Spin Filtering in Epitaxial Spinel Films with Nanoscale Phase Separation

Peng Li,*† Chuan Xia,*† Jun Li,* Zhiyong Zhu,*† Yan Wen,* Qiang Zhang,*† Junwei Zhang,*† Yong Peng,*§ Husam N. Alshareef,*†§ and Xixiang Zhang*†§

1Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
2KAUST Supercomputing Laboratory (KSL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
3Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China

Supporting Information

ABSTRACT: The coexistence of ferromagnetic metallic phase and antiferromagnetic insulating phase in nanoscaled inhomogeneous perovskite oxides accounts for the colossal magnetoresistance. Although the model of spin-polarized electron transport across antiphase boundaries has been commonly employed to account for large magnetoresistance (MR) in ferrites, the magnetic anomalies, the two magnetic phases and enhanced molecular moment, are still unresolved. We observed a sizable MR in epitaxial spinel films (NiCo$_2$O$_4$)$_{1−δ}$ that is much larger than that commonly observed in spinel ferrites. Detailed analysis reveals that this MR can be attributed to phase separation, in which the perfect ferrimagnetic metallic phase and ferrimagnetic insulating phase coexist. The magnetic insulating phase plays an important role in spin filtering in these phase separated spinel oxides, leading to a sizable MR effect. A spin filtering model based on Zeeman effect and direct tunneling is developed to account for MR of the phase separated films.

KEYWORDS: magnetoresistance, phase separation, spinel, spin filter, direct tunneling, Zeeman effect

Since the discovery of giant magnetoresistance (GMR) in Fe−Cr−Fe superlattice, spin-dependent magnetoresistance has been at the heart of spintronics. Accompanied by the discovery of GMR in metallic inhomogeneous systems, tunneling magnetoresistance was found in metallic ferromagnet-insulator systems. The key to this magnetoresistance (MR) is the spin-dependent scattering that occurs in inhomogeneous systems, e.g., superlattice or granular systems. Epitaxial perovskite oxide thin films, such as La$_{1−x}$Sr$_x$(Ca)MnO$_3$ also show colossal magnetoresistance (CMR) near the Curie temperature, which can be ascribed to the shift in Curie temperature under a magnetic field, where the ferromagnetic-metallic state is governed by a double exchange interaction. In some Manganite, much larger MR has been attributed to the collapse of the charge-ordered insulating state in the submicrometer-scale phase separation between the ferromagnetic metal and the charge-ordered states. So far, phase separation-induced GMR has only been observed within perovskite systems.

In contrast to the CMR observed in epitaxial perovskite films, a moderate, negative MR (about −10% to −20% at 9 T) was observed in epitaxial spinel ferrite films (i.e., Fe$_3$O$_4$, ZnFe$_2$O$_4$, Co$_{3−δ}$Fe$_{1−δ}$O$_4$). This spin-dependent MR has often been ascribed to domain wall scattering, in which the domain walls are caused by the atomically sharp sublattice (cation) dislocation, or antiphase boundaries (APBs). Although the spin chain model based on APBs can account for modest MR and some magnetic properties in epitaxial Fe$_3$O$_4$ films, this model does not adequately explain some other magnetic anomalies in doped Fe$_3$O$_4$ (XFe$_2$O$_4$) films, e.g., two magnetic phases and enhanced magnetization.

