of choice for the disorder (Fahn 
 1999 ). Orally administered  l -dopa is absorbed by 
the intestine, enters the bloodstream, crosses the 
blood–brain barrier, and enters dopaminergic 
neurons in the brain where it is converted to DA 
through the action of the aromatic amino acid 
decarboxylase (AADC) enzyme. In general, it is 
administered in combination with a decarboxyl-
ase inhibitor to prevent conversion to DA periph-
erally. Large to very large fl uctuations in the 
responses of individual patients to anti-PD drug 
medication have been observed (Fabbrini et al. 
 1988 ), not least due to the correlation between 
motor performance and plasma concentration of 
 l -dopa (Jankovic and Stacy  2007 ; Pahwa and 
Lyons  2009 ). Similar extent of fl uctuation has 
been described with regard to the development 
of motor complications, e.g.,  l -dopa-induced 
dyskinesia and side effects such as hallucinations 

and sleepiness, up to 45 % of users within 5 years 
(Graham et al.  1997 ). Additionally, the likelihood 
of ischemic complications presents another 
symptom for consideration (Arbouw et al. 
 2012 ). The notion of personalization medication 
emerges in the context of compounds designed to 
reduce fl uctuations in PD: Lewitt et al. (2000) 
assessed the pharmacokinetic profi le, effi cacy, 
and safety of XP21279 administered with carbi-
dopa (CD) in subjects with Parkinson’s disease 
(PD) experiencing motor fl uctuations and explore 
dose correspondence between CD-levodopa and 
XP21279 administered with carbidopa. They 
observed that XP21279 provided signifi cantly 
less variability in LD concentration compared 
with carbidopa-levodopa in 10 PD patients pre-
senting motor fl uctuations, consistent with a 
lower peak-to-trough fl uctuation for XP21279. 
The expressed patterns of percentage of patients’ 
“OFF-periods” were consistent with the levodopa 
concentration-time profi les for each respective 
treatment. Compared with carbidopa-levodopa 
treatment, 6 of 10 study completers experienced 
reduction of 30 % or greater in average daily 
OFF time during the last 4 days in the XP21279 
treatment period. XP21279 resulted in an 
increase in the time spent during “ON-periods” 
without functionally blocking dyskinesias, and 
the mean time to ON after the fi rst morning 
XP21279 dose was not delayed, as compared 
with carbidopa-levodopa. 

 It is likely that genetic variations in gene cod-
ing for drug metabolism and drug availability 
contribute to a large extent towards the interindi-
vidual variability experienced in response to 
drugs of therapy (Swen et al.  2007 ), not least 
regarding the pharmacogenetics of anti-PD com-
pounds (Arbouw et al.  2007 ). The genetic vari-
ability, together with gender and reproductive 
factors (Nicoletti et al.  2011 ), of each individual 
determines largely the interindividual variability 
in the responses to anti-PD drug therapy (Zappia 
et al.  2005 ). Although the fi ndings emerging 
from several genetic association studies implying 
links between anti-PD drug-induced dyskinesias 
and polymorphisms are confl icting, several genes 
appear to be involved, including the  DRD2  
gene, the  DRD4  gene, the DA transporter ( DAT ) 
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gene, the µ1-opioid receptor ( OPRM1 ) gene, the 
cholecystokinin ( CCK ) gene, the apolipoprotein 
E ( APOE ) gene, the preprohypocretin ( HCRT ) 
gene, and the catechol-o-transferase ( COMT ) 
gene (Arbouw et al.  2009 ; Liu    et al.  2009a ,  b ; 
Paus et al.  2008 ; Williams-Gray et al.  2008 ). Lin 
et al. ( 2007 ) in a study of 251 PD patients 
observed that the frequency of the angiotensin 
I-converting enzyme gene homozygote ACE-II 
genotype with  l -dopa-induced psychosis was 
signifi cantly higher than that in PD patients with-
out the adverse effect. Additionally, the possible 
role of brain-derived neurotrophic factor (BDNF) 
in  l -dopa-induced dyskinesias has been consid-
ered since the factor is involved in synaptogenesis, 
synaptic plasticity and effi cacy (Chase  2004 ; 
Woo et al.  2005 ), modulation of receptor systems 
underlying  l -dopa-induced dyskinesias (Guillin 
et al.  2003 ), and the pathogenesis of dopaminer-
gic neurotransmission in PD (Fumagalli et al. 
 2006 ; Momose et al.  2002 ). Foltynie et al. ( 2009 ) 
studied the infl uence of a common functional 
polymorphism of the BDNF gene on the risk for 
development of  l -dopa-induced dyskinesias in a 
cohort of 315 PD patients, independently and 
variably treated with  l -dopa and/or other DA 
interventions. PD patients with the met allele of 
BDNF, linked with lower activity-dependent 
secretion of BDNF, presented signifi cantly higher 
risk of developing dyskinesia earlier in the course 
of dopaminergic agent therapy. Pharmacogenetic- 
pharmacogenomic studies facilitate the descrip-
tion and defi nition of genetic variations in gene 
coding and the regulation of the proteins involved 
in the pathways underlying dyskinesic expres-
sions evolving from the pathophysiology of PD 
(Arbouw et al.  2010 ). 

