Unit 1: Atomic Structure and Electron Configuration

Molar Mass

Avogrado's number: $6.02 * 10^{23}$, which indicates the particles in a mole of any substance.

Molar Mass: used to refer to the mass of all the molecules in any substance in moles.

Mole: a unit that which measures quantity; 1 mole is equivalent to $6.02 * 10^{23}$

Percent Composition: Percent by mass of each element in the compound

- 1 mole of any element = $6.02 * 10^{23}$ atoms
- 1 mole = element's average atomic mass in grams from the periodic table
 - \circ Ex. I mol of potassium = $6.02 * 10^{23}$ atoms or 39.1 grams K
- 1 mole of any molecular compound = $6.02 * 10^{23}$ moles
- 1 mole of any *ionic compound* = $6.02 * 10^{23}$ (formula units)
 - o GFM: Gram formula mass; the mass of one ionic compound
 - Ex. 1 mol of NaCl = 58.5 grams NaCl
- 1 mole of any gas = 22.4 Liter

When masses of atoms, molecules and formula units are measured in grams they are termed as:

- GAM: Gram Atomic Mass
 - Ex. 1 mol of Carbon = 12.01 grams
- GMM: Gram Molecular Mass
 - \circ Ex. 1 mol of H₂O = (1.01 * 2) + (16.00) = 18 grams
- GFM: Gram Formula Mass
 - Ex. 1 mol of NaCl = 58.5 grams of NaCl

Molar Mass = mass (in grams) / moles

- Ex. Calculating the molar mass of a substance if 0.235 moles of the substance has a mass of 45.67 grams.
 - Molar Mass = 45.67 grams / 0.235 moles = 194 g/mol

Percent Composition

- Mass percent = total molar mass of an element / molar mass of the whole compound *100%
 - Ex. What is the percent composition by mass of Hydrogen in H₂O
 - Molar mass of $H_2 = (1.01 * 2) = 2.02$ grams
 - \circ Molar mass of H₂O = (1.01 * 2) + (16.00) = 18.02 grams
 - \circ 2.02/18.02 * 100% = 11.2 % percent composition of H₂

Atomic Structure and Electron Configuration

Atomic Number: The number of protons in an atom. The periodic table is arranged by increasing atomic number.

Atomic Mass: The mass of a single atom of an element expressed in atomic mass units (amu).

Electron: Negatively charged particle that is outside the nucleus of a model.

Ion: Atom that has a positive or negative charge, due to an imbalance in the number of protons and electrons

Isotope: An element whose atoms have different numbers of neutrons, but keep the same number of protons.

Neutron: A subatomic particle that has no charge and is in the nucleus.

Nucleus: The positively charged dense center of the atom

Proton: a subatomic particle that has a positive charge and is in the nucleus

Wavelength: Distance between corresponding points of two consecutive waves

Evolution of Atomic theory

John Dalton (1808)

• Said that elements are made of atoms, and compounds are formed by combining elements in *fixed* ratios

J.J. Thompson (1898)

- Realized that the beam produced was negative while working with Cathode Rays
- He was able to measure the charge:mass ratio but not individual quantities
- Made the plum pudding model which shows that negatively charged electrons are stuck on a positive cloud

Robert Millikan (1909)

- "Oil Drop Experiment": He injected drops of charged drops of oil into an electric field and further explained J.J. Thompson's answers
- Determined the electron's charge to be $1.6 \times 10^{-19} \,\mathrm{C}$.

Ernest Rutherford (1911)

- "Gold Foil Experiment": He fired a beam of alpha particles at gold foil
 - He expected the alpha particles all to go through and most of them did but a few bounced back
 - He concluded from the experiment that a small, dense, positive nucleus is in the center of the atom and the electrons must move around it at a large radius

Max Planck

- Said that light could only be emitted in certain energies, which was introduced as quantized energy
- Delta E = nhv or E = hv
 - \circ E = energy of photon (light wave)
 - \circ V = frequency (hz)
 - \circ H = planck's constant: 6.626 * 10⁻³⁴ J/Hz
 - \circ n = a whole number

Albert Einstein (1905)

- Said that energy and mass (matter) are interchangeable; they are different forms of the same thing
- Theory of relativity: $E = mc^2$
 - \circ E= Energy
 - \circ M = mass

 \circ C = speed of light

Louis de Broglie (1923)

- He stated that particles behave like waves
- Lambda = h/mv
 - Lambda = wavelength
 - \circ H = planck's constant in J/Hz
 - \circ M = mass of the particle
 - \circ V = velocity

Neils Bohr (1913)

- Said that the emission spectrum of hydrogen made only a few bright lines, not a full spectrum.
- He stated based on his observations that electrons jumping around energy levels create those lines.
- Electrons move around the nucleus in a certain circular orbit
 - Energy available to the electron: $E = -(2.178 * 10^{-18} J) (z^2/n^2)$
 - \blacksquare Z = atomic number
 - N = energy level (orbit radius #)
 - Negative sign = the lower the n (the closer to the nucleus) the more negative E is
- Disadvantage: Bohr's model doesn't work for atoms other than hydrogen and electrons don't actually move in an circular orbit

Isotopes

 Atoms of the same element with different mass numbers (due to different number of neutrons)

Formation of ions

- When an atom gains or loses electrons, an ion is formed.
- Electron is gained = negative ion
- Electron is lost = positive ion

Wavelength

Frequency = # of waves that pass a certain amount of time

Amplitude = maximum amount of displacement of a particle on the medium from its rest position

Speed of light = $C = 3.0 * 10^8 \text{ m/sec}$

Wavelength denoted by lambda

- **Longest wavelength** = long wave radio = least energy (red)
- **Shortest wavelength** = Gamma rays = most energy (violet)

Important relationships

- The longer the wavelength, the lower the frequency (inverse relation)
- The higher the frequency, the higher the energy (direct relation)
- The higher the wavelength, the lower the energy (inverse relation)
- The Electromagnetic Spectrum showcases the different ranges of electromagnetic radiation.

Electron Configuration/Orbitals

Energy sublevel and what it looks like	Orbitals	# of Electrons
S (Sphere)	1	2
	(0)	

P (Propeller)	3	6
	(-1,0,1)	
D (Double Dumb bell)	5	10
	(-2,-1,0,+1,+2)	
F (Frenzy)	7	14
	(-3,-2, -1, 0, 1, 2, 3)	

		1
Type of orbital	What it's used for	More information
N	Principle energy used	Specifies the energy of an electron
	 As n increases, energy 	and the size of the orbital
	increases the distance	All orbitals that have the same value
	from the nucleus	of <i>n</i> are said to be in the same shell
		(level).
L	Energy sublevel	(0,1,2,3) (s,p,d,f)
M_s	spin	• Positive, up arrow ½
		• Negative, down arrow 1/2

M	Orbital (direction in space)	• 0,0
		• -1,0,1
		• -2,-1,0,1,2
		• -3,-2,-2,0,1,2,3

Websites that I referenced:

- https://courses.lumenlearning.com/boundless-chemistry/chapter/molar-mass/
- https://www.chem.fsu.edu/chemlab/chm1045/e_config.html

Picture:

• https://sites.google.com/a/coe.edu/principles-of-structural-chemistry/relationship-between-light-and-matter/electromagnetic-spectrum