Compared to iron-based spinel (XFe$_2$O$_4$), cobalt-based spinel (XCo$_2$O$_4$) is less often studied for its magneto-transport properties as they apply to spintronics. The transport properties and magnetoresistance of epitaxial NiCo$_2$O$_4$ films grown on (001)-oriented MgAl$_2$O$_4$ at different substrate temperatures have only recently been investigated for applications such as energy storage, electrocatalytic
Figure 1. (a) The schematic drawing of the cross-section of (001)-oriented NiCo$_2$O$_4$ crystal structure on (001)-oriented MgO substrate in the ideal case. The red balls represent oxygen atoms, the blue balls represent Mg atoms, the green balls indicate the octahedral sites (B-sites) while cobalt cations are evenly distributed between the octahedral (B-sites) and the tetrahedral sites (A-sites). Considering the lattice constants of NiCo$_2$O$_4$ (8.11 Å) and MgO (4.20 Å), a small anionic sublattice mismatch of -3.4% should facilitate the epitaxy of NiCo$_2$O$_4$ (001) on MgO (001), as shown in Figure 1a. To further confirm this relationship, cross sections of NiCo$_2$O$_4$/MgO from Sample 1 were imaged. The spherical-aberration corrected high-angle annular dark-field (HAADF) image of the interface (Figure 1b) clearly shows good epitaxy of NiCo$_2$O$_4$ film on MgO (001) substrates. The corresponding selected-area electron diffraction (SAED) pattern (Figure 1c) exhibits the characteristics of a face-centered cubic crystal and further confirms good epitaxial growth. The diffraction spots of NiCo$_2$O$_4$ (purple dashed circle) are much weaker than those of the MgO substrates (blue dashed circle) because the NiCo$_2$O$_4$ film is ultrathin at 18 nm. As the Miller index number increases, the separation of the spots in both materials become more apparent due to their lattice mismatch. We filtered the Fast Fourier Transformation (FFT) image from Figure 1b and obtained the inverse FFT image by using a pair of diffraction spots MgO(002)/NiCo$_2$O$_4$(004). Several dislocations of cations were clearly observed, indicated by arrows in Figure 1d, which originated from the lattice mismatch (-3.4%) between NiCo$_2$O$_4$ and MgO. We therefore demonstrated the epitaxial growth of NiCo$_2$O$_4$ films on MgO(001) substrates.

The magnetoresistance measured at different temperatures on Sample 1 is shown in Figure 1e. Unexpectedly, a large, negative MR, as large as -50% at 9 T, was observed at 2 K, which is in sharp contrast to the very small or nonexistent MR effect in NiCo$_2$O$_4$ grown on MgAl$_2$O$_4$ substrates. It is clear...
that MR strongly depends on temperature (also see Figure S2, MR−T curve, where MR decreases from −50% at 2 K to −1.1% at 300 K), a typical feature of a spin-dependent MR. To explore the physics behind the observed large MR, the dependencies of resistivity on temperature and magnetic field were measured in the temperature range from 2 to 300 K with a magnetic field up to 9 T, in which the magnetic field was applied along [100] direction in the NiCo2O4 film plane. The temperature dependent resistivity under zero and 9 T is shown in Figure 1f. Both resistivity curves show nonmetallic behavior, i.e., resistivity increases monotonically with decreasing temperature. As expected, the high field resistivity is lower than the resistivity under zero field, over the whole temperature range due to the spin-dependent MR effect, in good agreement with data shown in Figure 1e (the field-dependent MR). Although the room temperature resistivity of the NiCo2O4 film, ~3 × 10^5 μΩ·cm, is consistent with the room temperature resistivity observed on NiCo2O4/MgAl2O4, no metal–insulator transition was observed in our sample.

To gain a deeper understanding of the electrical transport mechanism, we carefully analyzed the temperature dependence of resistivity of epitaxial film (Sample 1) under different magnetic fields (shown in Figure 1f) and found that the low temperature data can be well described by \(\rho(T) \propto \exp(C/T^{1/2}) \).