 Genetic predispositions modulating factors 
causing anti-PD drug therapy fl uctuations 
bedevil both treatment prognosis and outcome 
appraisals. In order to investigate more closely 
whether or not genetic predispositions may con-
tribute to the pathophysiological development of 
medication- related complications in PD, Paus 
et al. ( 2009 ) reassessed the impact of the  DRD3  
Ser9Gly polymorphism on development of 
motor complications in a large-scale association 
study based on the gene bank of the German 

Competence Network on Parkinson’s disease, 
using stepwise regression analysis. Despite 
incorporating  established clinical risk factors to 
avoid overlooking an effect of genotype, no effect 
of DRD3 Ser9Gly on chorea, dystonia, or motor 
fl uctuation expressions in PD was observed. They 
confi rmed that duration of PD was confi rmed as 
the most important clinical risk factor, followed 
by age of disease onset and female gender. 
Furthermore, it was not possible to identify any 
effect of  DRD3  Ser9Gly on tremor in PD, even 
when regarding various symptom combinations 
to avoid missing a weak effect on the phenotype 
(Paus et al.  2010 ). AADC provides the major 
pathway for decarboxylation of  l -dopa to DA. 
Thus, the relationship between subregional 
AADC activity in the striatum and the PD symp-
toms, using high-resolution PET with an AADC 
tracer, 6-[ 18 F]fl uoro- l -m-tyrosine (FMT), has 
been assessed (Asari et al.  2011 ). They found that 
FMT uptake was decreased in the posterior puta-
men regardless of predominant motor symptoms 
and disease duration in all 101 patients and that 
severity of bradykinesia, rigidity, and axial symp-
toms was correlated with the decrease of FMT 
uptake in the putamen, especially in the anterior 
part.  l -Dopa is metabolized to 3-O-methyldopa 
by catechol-O-methyltransferase (COMT) under 
conditions of AADC inhibition that involve 
 l -dopa complications (Alachkar et al.  2010 ). 
COMT inhibitors, e.g., entacapone, increase the 
duration of motor responding by PD patients 
30–40 %, decreasing the motor fl uctuations, and 
effectively elevating the ON period (Kaakkola 
 2010 ; Rinne et al.  1998 ; Ruottinen and Rinne 
 1996a ,  b ). The extent and defi nition of COMT 
polymorphisms, particularly the  COMT  gene 
(rs4608) resulting in Val157Met, and related DA 
and  l -dopa metabolism and symptom profi les 
have been described (e.g., Kiyohara et al.  2011 ; 
Vallelunga et al.  2012 ; Wu et al.  2012 ). Corvol 
et al. ( 2011 ) determined the consequences of 
COMT polymorphisms upon 58 PD patients’ 
responses to entacapone (200 mg) coadminis-
tered with  l -dopa (50 mg), with regard to high 
(Val/Val,  COMT  HH ), intermediate (Val/Met, 
 COMT  HL ), and low (Met/Met,  COMT  LL ) COMT 
activity (Hernán et al.  2002 ). They observed that 
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the gain in the best ON-period time was higher in 
 COMT  HH  patients than in  COMT  LL  patients. Area 
under the concentration over time curve of  l -dopa 
increased more after entacapone in  COMT  HH  
patients than in  COMT  LL  patients, and COMT 
inhibition by entacapone was higher in  COMT  HH  
patients than in  COMT  LL  patients. They con-
cluded that the  COMT  HH  genotype enhanced the 
effect of entacapone on the pharmacodynamics 
and pharmacokinetics of  l -dopa in PD patients. 

 It has been observed that the benefi ts of 
levodopa therapy become less marked over 
time, possibly due to the degeneration of nigros-
triatal dopaminergic neurons inducing a pro-
gressive loss of AADC, the enzyme that converts 
levodopa into dopamine (Contin et al.  1994 ). 
Gene transfer of dopamine-synthesizing 
enzymes into the striatal neurons and/or neuro-
protective interventions has led to behavioral 
recovery in animal models (Harms et al.  2011 ; 
Huo et al.  2012 ; Laganiere et al.  2010 ; Zhou 
et al.  2011 ). Muramatsu et al. ( 2010 ) have pro-
vided evidence for the safety and effi cacy of 
AADC gene therapy in Phase I study of PD 
treatment. Using PET imaging with [(18)F]fl u-
oro- l -m-tyrosine tracer was used for evaluation 
of AADC expression and the UPDRS; 
Mittermeyer et al. ( 2012 ) observed elevated 
PET signal in the fi rst 12 months that persisted 
over 4 years in both dose (high and low) groups. 
The elevated PET value, compared with the pre-
surgery baseline, was maintained over the 
4-year monitoring period. The UPDRS off med-
ication for 12 h improved in the fi rst 12 months 
for all the patients, but deteriorated slowly in 
subsequent years. These studies implied that a 
therapy strategy involving manipulation of the 
AADC gene may prove a viable alternative. In a 
primate model of PD, intrastriatal infusion of an 
adeno- associated viral type 2 vector containing 
the human AADC gene (AAV-hAADC) results 
in robust response to low-dose levodopa without 
the side effects associated with higher doses. In a 
clinical trial, patients with moderately advanced 
PD received bilateral intraputaminal infusion of 
AAV-hAADC vector (Christine et al.  2009 ). 
Although gene therapy was well tolerated, 
1 symptomatic and 2 asymptomatic intracranial 

hemorrhages followed the operative procedure. 
Total and motor rating scales improved in both 
cohorts. Motor diaries also showed increased 
on- time and reduced off-time without increased 
ON-period time dyskinesia. At 6 months, FMT 
PET showed a 30 % increase of putaminal 
uptake in the low-dose cohort and a 75 % 
increase in the high-dose cohort. It appears that 
bilateral intrastriatal infusion of adeno-associ-
ated viral type 2 vector containing the human 
AADC gene improves mean scores on the 
Unifi ed Parkinson’s Disease Rating Scale by 
approximately 30 % in the on and off states, but 
the surgical procedure may be associated with 
an increased risk of intracranial hemorrhage and 
self-limited headache.  