By analyzing the atomic-scale HAADF image of NiCo2O4 (Figure 2a), we found that the film is inhomogeneous even within an area as small as 5 nm. By magnifying and comparing the images of sublattice in the dashed and solid yellow squares, we find an interstitial atom occupying both tetrahedral sites (A-sites) and the octahedral sites (B-sites) in the solid square, whereas this interstitial atom is absent from the A-sites in the dashed square (Figure 2a). To clearly illustrate the difference between the two regions, we use purple and green dots overlapping on the A- and B-sites in the amplified images (Figure 2a). In addition, we performed FFT of the images to further demonstrate the structural difference between the two regions. The difference in the FFT diffraction patterns is evident: four diffraction spots in the solid square are missing from the dashed square. Actually, the FFT diffraction pattern in the upper panel is the (022) diffraction pattern of the spinel. Comparing the TEM images of the solid square in Figure 2a with the schematic atomic occupation in Figure 1a indicates that the crystal in the solid square has the standard inverse spinel structure.
dashed square (Figure 2a) significantly deviates from the ideal spinel structure, based on the HAADF images and their FFT patterns. Another feature worth noting in the solid square is the dimness of the A-sites; the atomic column formed only by Co ions (A-sites) is weaker than that of the column formed by both Co and Ni ions (B-sites). This can be ascribed to the difference in the effective Z contrast (ZCo < ZNi < ZCo) in ideal inverse spinel \([\text{Co}_A (\text{NiCo})_B \text{O}_4]\) as confirmed by neutron diffraction.\(^{27}\)

On the basis of the above experimental results and analysis, we conclude that Sample 1, as a composite or granular material, is composed of two phases (ideal spinel in the solid square and imperfect spinel in the dashed square).

In order to find the distribution of the two phases and their relative volume fractions in this NiCo\(_2\)O\(_4\) film, we imaged the materials in dark-field mode using the (220) reflection of the ideal spinel structure under a two-beam condition, as shown in Figure 2b. The corresponding bright-field TEM image is shown Figure 2c. The dark-field image, the MgO substrate is dark because it does not contribute to the (220) reflections of the spinel. The bright areas in Figure 2b are the ideal spinel crystals from the solid square in Figure 2a; whereas the dark areas in Figure 2b are the imperfect spinel crystals from the dashed square in Figure 2a. The dark-field images confirm again the phase separation in Sample 1. Hereafter, we designate the ideal-spinel phase as Phase I, and the imperfect-spinel phase with A-site vacancies as Phase II. By using a simple simulation of the dark-field image in Figure 2b, we estimate that the ratio of dark region with cationic vacancies (Phase II) to total film is about 20 ± 5%.

Since the magnetic properties of the spinel, e.g., the saturation magnetization and coercive field, are determined by the distribution of cations, magnetic characterization should be a very powerful tool to detect the different phases. We measured the magnetic hysteresis loops of the film at different temperatures. A single-phase, crystalline NiCo\(_2\)O\(_4\), (Co\(^{3+}\))\(_A\)(Ni\(^{2+}\)Co\(^{3+}\))\(_B\)\(_{1-x}\)\(_{O}_4\) is a ferrimagnet in which magnetic moments on A-sites and B-sites are coupled antiferromagnetically, and which exhibits a net molecular moment of 2 \(\mu_B\) with Co\(^{3+}\) (4 \(\mu_B\)) and Ni\(^{2+}\) (2 \(\mu_B\)). To correctly obtain the magnetic properties of the NiCo\(_2\)O\(_4\) films, we had to subtract the contribution of the MgO substrates from the experimental data (Figure S3). We could only obtain reliable magnetic data above 30 K because of the strong paramagnetic contribution of MgO at low temperatures. Shown in Figure 2d are the representative hysteresis loops obtained at different temperatures (see more hysteresis in Figure S4). For clarity, the loop obtained at 30 K is replotted in the inset of Figure 2d. The behavior of the 30 K loop with a total moment of 2.58 \(\mu_B/\text{f.u.}\) shows two distinct magnetic phases with different saturation magnetization and coercive field properties. A close inspection reveals that all of the hysteresis loops obtained in the temperature range of 30 to 150 K exhibit two magnetic phases (Figure S4). The higher coercive field feature decreases faster with increasing temperature, and so above 150 K the separation between the two phases fades.

The abnormal magnetic properties, e.g., coexistence of two magnetic phases\(^{14,18,28}\) and enhanced magnetization,\(^{9,13,15}\) have been frequently observed in oxides with spinel structure. Although two magnetic phases were observed in several studies on epitaxial CoFe\(_2\)O\(_4\) and NiCo\(_2\)O\(_4\) films,\(^{14,18,28}\) a full definition of the two phases has not been achieved. The enhanced magnetic moments in NiFe\(_2\)O\(_4\)\(^{13}\) Fe\(_2\)O\(_3\)\(^{15}\) and even in
antiferromagnetic ZnFe$_2$O$_4$ were suggested to stem from cationic inversion. Note that the saturation magnetization of Sample 1 at 30 K is 2.58 μB/f.u. and significantly larger than the 2 μB/f.u. at zero K. Therefore, the magnetic results strongly support that the thin film is composed of two phases, and that one phase has a much larger saturation magnetization than the ideal NiCo$_2$O$_4$.

Now let us discuss Phase II. On the basis of the TEM images, we already know that the atoms at A-sites are missing. Two possibilities for these missing cations are a) all cations are distributed in B-sites or b) cations at A-sites are missing and the number of cations at B-sites remains unchanged. We calculated the energy of the two situations numerically (Note 1 in SI), and found that the latter possibility (b) is energetically more likely. In this case, the moments of Co$^{3+}$ (4 μB) and Ni$^{2+}$ (2 μB) are ferromagnetically coupled and lead to a total moment 6 μB/f.u. By taking 2.58 μB as the total moments and using $2(1-x) + 6x = 2.58$ (Note 1 in SI), we found the volume fraction of Phase II $x \approx 15%$. One should note that the value x obtained here is underestimated, because we assume that $M_0 = 2.58 \mu B$ at 30 K and $M_0 = 2 \mu B$ at 0 K for Phase I. Therefore, the value $x = 15%$ obtained from the magnetic data is consistent with the value $x = 20 \pm 5%$ obtained using the TEM images. Moreover, we found that $x = 19%$ when using the extrapolated saturation magnetization $M_s = 2.78 \mu B$ at 0 K (Figure S5), which is even closer to the value x obtained from the TEM images.

The next questions to be answered are which phase is more electrically conducting, and how does phase separation affect the transport and magnetic properties of the film? And so, we studied an epitaxial NiCo$_2$O$_4$ film deposited without filling oxygen (vacuum conditions of 0 mTorr), keeping the other conditions unchanged (Sample 2). The structure of Sample 2 was then studied using HAADF, as shown in Figure 3a. Interestingly, we can hardly find any A-site atoms in this HAADF image, indicating that the A-site atoms are nearly excluded through charge balance caused by oxygen vacancies. Consequently, it is difficult to observe (022) diffraction spots of the spinel from the SAED pattern, as shown in the inset of Figure 3a. On the basis of the TEM experiments, we know that Sample 2 is mainly composed of Phase II. Because both samples are deposited under different environments, we are motivated to investigate their valence states. The X-ray photoelectron spectra of Samples 1 and 2 demonstrates that Ni$^{2+}$ and Co$^{3+}$ are dominant in both samples and that Co$^{3+}$ and Co$^{2+}$ do not coexist on B sites in both samples due to the presence of Ni$^{3+}$ on B sites (Figure S6). Nevertheless, the cationic valence inversion between Ni and Co on B sites (Ni$^{2+}$ (2 μB) Co$^{3+}$ (4 μB) or Ni$^{3+}$ (3 μB) Co$^{2+}$ (3 μB)) will not affect the net molecular moment of 2 μB/f.u. (Phase I) and 6 μB/f.u. (Phase II). Therefore, it is interesting to study the transport and magnetic properties of Sample 2, and then compare those with the properties of Sample 1. Shown in Figure 3b is the temperature dependence of resistivity of Sample 2 under zero
magnetic field. By comparing the results in Figure 3b to those in Figure 1f, we found that the low temperature resistivity of Sample 2 is about 2 orders of magnitude higher than that of Sample 1, though the room temperature resistivity of the two samples is almost identical. The much stronger temperature dependence in Sample 2 can be clearly seen from the normalized resistivity data, $\rho(T)/\rho(350\,\text{K})$, in Figure 5. From the resistivity data, we also confirm that Phase II is much less conducting than Phase I. By fitting the data to the tunneling conduction model (inset of Figure 3b), we found that the resistivity of Sample 2 can be roughly described by tunneling conduction over the whole temperature range (15−350 K).\(^{26}\) The fitted average charging energy for Sample 2 ($C = 1.46 \, \text{meV}$) is much larger than that for Sample 1 ($C = 0.56 \, \text{meV}$). Nonetheless, the imperfect linearity of the $\ln\rho \propto T^{1/2}$ curve at low temperatures implies a much more complicated conduction mechanism in Sample 2 than in Sample 1. Shown in Figure 3c is the magnetic field dependence of magnetization ($M(H)$) at different temperatures. The saturation magnetization at a low temperature (30 K) for Sample 2 is 5.34 \, \mu B/f.u. (7 T), much larger than that in Sample 1. Another very important feature in the 30 K $M(H)$ curve is that the hysteresis loop is very similar to a simple, regular hysteresis loop commonly observed on a single-phase, ferrimagnetic material. Much smaller coercive fields are observed in comparison with those observed in Sample 1 at corresponding temperatures. It is clear that Phase II is magnetically a much softer ferrimagnetic phase with much higher saturation magnetization in comparison with Phase I.