    3  Pharmacogenomics 
of Neuroleptic-Induced 
Parkinsonism 

 Neuroleptic-induced parkinsonism (NIP), second-
ary parkinsonism, presents a movement disorder 
occurring in 15–40 % of patients treated with 
antipsychotic medication, with accompanying 
adverse effects on drug compliance, self- esteem, 
and quality of life (Gerlach  1999 ; Hirose  2006 ). 
It tends to develop slowly, over days to weeks, 
expressing high levels of variability in individual 
sensitivity/susceptibility to all the extrapyramidal 
side effects as a function of the pharmacological 
and pharmacodynamic profi les of the compounds 
applied (Friedman  2006 ,  2010 ; Thomas and 
Friedman  2010 ). Several risk factors affect the 
predisposition to development of NIP, including 
advanced age, gender (female), type of neurolep-
tic drug, age at diagnosis, and dose levels of 
drugs applied (Caligiuri et al.  1999 ,  2000 ; Jabs 
et al.  2003 ). Nevertheless, the high levels of vari-
ation in incidence have prompted attempts to 
identify genetic predisposition (e.g., Lencer 
et al.  2004 ). Using logistic regression and con-
trolling for population stratifi cation, age, gender, 
Simpson-Angus scale score at baseline, and 
 concomitant use of anticholinergic drugs, Alkelai 
et al. ( 2009 ) identifi ed several single-nucleotide 
polymorphisms associated with NIP severity. 
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They identifi ed a number of candidate genes that 
were likely to contribute to the pathophysiology 
of the syndrome. 

 Pharmacogenetic studies have generalized 
the several expressions of NIP, i.e., tardive dys-
kinesias, akathisia, and dystonia, into a single 
clinical syndrome (Gunes et al.  2007 ; Guzey 
et al.  2007 ; Nakazono et al.  2005 ). The etio-
pathogenesis could involve the antagonistic 
actions of neuroleptic compound upon dopamine 
DA D2 receptor gene, the DRD2 gene (Lidow 
 2000 ; Reynolds  2004 ; Mihara et al.  2000 ). 
However, Chong et al. ( 2003 ) failed to obtain 
evidence that the D2 genotype was involved in 
the pathophysiology of tardive dyskinesias in 
Chinese patients with schizophrenia. Instead, 
they pointed out that the association of tardive 
dyskinesias with the serine/serine genotype of 
the DRD3 may be an epiphenomenon of patients 
with a subtype of schizophrenic patients with 
greater exposure to neuroleptic drugs (see also 
Lee et al.  2008 ,  2010 ; Tan et al.  2003 ). 
Additionally, the modulating effects of the sero-
tonin 2A and 2C receptor genes, HTR2A and 
HTR2C, respectively, have been considered 
(Hamdani et al.  2005 ; Lerer et al.  2005 ). 
Grønbaek et al. ( 2008 ) studied the association 
between polymorphisms for DRD3, HTR2A, 
and HTR2C and NIP, rigidity, bradykinesia, and 
rest tremor in 117 African-Caribbean inpatients 
at the D.R. Capriles clinic (Curacao, Netherlands 
Antilles). Inclusion criteria were (1) absence of 
organic and neurological disorders that could 
cause movement disorders, (2) a history of neu-
roleptic use over at least 3 months, and (3) 
informed consent. Determination of polymor-
phisms was performed according to standard 
protocols, the Unifi ed Parkinson’s Disease 
Rating Scale (UPDRS) for assessment of NIP, 
rigidity, bradykinesia, and rest tremor. In the 
male patients, signifi cant associations between 
DRD2 (the  -141CDel -allele carriership) and 
rigidity, and HTR2C ( 23Ser -allele carriership) 
and bradykinesia, were obtained. Their overall 
conclusions pertained to symptom-specifi c phar-
macogenomic, personalized medicine analyses 
(see also Bakker et al.  2006 ).  

    4  Milmed-Exercise 
Combination as Personalized 
Intervention in PD 

 Physical exercise has been described as any and 
all activity that generates force through muscular 
activity that disrupts a homeostatic state 
(McArdle et al.  1974 ; Scheuer and Tipton  1977 ). 
Although daily physical activity holds benefi ts 
for general measures of function, quality of life, 
and physical strength, as well as increasing 
endurance (Dechamps et al.  2010 ; Marks et al. 
 2009 ,  2010 ), much evidence presents the mani-
fest advantages for cerebral integrity during 
aging (Kramer et al.  1999 ; Lustig et al.  2009 ; 
Marks et al.  2011 ). Any bodily activity that 
enhances or maintains physical fi tness implies 
the involvement of regular and frequent exercise. 
Morris and Schoo ( 2004 ) have defi ned exercise 
as a planned, structured physical activity with the 
purpose of improving one or more aspects of 
physical fi tness and functional capacity. Physical 
exercise offers a nonpharmacologic, noninvasive 
intervention that enhances brain health and plas-
ticity (Cotman and Berchtold  2002 ). It has been 
characterized on the basis of type, intensity, fre-
quency, and duration, with either endurance or 
resistance as the training end point (Mougios 
 2010 ). Long-term exercise benefi ts brain func-
tioning by increasing cerebral blood fl ow and 
oxygenation (Linkis et al.  1995 ), mobilizing 
growth factors and synaptic plasticity (Hunsberger 
et al.  2007 ), and facilitating performance through 
neurotransmitter release (Morishima et al.  2006 ; 
Waters et al.  2008 ). Regular physical exercise 
holds particular benefi ts for older individuals, 
whether under conditions of normal aging or 
affected by neurodegenerative disorders (Archer 
 2011 ; Archer et al.  2011a ,  b ). 