Using the saturation magnetization, $M_s(30 \, \text{K}) = 5.34 \, \mu B/f.u.$, we found that the volume fraction x of Phase II in Sample 2 is 83.5\% (see Note 1 in SI). Using the extrapolated value (Figure S5), $M_s(0 \, \text{K}) = 5.48 \, \mu B/f.u.$, we obtained $x = 87\%$. These volume fraction estimates obtained from magnetic measurements agree with $x = 90\% \pm 5\%$, obtained from the element analysis (Note 1 in SI). Due to the very large volume fraction of Phase II in Sample 2, it is very difficult to find the ideal spinel NiCo$_2$O$_4$ nanocrystals in the TEM images (Figure 3a) and (220) diffraction in SAED pattern (inset of Figure 3a). Since Sample 2 is much more insulating than Sample 1, we come to the conclusion that Phase II is a much more insulating, magnetically softer ferrimagnetic phase with much higher saturation magnetization than Phase I (the ideal spinel NiCo$_2$O$_4$) over the whole temperature range. (Figure S8 shows the temperature dependence of H_c and M_s for both samples).

To further confirm that the metallic Phase I in Sample 1 is consistent with metallic spinel NiCo$_2$O$_4$ previously reported by others,\(^{16,18,29}\) the metallic NiCo$_2$O$_4$ film was prepared under 250 mTorr O$_2$ atmosphere. It is found that this NiCo$_2$O$_4$ film showed a metallic type of electrical conduction, a negligibly small MR ratio, a molecular moment near 2 \, \mu B/f.u. and a hysteresis loop of single phase with high coercive field up to 2 kOe at low temperatures (Figure S9). All these properties are quite similar to those of Phase I in Sample 1.

Similarly, we have measured the magnetoresistance in Sample 2, as shown in Figure 3d. Apparently, MR in Sample 2 depends strongly on temperature as well, but the size is much smaller than that in Sample 1. The MR in Sample 2 is similar to that observed in other spinel materials.\(^{16−18,20−29}\) The plot shown in Figure S2 is a comparison of the MR−T curve obtained for both samples. The difference in MR ratio of the two samples will be discussed below.