 Repeated administration of 1-methyl-4- 
phenyl-1,2,3,6-tetrahydropyridine (MPTP) to 
C57/BL6 mice induces selective and long-lasting 
lesions of dopamine (DA) in nigrostriatal regions 
of the brain (Jackson-Lewis et al.  1995 ; Jones- 
Humble et al.  1994 ). The susceptibility of mice to 
the neurotoxic actions of MPTP can be quite 
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 variable, depending on gender and strain differ-
ences, expressed in functional, neurochemical, 
and histochemical analyses (Schwarting et al. 
 1999 ; Sedelis et al.  2000a ,  b ,  2001 ,  2003 ). C57/
BL6 and Swiss Webster strains were shown to 
differ in c-Jun N-terminal kinases (JNKs) and 
c-JUN activation in response to MPTP. JNKs, of 
the mitogen-activated protein kinase family, are 
responsive to stress stimuli, such as cytokines, 
ultraviolet irradiation, heat shock, and osmotic 
shock; c-Jun is the name of a gene and protein 
that, in combination with c-Fos, forms the AP-1 
early response transcription factor. MPTP induced 
COX-2, an enzyme responsible for infl ammation 
and pain, responding exclusively in C57/BL6 
mice (Boyd et al.  2007 ). MPTP, administered 
systemically, induces parkinsonism in human 
and nonhuman primates (Langston  1985 ) that 
results in the loss of  substantia nigra  cells in the 
 pars compacta  of adult animals (Chiueh et al. 
 1985 ). It destroys selectively nigrostriatal neu-
rons thereby inducing acute, subacute, long- 
lasting, and even permanent effects that resemble 
certain features of PD, particularly the hypokinesic 
effects (Schultz et al.  1989 ). Systemic adminis-
tration of MPTP (2 × 40 mg/kg, s.c.) caused 
 l -dopa reversible hypoactivity (Fredriksson et al. 
 1990 ; Sundström et al.  1990 ). A less rigorous 
dose regime, e.g., 2 × 20 or 25 or 30 mg/kg, of 
MPTP has been found not to reduce motility in 
the C57 black mice, although DA brain concen-
trations may indicate up to 50–80 % reductions 
(Heikkila et al.  1989 ; Sonsalla and Heikkila 
 1986 ), unless given much more repeatedly (cf. 
Kurz et al.  2007 ). The parameters of MPTP treat-
ment neurotoxicity in mice are extremely long- 
lasting (up to and beyond 52 weeks after 
treatment) with strong correlations between the 
functional defi cits, particularly hypokinesia, the 
main biomarker, severe DA depletions, and a 
dose- and time-dependent recovery of several 
parameters of motor behavior following treat-
ment with the DA precursor,  l -dopa (Archer and 
Fredriksson  2003 ; Fredriksson and Archer  1994 ; 
Fredriksson et al.  1999 ). 

 In the unilateral 6-hydroxydopamine rat 
model of Parkinson’s disease (PD), Tillerson 
et al. ( 2001 ) abolished the lesion-induced motor 

asymmetry by forcing the rats to use affected 
(contralateral) limb, whereas forced nonuse exac-
erbated the injury (Tillerson et al.  2002 ). Both 
dopamine (DA) and 3,4-dihydroxyphenylacetic 
acid (Dopac) were elevated markedly in “casted” 
6-OHDA-treated rats (forced to use the contralat-
eral limb) compared with “non-casted” rats 
(Cohen et al.  2003 ). Archer and Fredriksson 
( 2010 ) found that daily running-wheel activity 
attenuated the hypokinesic effects of MPTP in 
both a concentrated (2 × 40 mg/kg, 24-h interval) 
and progressive (1 × 40 mg/kg, weekly doses over 
4 weeks) schedule with regard to spontaneous 
motor behavior and activity following a sub-
threshold dose of  l -dopa. The loss of DA in each 
case was attenuated by exercise also (Experiment 
I, 61 % of control rather than 17 %; Experiment 
II, 24 % rather than 11 %). Using the progressive 
schedule of MPTP treatment and extending the 
exercise intervention from 7 to 14 weeks, it was 
shown that spontaneous motor activity after 
MPTP was close to restoration, whereas activity 
after subthreshold  l -dopa was completely recov-
ered (Fredriksson et al.  2011 ); DA levels were 
restored from 17 % (non-exercised) to 64 % in 
the 14-week exercise intervention, and levels of 
brain-derived neurotrophic factor were increased 
signifi cantly. It was shown also that both the 
functional and DA defi cits by MPTP were attenu-
ated even by delayed introduction of exercise 
(Archer and Fredriksson  2012 ). 

 Brain-derived neurotrophic factor (BDNF) is 
a neurotrophin with widespread expression in the 
brain and is connected intimately with brain 
metabolism and homeostasis (Chaldakov  2011 ). 
It is associated with neurogenesis, neuronal sur-
vival, and neuroreparation in the brain and CNS 
(Cui  2006 ; Numakawa et al.  2010 ). Treatment 
interventions that enhance BDNF-related signal-
ing have the potential to restore neural connectiv-
ity (Kaplan et al.  2010 ). Physical exercise induces 
improvements in motor ability and enhances 
BDNF expression (Macias et al.  2009 ). It is 
linked to elevated BDNF levels in the hippocam-
pus (Neeper et al.  1996 ; Oliff et al.  1998 ). 
Voluntary running, as physical activity, amplifi es 
the BDNF signal that augments neurogenesis 
through diverse molecular pathways (Stranahan 
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et al.  2009 ). BDNF mediates several essential 
morphological changes at neuronal levels that 
include dendritic arborization (Imamura and 
Greer  2009 ; Zhou et al.  2008 ), axonal and den-
dritic remodeling (Jeanneteau et al.  2010 ; Menna 
et al.  2003 ), synaptogenesis (Liu et al.  2009b ; 
Tchantchou et al.  2009 ), and synaptic effi cacy 
(Boulanger and Poo  1999 ; Sallert et al.  2009 ). 
Faherty et al. ( 2005 ) have shown that a combination 
of exercise, social interactions and learning, or 
exercise alone during adulthood gave total 
protection against MPTP-induced parkinsonism. 
They found also that changes in mRNA expres-
sion suggested that increases in glial-derived 
neurotrophic factors, coupled with a decrease of 
dopamine-related transporters (e.g., dopamine 
transporter, DAT; vesicular monoamine trans-
porter, VMAT2), contributed to the observed 
neuroprotection of dopamine neurons in the 
nigrostriatal system following MPTP exposure. 
Tajiri et al. ( 2010 ) observed that exercise induced 
behavioral recovery in an animal model of PD 
and caused increased BDNF and glial-derived 
neurotrophic factor (GDNF) in the striatum of 
6-OHDA-treated rats. 

 The production of Milmed is a patent- 
protected treatment of yeast cultures, but for any 
synergistic antiparkinson effect, a regime of phys-
ical exercise must be incorporated: the basis of 
“personalized medicine” builds upon this partic-
ular combination, whereas the pharmacogenetic 
aspect involves the selective susceptibility of the 
C57/Bl6 mouse strain for the DA neurotoxin, 
MPTP. The yeast cultures,  Saccharomyces cere-
visiae  or  Saccharomyces carlsbergensis , have 
been utilized as industrially important cell factories 
(Nielsen and Jewett  2008 ), with many regulatory 
pathways conserved between these yeasts and 
humans (Zhang et al.  2010 ). Cell death studies 
using yeast apoptosis increasingly provide a 
model for analyzing the cascade of molecular 
events that contribute to neurodegenerative disor-
ders (Carmona-Gutierrez et al.  2010 ; Petranovic 
et al.  2010 ). Several features of PD have been 
reproduced in yeast with cell death promotion in 
a concentration-dependent manner (Outeiro and 
Lindquist  2003 ) with possibilities for facilitating 
the development of both therapeutic targets and 

compounds (Braun et al.  2009 ; Teneiro and 
Outeiro  2010 ). This experiment illustrates, for 
the purposes of this review, that the treatment of 
yeast cell cultures themselves provides an agent 
that provides an antiparkinson effect. The treat-
ment and preparation of  Saccharomyces cerevi-
siae  or  Saccharomyces carlsbergensis  with 
electromagnetic waves in the extreme high 
frequency (EHF) range of 30–300 GHz produces 
a treated yeast extract, given the name Milmed 
(i.e., Milmed®). This treatment was developed 
through the pioneering work of MB Golant 
(Golant  1994 ; Golant et al.  1994 ; Ragimov et al. 
 1991 ) upon the genesis and reparation of cells. 
The coadministration of Milmed with daily 
physical exercise has been reported to induce 
plasticity in attenuating MPTP-induced motor 
defi cits (Oscarson et al.  2009 ). 

 This following experiment illustrates that, as 
an example of “personalized medicine,” physical 
exercise in a running wheel combined with 
administration of the treated Milmed (yeast 
extract) under conditions where the extract was 
charged or uncharged would ameliorate the func-
tional and DA defi cits induced by MPTP under 
Milmed regimes. Additionally, BDNF levels in 
the parietal cortex (including the motor cortex) 
were assayed in order to assess the effects of 
MPTP, MPTP + Exercise, and MPTP + Exercise 
combined with charged or uncharged Milmed 
(“yeast extract”). Here, the notion of “personal-
ized medicine” derives from the particular com-
bination of physical exercise regime with twice 
weekly doses of Milmed. In the case of the mice 
studied here, daily 30-min bouts of running- 
wheel activity constituted the exercise regime. 

    4.1  Description of Exercise-
Milmed Intervention 

   4.1.1  Animals 
    Male C57 Bl/6 mice were purchased from B&K, 
Sollentuna, Sweden, and were maintained, fi ve to 
a cage, in plastic cages in a room at temperature 
of 22 ± 1 °C and a 12/12 h constant light/dark 
cycle (lights on between 06.00 and 18.00 h). 
They were placed and maintained in groups of 
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four to six animals in a room maintained for male 
mice only following arrival at the laboratory for 
about 2 weeks in order to acclimatize. Free access 
to food and water was maintained throughout, 
except for the day previous to the initiation to 
wheel-running exercise which occurred at the 
end of the second week following arrival. They 
were housed in groups of six animals, wheel- 
running exercised and activity chamber tested 
only during the hours of light (08.00–15.00 h). 
All exercising and testing was performed in a 
normally lighted room. Half of the mice in each 
treatment condition (MPTP-Exer, MPTP-Exer- 
Milmed, and Vehicle) were given wheel-running 
exercise, whereas the other half were placed in a 
clean laboratory cage for the same period in a 
room in which the running wheels were placed. 
Motor activity was tested in a specially arranged 
test room. This test room, in which all 12 ADEA 
activity test chambers, each identical to the 
home cage, were placed, was well secluded and 
used only for this purpose. Each test chamber 
(i.e., motor activity test cage) was placed in a 
soundproofed wooden box with 12-cm-thick 
walls and front panels and a small double-glass 
window to allow observation; each box had a 
dimmed lighting. 

 Three weeks following arrival, four groups 
( n  = 10) of DSP4-treated and two groups of 
vehicle- treated mice were administered with 
either MPTP (2 × 40 mg/kg, s.c., 24 h between 
injections) or vehicle (0.9 % physiological saline 
injected s.c. in a volume of 2 ml/kg body weight). 
Milmed (see below for details of preparation) or 
vehicle was administered twice weekly. 

 Experiments were carried out in accordance 
with the European Communities Council 
Directive of 24 November 1986 (86/609/EEC) 
after approval from the local ethical committee 
(Uppsala University and Agricultural Research 
Council) and by the Swedish Committee for 
Ethical Experiments on Laboratory Animals 
(license S93/92 and S77/94, Stockholm, Sweden).  