To better understand the GMR in phase-separated NiCo$_2$O$_4$ epitaxial films, we compare the magnetic field-dependence of MR and magnetization in same plot. Shown in Figure 4a is the in-plane MR and the in-plane magnetization of Sample 1 measured at 30 K. There are several features in Figure 4a that are strikingly different from those observed previously in different granular materials, such as ferromagnetic transition metal/noble metals\(^{30,31}\) and ferromagnetic transition metal/insulator.\(^{4,32}\)

The first and most interesting feature shown in Figure 4a is that the peak in MR (the most resistive state) does not occur at the coercive field of the magnetic hysteresis loop as observed in common granular materials. Although a similar butterfly shaped behavior in the MR curve is observed as in conventional granular materials, the peak in MR occurs at a much stronger magnetic field. In NiCo$_2$O$_4$, due to the spin-dependent tunneling across the insulating Phase II with a weaker coercive field,\(^{33,34}\) the measured coercive field in the magnetic hysteresis loop and the low-field magnetic properties of the sample is dominated by Phase II, which has a higher saturation magnetization and a lower magnetic coercive field than Phase I. On the other hand, we see that the maximum resistivity state and the butterfly shaped low-field MR is governed by Phase I with stronger coercive field, which can be ascribed to the spin dependent tunneling across the insulating phase II with a weaker coercive field\(^{33,34}\).

Another feature is that the MR does not exhibit any saturation magnetization behavior up to 9 T over the whole temperature range (Figure 1e) in epitaxial NiCo$_2$O$_4$ film; this contrasts sharply with conventional granular materials, in which MR saturates quickly at magnetic saturation fields.\(^{4,30−32}\) This striking difference must originate from the fact that both the insulating phase and the conducting phase are ferrimagnetic in this sample, whereas in the conventional granular materials, only one phase is magnetic. Evidently, the physics behind the MR in NiCo$_2$O$_4$ is completely different from that in common granular material. Given this unusual characteristic of NiCo$_2$O$_4$ films, i.e., that the insulating Phase II is also ferrimagnetic, we look to the spin-filtering effect to understand the behavior of MR in this phase-separated magnetic material.\(^{35}\)

We show that the origin of MR is indeed from the spin-filtering effect by measuring the $I−V$ curves using a four-terminal configuration at different magnetic fields, as shown in Figure 4b. The nonlinear dependence is ascribed to the tunneling mechanism. More importantly, the current increases significantly with increasing magnetic field under the same applied electric potential, suggesting a large negative magnetoresistance (Figure 1e), confirming the observation of GMR with a constant current measurement. Detailed analysis also reveals that the current density of epitaxial NiCo$_2$O$_4$ films can be described by direct tunneling across a tunnel barrier,\(^{36}\)

$$J \propto \sqrt{2m^*\Phi} \left(\frac{e}{h}\right)^2 V \exp \left[\frac{-4\pi d \sqrt{2m^*\Phi}}{h}\right]$$

(1)

where h is the Planck constant, e is the electronic charge, m^* is the effective mass of an electron, Φ is the barrier height, V is the applied bias and d is the barrier thickness. To focus on the behavior of the $I−V$ curves, we can rewrite eq 1 as the following:

$$\ln \frac{J}{V^2} \propto \ln \frac{1}{V} - \frac{4\pi d \sqrt{2m^*\Phi}}{h}$$

(2)
We then plotted the experimental data following eq 2; see the upper inset of Figure 4b. The nearly linear dependence of ln J/V on ln 1/V in the curves obtained at various temperatures (B = 0 T) strongly suggests that the electrical transport in the phase-separated NiCo$_2$O$_4$ films is dominated by direct tunneling. The deviation from the linear dependence at a high electric field in these curves may be ascribed to the mechanism of the electrical transport transforming from direct tunneling under low electric potential, to Fowler-Nordheim tunneling through a triangle-shaped barrier under high electric potential. With an increase of magnetic field (T = 3 K), the absolute value of the intercept of the curves ($\frac{4\Delta_d\sqrt{2\mu_B\Phi_0}}{\hbar}$) is decreasing (bottom inset of Figure 4b), indicating asignificant reduction of the tunneling-barrier height.