   4.1. 2  Drugs 
 MPTP (Research Biomedical Inc., MA, USA, 
2 × 20 mg/kg or 2 × 40 mg/kg, s.c., with a 24-h 
interval between injections in each case) was 

dissolved in saline and administered s.c. in a 
volume of 2 ml/kg body weight. Milmed was 
obtained through treatment and preparation of 
Saccharomyces cerevisiae with electromagnetic 
waves in the extreme high frequency (EHF) range 
of 30–300 GHz to produce the treated yeast 
extract (cf. Golant  1994 ). Saline was used as 
vehicle in each case.  

   4.1.3  Behavioral Measurements 
and Apparatus 

 Activity test chambers. An automated device, 
consisting of macrolon rodent test cages 
(40 × 25 × 15 cm) each placed within two series of 
infrared beams (at two different heights, one low 
and one high, 2 and 8 cm, respectively, above the 
surface of the sawdust, 1 cm deep), was used to 
measure spontaneous motor activity (RAT-O- 
MATIC, ADEA Elektronic AB, Uppsala, 
Sweden). The distances between the infrared 
beams were as follows: the low-level beams 
were 73 mm apart lengthwise and 58 mm apart 
breadthwise in relation to the test chamber; 
the high-level beams, placed only along each 
long side of the test chamber, were 28 mm apart. 
According to the procedures described previ-
ously (Archer et al.  1986 ), the following 
parameters were measured:     locomotion  was 
measured by the low grid of infrared beams. 
Counts were registered only when the mouse in 
the horizontal plane is ambulating around the test 
cage.  Rearing  was registered throughout the 
time when at least one high-level beam was 
interrupted, i.e., the number of counts registered 
was proportional to the amount of time spent 
rearing.  Total activity  was measured by a sensor 
(a pickup similar to a gramophone needle, 
mounted on a lever with a counterweight) with 
which the test cage was constantly in contact. 
The sensor registered all types of vibration 
received from the test cage, such as those pro-
duced both by locomotion and rearing as well as 
shaking, tremors, scratching, and grooming. All 
three behavioral parameters were measured over 
three consecutive 20-min periods. The motor 
activity test room, in which all 12 ADEA activity 
test chambers, each identical to the home cage, 
were placed, was well secluded and used only for 
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this purpose. Each test chamber (i.e., activity 
cage) was placed in a soundproofed wooden box 
with 12-cm-thick walls and front panels and day 
lighting. Motor activity parameters were tested 
on one occasion only, over three consecutive 
20-min periods, at the age of 3–4 months. 
Groups of mice were treated with MPTP and 
then given access to running wheels (30 min/
day, 4 times/week), with or without concomitant 
treatment with Milmed ([Milm(1)-charged] or 
[Milm(0)]-uncharged = yeast itself), as displayed 
in Table  14.1 .

      4.1.4 Neurochemical Analysis 
 Mice were killed by cervical dislocation within 
2 weeks of completion of behavioral testing. 
Determination of DA was performed using a 
high-performance liquid chromatograph with 
electrochemical detection (HPLC-EC), accord-
ing to Björk et al. ( 1991 ), as modifi ed by Ye Liu 
et al. ( 1995 ). Striatal regions were rapidly dis-
sected out and stored at −80(C    until neurochemi-
cal analysis. DA concentration was measured as 
follows: the frozen tissue samples were weighed 
and homogenized in 1 ml of 0.1 M perchloric 

acid, and alpha-methyl-5-hydroxytryptophan 
was added as an internal standard. After centrifu-
gation (12,000 rpm, i.e., 18,600 g, 4 °C, 10 min) 
and fi ltration, 20 µl of the supernatant was 
injected into the HPLC-EC to assay DA. The 
HPLC system consisted of a PM-48 pump 
(Bioanalytical Systems, BAS) with a CMA/240 
autoinjector (injection volume, 20 µl), a precol-
umn (15 × 3.2 mm, RP-18 Newguard, 7 µm), a 
column (100 × 4.6 mm, SPHERI-5, RP-18, 5 µm), 
and an amperometric detector (LC-4B, BAS, 
equipped with a Ag/AgCl reference electrode and 
a MF-2000 cell) operating at a potential of 
+0.85 V. The mobile phase, pH 2.69, consisted of 
K 2 HPO 4  and citric acid buffer (pH 2.5), 10 % 
methanol, sodium octyl sulfate, 40 mg/l, and 
EDTA. The fl ow rate was 1 ml/min, and the tem-
perature of the mobile phase was 35 °C.  

   4.1.5 BDNF Analysis 
 The methods and procedures described by Viberg 
et al. ( 2008 ) were maintained. Frontal cortex, 
parietal cortex, and hippocampus tissues from 
the mice in each group were sonicated in 20 
volumes (w/v) of ice-cold lysis buffer (137 mM 

   Table 14.1    Chronological and experimental design for MPTP treatment, exercise schedule, and Milmed (charged/
uncharged) administration over the 14-week experiment   

 Time and test  Day  Vehicle  MPTP  MPTP + Exer 
 MPTP + Exer +
Milm(1) 

 MPTP + Exer +
Milm(0) 

 Monday  Cage  Cage  Exer  Exer  Exer 
 Tuesday  Cage  Cage  Exer  Exer  Exer 

 Weeks 1–4  Wednesday  Cage  Cage  Exer  Exer  Exer 
 Thursday  Cage  Cage  Exer  Exer  Exer 

 Tests 1–4 a   Friday  Test + sal  Test + MPTP b   Test + MPTP b   Test + MPTP b   Test + MPTP b  
 Monday  Cage  Cage  Exer  Exer  Exer 
 Tuesday  Cage  Cage  Exer  Exer  Exer 

 Weeks 5–8  Wednesday  Cage  Cage  Exer  Exer  Exer 
 Thursday  Cage  Cage  Exer  Exer  Exer 

 Tests 5–8 a   Friday  Test + sal  Test  Test  Test  Test 
 Monday  Cage  Cage  Exer  Exer  Exer 
 Tuesday  Cage  Cage  Exer  Exer  Exer 

 Weeks 9–14  Wednesday  Cage  Cage  Exer  Exer  Exer 
 Thursday  Cage  Cage  Exer  Exer  Exer 

 Tests 9–14 a   Fridayc  Test + sal  Test  Test  Test  Test 

   a Spontaneous activity over 60 min 
  b MPTP (40 mg/kg) injected during the fi rst 4 weeks 
  c  l -dopa (5 mg/kg, s.c.) tests after 60-min habituation to test cages 6, 8, 10, 12, and 14 weeks     
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NaCl; 20 mM Tris–HCl, pH 8.0; 1 mM 
phenylmethyl- sulfonyl fl uoride; 10 lg/ml apro-
tinin; 1 lg/ml leupeptin). The homogenate was 
centrifuged for 20 min at 200,009 g at 4 °C, and 
the supernatant was acidifi ed (pH 3) with HCl 
and neutralized back to pH 7.6 with NaOH. The 
Promega Emax TM ImmunoAssay System was 
used to determine the amount of BDNF in the 
samples according to the technical bulletin sup-
plied by the distributor. Briefl y, BDNF from each 
sample was captured with a monoclonal antibody 
(mAb) against BDNF; captured BDNF was then 
bound to a second specifi c polyclonal antibody 
(pAb) against BDNF. After washing, the amounts 
of specifi cally bound pAb were detected by using 
a specifi c anti-IgY antibody conjugated to horse-
radish peroxidase (HRP) as a tertiary reactant. 
Unbound conjugate was removed through wash-
ing, and after an incubation period with a 
chromogenic substrate, the color change was 
mea sured in a microplate reader at 450 nm. The 
amount of BDNF was proportional to the color 
change generated and compared with a standard 
curve. The cross-reactivity to other neurotrophic 
factors was less than 3 %, and the purity of the 
anti-BDNF antibodies was greater than 95 %.   

   4.2  Effects of Exercise-Milmed 
on MPTP-Induced Defi cits 

   4.2.1 Spontaneous Motor Activity 
 Mice treated with MPTP showed a marked hypo-
kinesic effect over all 14 Test days from Test day 
2 onwards. Access to physical exercise (running 
wheel) retarded the onset of MPTP-induced 
hypokinesia until Test day 5 and then attenuated 
the hypokinesia throughout. Uncharged Milmed 
(Milm(0)) in combination with physical exercise 
also retarded and attenuated the hypokinesia 
induced by MPTP. Charged Milmed (Milm(1)) in 
combination with physical exercise abolished 
any sign of hypokinesia throughout. Split-plot 
ANOVA indicated a Treatment × Days interac-
tion: ( F (52, 629) = 16.08,  p  < 0.0001   ). Pairwise 
testing with Tukey’s HSD indicated the following 
differences over all three motor activity parame-
ters, locomotion, rearing, and total activity: 

 Vehicle, MPTP + Exer + Milm(1) > MPTP + Ex
er + Milm(0), MPTP + Exer > MPTP during Test 
days 2–14 (Fig.  14.1 ).

      4.2.2  L -Dopa-Induced Activity 
 Mice treated with MPTP showed a marked 
hypokinesic effect over all fi ve  l -dopa-induced 
tests (Test days 6, 8, 10, 12, and 14). Both 
physical exercise, by itself, or combined with 
uncharged Milmed attenuated the loss of  l -dopa-
induced activity over Test days 6, 8, 10, and 12, 
but abolished this loss on Test day 14. Physical 
exercise combined with charged Milmed abol-
ished MPTP-induced  l -dopa activity defi cits 
throughout. Split-plot ANOVA indicated a 
Treatment × Days interaction:  F (16, 224) = 9.65, 
 p  < 0.0001. Pairwise testing with Tukey’s HSD 
indicated the following differences over all three 
motor activity parameters, locomotion, rearing, 
and total activity: 

 Vehicle, MPTP + Exer + Milm(1) > MPTP +
Exer + Milm(0), MPTP + Exer > MPTP during 
Test days 2–14 (Fig.  14.2 ).

      4.2.3 Neurochemical Analysis 
 Mice treated with MPTP showed a marked loss 
of DA in the striatum (17 % of control values). 
This effect was attenuated strongly by physical 
exercise by itself (MPTP + Exercise = 64 % of 
control values) or combined with uncharged 
Milmed (MPTP + Exercise + Milmed[yeast]
(0) = 65 % of control values). The combination 
of physical exercise with charged Milmed 
(MPTP + Exercise + Milmed[yeast](1)) abol-
ished completely any loss of DA (101 % of 
control values). One-way ANOVA indicated a 
signifi cant group effect:  F (4, 30) = 47.27, 
 p  < 0.0001. Tukey testing indicated the follow-
ing differences: 

 MPTP + Exercise + Milmed[yeast](1), Vehicle 
>  MPTP + Exerc ise  +  Milmed[yeas t ] (0) , 
MPTP + Exercise > MPTP (Fig.  14.3 ).