To understand the behavior of MR at high magnetic fields, we employed the two-current model, in which the spin-up and spin-down electrons tunnel through different barriers caused by exchangesplitting and field-dependent Zeeman energy. A schematic diagram of the granular-like percolation system in Sample 1 and the band structure under different magnetic fields are shown in Figure 4c and its inset, respectively. The tunneling barrier in eqs 1 and 2 can be described as $\Phi_{1/2}(B) = \Phi_0 + (-)\Delta/2 + (-)\mu_B B$, in which Φ_0 is the average tunneling-barrier height, Δ represents the exchange splitting of the conduction band bottom and $\mu_B B$ is the Zeeman energy under magnetic fields (dashed lines in Figure 4c). Note that the Zeeman energy (on the order of 10^{-1} to 10^{-2} meV) can be considered as a perturbation to Φ_0 (on the order of 10^0 eV) and Δ (on the order of 10^{-1} eV). It is evident that the tunneling current will vary with the applied magnetic field B, a correlation that we can call the MR effect.

On the basis of the two-current model and the Zeeman effect on spin filtering, we can obtain the ratio of the tunneling-current density in the field to that of the zero magnetic field,

$$\frac{J(B)}{J(0)} = 1 + P^a P_{\Phi_0}^a$$

where P is the tunneling-spin polarization, and $a = \frac{-4\Delta_d\sqrt{2\mu_B\Phi_0}}{\hbar}$ (see more detailed derivation in Note 2 in SI). Therefore, the dependence of MR on magnetic field B can be calculated as

$$MR = \frac{R(B) - R(0)}{R(0)} = \frac{V/I(B) - V/I(0)}{V/I(0)} = \frac{1}{1 + P^a P_{\Phi_0}^a} - 1$$

It is clear that this is a hyperbolic function on the magnetic field. We then fit the field-dependent MR data, extracted from the I–V curves of Sample 1 at 3 K, and fixed the voltage (2 V) to eq 4. As shown in Figure 4d, the behavior of MR in the high magnetic field region can be described by eq 4 with a fitted parameter $P^a P_{\Phi_0}^a \sim 0.59 T^{-1}$ for $B > 4$ T. The discrepancy between the fitted data and the experimental data in the low field region, particularly for $B < 4$ T, could be explained by the misalignment of the magnetic moments of Phase I influencing the spin-dependent conduction; this is supported by the discrepancy between the field-increase and field-decrease MR curves below 4 T. If we take the average barrier height ($\Phi_0 \sim 3.5$ eV (2 K) obtained from Brinkman–Dynes–Rowell (BDR) fitting of normalized conductance (Figure S10), the calculated parameter of $P^a P_{\Phi_0}^a$ should be 0.0013 T^{-1}. Owing to the characteristics of granular materials and the random distribution of two phases, the magneto-transport should be a multiple tunneling process with a random distribution of barrier width and barrier height. This could be one origin of the significant discrepancy between the values of the calculated and fitted parameter of $P^a P_{\Phi_0}^a$. We also fit the field-dependent MR data from Figure 1e to eq 4 (Figure S11a). The fitted parameter $P^a P_{\Phi_0}^a$ attenuates quickly as temperature increases (Figure S11b). The barrier height decreases slightly as the temperature rises, which is confirmed by the decreasing absolute value of intercept ($\frac{4\Delta_d\sqrt{2\mu_B\Phi_0}}{\hbar}$) (upper inset of Figure 4b). Therefore, the fast drop of $P^a P_{\Phi_0}^a$ with the temperature should be ascribed to the dramatic decrease of P, indicating that the spin polarization decreases with increasing temperatures, as observed in other experiments based on ferrite materials.

The electrical transport in Sample 1, which was dominated by spin-dependent tunneling, can also be observed in the $R(T)$ curves under different magnetic fields. By fitting the $R(T)$ curves (Figure 1f) to the tunneling-dominated transport in granular materials, $r(T) \propto \exp(C/T^{1/2})$, we find the average charging energy $C = 0.56$ meV for $B = 0$ and $C = 0.49$ meV for 9 T. The slightly smaller energy barrier at 9 T indicates that the energy barrier was reduced by the magnetic field. This magnetic field-dependent tunneling barrier can be ascribed to the spin-filtering effect.