      4.2.4 BDNF Analysis 
 Mice treated with MPTP showed a marked eleva-
tion of BDNF in the parietal cortex (including 
motor cortex) of the MPTP group (431 % com-
pared with control values) compared with the 
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vehicle group. This elevation of BDNF was 
increased by both physical activity itself (528 % 
of control values) and in combination with 
uncharged Milmed (MPTP + Exercise + Milmed
[yeast](0) = 534 % of control values). BDNF ele-
vation was greatest in the case of the charged 
Milmed (MPTP + Exercise + Milmed[yeast](1)) 

group (853 % of controls). One-way ANOVA 
indicated a signifi cant group effect:  F (4, 
30) = 18.27,  p  < 0.0001. Tukey testing indicated 
the following differences: 

 MPTP + Exercise + Milmed[yeast](1) > MPTP 
+ Exercise + Milmed[yeast](0), MPTP + Exercise 
> MPTP > Vehicle (Fig.  14.4 ).
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  Fig. 14.1    Mean locomotion, rearing, and total activity during the spontaneous motor activity by Vehicle, MPTP   , 
MPTP + Exercise, MPTP + Exercise + Milmed [yeast](1), and MPTP + Exercise + Milmed [yeast](0) over Test days 1–14       
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       4.3  Milmed-Exercise Synergism 
Abolishes MPTP-Induced 
Defi cits 

 Physical exercise alleviates both the symptoms 
and the biomarkers (e.g., DA loss) of PD in the 
laboratory and in the clinical setting (Archer and 

Fredriksson  2010 ,  2012 ; Archer et al.  2011a ,  b ; 
Fredriksson et al.  2011 ). The combination 
 physical exercise and Milmed abolished MPTP-
induced parkinsonism in the laboratory both 
functionally and neurochemically such that the 
antiparkinsonian effects were in excess of the 
summation of exercise and Milmed effects by 
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  Fig. 14.2    Mean locomotion, rearing, and total activity 
during the  l -dopa-induced motor activity by Vehicle, 
MPTP, MPTP + Exercise, MPTP + Exercise + Milmed[yeast]

(1), and MPTP + Exercise + Milmed[yeast](0) groups on 
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themselves; in the absence of exercise, Milmed 
does not affect MPTP-induced hypokinesia or 
DA loss at all (Archer and Fredriksson, unpub-
lished results). The notion that exercise-induced 
elevations in BDNF may be of signifi cance for 
the treatment of aging disorders is not novel, 
since memantine, a medium-affi nity uncompeti-
tive  N -methyl- d -aspartate receptor antagonist 
applied clinically as a neuroprotective agent to 

treat AD and PDs, increased BDNF mRNA lev-
els markedly in the limbic cortex at clinically 
relevant doses (Marvanová et al.  2001 ). The 
present fi ndings that (a) MPTP treatment induced 
a marked increase in parietal BDNF and (b) 
exercise over 14 weeks further increased levels 
of BDNF in the parietal cortex appear to lend 
credence for the involvement of BDNF in the 
exercise- induced recovery of function and DA 
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  Fig. 14.3    Mean striatal dopamine concentrations in the Vehicle, MPTP, MPTP + Exercise, MPTP + Exercise +
 Milmed[yeast](1), and MPTP + Exercise + Milmed[yeast](0) groups       

  Fig. 14.4    Mean parietal cortex (including motor cortex) BDNF concentrations in the Vehicle, MPTP, MPTP + Exercise, 
MPTP    + Exercise + Milmed[yeast](1), and MPTP + Exercise + Milmed[yeast](0) groups       
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innervation following repeated doses of MPTP. 
The lack of exercise-induced changes in hippo-
campal BDNF suggests that the level of running- 
wheel exercise per day and week under present 
conditions was insuffi cient. It appears that pari-
etal cortex BDNF may exert an important media-
tory role, hitherto unobserved, upon functional 
and biomarker recovery in experimental parkin-
sonism. The manifest benefi ts of physical exer-
cise on neurodegenerative states are dependent 
on a variety of parameters that determine prog-
nosis, intervention, and outcome, not least per-
taining to the particular disorder under considera -
tion (Archer  2011 ; Archer et al.  2011a ,  b ).   

    5 Conclusions 

 Clinicogenetic trials have demonstrated that 
therapeutic drug effi cacy or toxicity or suscepti-
bility for adverse effects presents disorder-inter-
vention features increasingly found to be 
governed by genetic and epigenetic principles 
(Kalinderi et al.  2011 ). In a large multicentered 
study to ascertain the frequency and pathogenic-
ity of reported VPS35 variants worldwide, 
Sharma et al. ( 2012 ) sought to identify a muta-
tion (p.Asp620Asn) in the vacuolar protein sort-
ing 35 (VPS35) gene as possible cause for 
autosomal dominant form of PD. The identifi ed 
pathogenic variant p. Asp620Asn was identifi ed 
in 8 cases and 1 control from Italy, US, Poland, 
and Australia; three sites (Poland, Ireland, and 
US) detected p.Leu774Met variant in 6 cases 
and 4 controls; and one site (Norway) detects 
p.Gly1Ser variant in 3 cases and 1 control 
with two reported variants (p.Arg524Trp and 
p.Ile241Met) monomorphic. The overall analy-
sis described an increased risk for PD for 
p.Asp620Asn and p.Leu774Met variants, respec-
tively, in their cohort, thereby highlighting the 
role of rare variants in the complex PD condi-
tion. Current levels of information pertaining to 
notions of pharmacogenomics, epigenetics, and 
biomarkers that are modulated by interindividual 
variability affect the diagnosis, intervention, 
and prognosis of both PD disorder expression 
and therapeutic strategies. Symptom profi les and 

course of disease, etiopathological heterogeneity, 
and etiopathogenesis may be elucidated through 
recourse to a dimensional approach to patho-
physiology through the distinguished endophe-
notypes and biomarkers of disorder progression 
(Archer et al.  2010 ). Much increasing evidence 
suggests that epigenetic mechanisms, such as 
DNA methylation, histone modifi cations, and 
small RNA-mediated mechanisms, may regulate 
the expression of PD-related genes (Coppedè 
 2012 ). Finally, the coadministration of exercise 
regimes with agents (like Milmed) offering 
potential neuroreparative/neurogenesis agency 
may present useful ingredients for personalized 
medicine.     
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