To understand why the MR observed in Sample 2 is smaller than the MR in Sample 1, we measured the I–V curves at low temperatures. The linear I–V curves of Sample 2 at different magnetic fields indicate imperfect direct tunneling and Ohmic-like behavior, as shown in Figure S12. Because the volume fraction of the insulating phase (Phase II) is about 90%, much larger than the percolation threshold for 2D materials, the conduction phase (Phase I) should still be present as conduction inclusions, embedded in the more insulating Phase II (Figure S13). Therefore, the conduction of Sample 2 should be Ohmic-like. Since both Phase I and II are ferrimagnetic, spin-dependent scattering will still play an important role, which leads to a sizable MR in Sample 2. Another feature of Sample 2 is that the behavior of MR in the high magnetic field region shows a more linear than hyperbolic dependence, indicating that the tunneling MR is not a dominant factor. Clearly, the GMR in the phase-separated NiCo$_2$O$_4$ is successfully understood by our physical model involving the two-current model and the spin-filtering effect across a ferrimagnetic insulating barrier.

CONCLUSION

In summary, we have observed giant magnetoresistance (GMR) of ~50% at 9 T and 3 K in epitaxial spinel NiCo$_2$O$_4$ films. Structural analysis reveals that the epitaxial spinel NiCo$_2$O$_4$ film is an inhomogeneous, granular-like system. Phase separation is directly observed by TEM in epitaxial spinel oxides. Phase I, the ideal NiCo$_2$O$_4$, behaves as a ferrimagnetic conductor, whereas Phase II, the NiCoO$_{2-\delta}$ phase whose Co cations at A-sites are totally missing, behaves as a ferrimagnetic insulator with a very
high saturation magnetization and a weak coercive field. The butterfly shaped MR at low magnetic fields is related to the moment rotation and spin-dependent scattering of nanoscale ideal spinel NiCo$_2$O$_4$ crystals (Phase I). The hyperbolic-like MR at high magnetic fields is well understood within the two-current model and the spin-filtering effect across a ferrimagnetic insulating barrier (Phase II). This work provides an alternative perspective and a comprehensive understanding of magnetic anomaly and large negative MR behavior in epitaxial spinel films.

METHODS

The epitaxial NiCo$_2$O$_4$ films were grown using pulsed laser deposition on (001)-oriented MgO single-crystal substrate at 350 °C under an O$_2$ pressure of 50 mTorr (Sample 1) and vacuum conditions of 0 mTorr (Sample 2), with a KrF excimer laser (λ = 248 nm) at 10 Hz with a fluence of 2.8 J/cm2. The metallic sample is prepared under an O$_2$ pressure of 250 mTorr for comparison. The background vacuum was better than 2 × 10$^{-7}$ Torr. The growth rate and thickness of the epitaxial NiCo$_2$O$_4$ films was maintained at 3 Å/min and 18 nm, respectively. The structure was analyzed by X-ray diffraction (XRD, Bruker D8 Discover) with Cu Kα radiation. The samples for transmission electron microscopy (TEM) were prepared by a focused ion beam (FIB) (Helios 450, FEI). The cross sections of the epitaxial NiCo$_2$O$_4$ films on MgO substrates were imaged using monochromated Cs-corrected high-resolution scanning TEM (Titan 80, FEI). The element ratio (Ni:Co) was analyzed by electron energy loss spectroscopy (EELS), energy-dispersive X-ray spectroscopy (EDX), and inductively coupled plasma optical emission spectrometry (ICP-OES).

ASSOCIATED CONTENT

1. Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nano.7b01743.

ACKNOWLEDGMENTS

The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). P.L. acknowledges the financial support of CRF-2015-SENSORS-2709 (KAUST) and SABIC postdoctoral fellowship award presented to KAUST.

REFERENCES

15. Arora, S. K.; Wu, H. C.; Choudhary, R. J.; Shvets, I. V.; Myrasov, O. N.; Yao, H. Z.; Ching, W. Y. Giant Magnetic Moment in Epitaxial...

