
CALIBRATION

DESK REFERENCE

TUTORIALS, REFERENCES, & RESOURCES

TANGRAM VISION

3

4

46

66

74

/ About Tangram Vision

/ Section I: Calibration Theory & Model Formation

/ Section II: Calibration Implementation

/ Section III: Understanding Calibration Results

/ Appendix: Resource Library

TABLE OF

CONTENTS

2

Copyright 2022 Tangram Robotics, Inc.

It supports cameras of all types (including HDR and

thermal), depth sensors, LiDAR, and IMUs. Additional

modalities including radar and ultrasonic are

currently under development.

We encourage you to sign up for an account at

hub.tangramvision.com and test the Platform with

your own perception pipeline.

And, if you are as deeply fascinated with perception

as we are, we invite you to visit our careers page at

www.tangramvision.com/careers to explore

opportunities to join our team.

Just like you, we're perception engineers. Our team

has built products that use sensors, and we've also

built perception sensors, too. Over our years of

working in and around perception, we came to

realize that there was something missing in the world

of perception - a ready-to-deploy software stack to

manage the foundations of rock solid perception. So

that's exactly what we've built!

The Tangram Vision Platform includes tools for

multimodal calibration, sensor fusion, perception

system stability, sensor integration, and sensor data

management.

Tangram Vision is Perception DevOps. Our platform helps robotics

and autonomy engineers manage critical perception tasks like sensor

fusion, integration, calibration, and maintenance as their fleets scale.

ABOUT

TANGRAM

VISION

3

https://hub.tangramvision.com/
https://www.tangramvision.com/careers
https://www.tangramvision.com/tangram-vision-sdk

5

12

21

26

34

39

43

/ Camera Modeling: Focal Length & Colinearity

/ Camera Modeling: Exploring Distortion and Distortion Models

/ Projective Compensation

/ Coordinate Frames For Multi-Sensor Systems - Part I

/ Coordinate Frames For Multi-Sensor Systems - Part II

/ Kalman Filters for Multi-Sensor Systems - Part I

/ Kalman Filters for Multi-Sensor Systems - Part II

SECTION I:

CALIBRATION THEORY

& MODEL FORMATION

4

modeling the focal length, and why the common

practice of modeling and is sub-optimal

when calibrating cameras

Background

To ensure you understand this chapter, we

recommend reading the "Building Calibration From

Scratch" and "Coordinate Frames For Multi-Sensor

Systems Part II" chapters. These will provide a

foundation to define the collinearity function. Beyond

the above, having some least-squares or optimization

knowledge will be helpful, but not necessary.

Let's first start by demonstrating the geometry of the

problem. In the image at the top of this page, we

show the geometry of how a camera captures an

image of an object through a lens following the

pinhole projection model. On the left-hand side we

have the image plane. In analogue cameras, this was

5

To the credit of these many engineers, this is largely

due to a wide breadth of jargon, vocabulary, and

notation that varies across a bunch of different

fields. Computer vision seems as if it is a distinct field

unto itself, but in reality it was borne from the

coalescence of computer science, photogrammetry,

physics, and artificial intelligence. As a result of this,

the language we use has been adopted from several

different disciplines and there's a lot of cross-talk.

In this chapter, we want to explore one of the

fundamental aspects of the calibration problem:

choosing a model. More specifically, we're going to

take a look at how we model cameras

mathematically, and in particular take a look at

existing models in use today and some of the

different approaches they take. For this first essay, I

want to specifically take a look at

Camera calibration is a deep topic that can be pretty hard to get

into. While the geometry of how a single camera system works and

the physics describing lens behavior is well-known, camera

calibration continues to be mystifying to many engineers in the field.

CAMERA

MODELING:

FOCAL

LENGTH &

COLINEARITY

https://www.tangramvision.com/blog/calibration-from-scratch-using-rust-part-1-of-3
https://www.tangramvision.com/blog/calibration-from-scratch-using-rust-part-1-of-3
https://en.wikipedia.org/wiki/Collinearity_equation

that most photogrammetric systems were focused at

infinity. If we take the lens equation for a thin convex

lens:

We can see how these values are related. As o

approaches infinity, approaches zero, which makes

the focal length and principal distance the same.

Note that if we are calibrating / modeling a camera

that is not focused at infinity we can still represent

our equations with a single focal length, but we need

to be careful about collecting measurements from

the image, and ensure that we are only collecting

measurements that are in focus.

� We're going to take some liberties here regarding

focal length / principal distance. With the collinearity

function we're going to define, we are exclusively

measuring principal distance (the distance between

the lens and the image plane). Focal length is

different from the principal distance, but the ways in

which it can deviate from principal distance are

separate from the discussion here regarding

and as model parameters.

Likewise, for the sake of what we're discussing here

we're going to assume that there is no distortion (i.e.

that the dotted lines in our first figure are perfectly

straight). Distortion doesn't change any of the

characteristics we're discussing here with respect to

our focal length as it is a different modeling problem.

Collinearity Condition

The graphic above demonstrates the primary

relationship that is used when understanding the

geometry of how images are formed. In effect, we

represent the process of taking an image as a

projective coordinate transformation between two

coordinate systems. If we were to write this out

mathematically, then we would write it as we would

any 3D coordinate transformation:

o is the distance of our object at the focus point

c is what we refer to as the principal distance

a strip of photosensitive film stretched across a

backplate behind the lens, or a glass plate covered

in photosensitive residue. In modern digital cameras,

our image "plane" is an array of pixels on a charge-

coupled device (CCD).

On the right we have the object we're imaging. The

pinhole-projection model of our lens creates two

similar triangles in between these. Effectively, for

every ray of light that bounces off of the object,

there is a straight ray that can be traced back

through the lens center (our pinhole) and directly

onto the image plane.

There are two listed distances in this diagram,

namely o and c:

These distances relate to the lens model that we

typically use when doing computer vision or

photogrammetry. While the collinearity function that

we're going to define is going to be based on a

pinhole-projection model, we have to also consider

the physics of our lens. Carnegie-Mellon University

actually has a really good graphic for demonstrating

how and when we can relate our lens geometry to

the pinhole-projection model:

Fig 1: Slide demonstrating the relationship and assumptions

relating the pinhole-projection model to the lens model of

our camera. © Ioannis Gkioulekas, CMU, 2020.

Often times there is little distinction made between

the principal distance c and the focal length of the

camera. This is somewhat of an artifact of the fact

6

https://emojikeyboard.org/copy/Electric_Light_Bulb_Emoji_%F0%9F%92%A1
http://graphics.cs.cmu.edu/courses/15-463/2020_fall/lectures/lecture3.pdf

Arguments of Geometry

From our pinhole projection model, we are projecting

light rays from the center of the lens (our principal

point) to the image plane. From a geometric or

physical perspective, can we justify both and ?

The answer is NO, we cannot. The orthonormal

distance of the principal point to the image plane is

always the same. We know this because for any point

q not contained within some plane B, there can only

ever be one vector (line) v that is orthogonal to B

 and intersects q.

From that perspective, there is no geometric basis
for having two focal lengths, because our

projective scale is proportional to the distance

between the image plane and principal point. There

is no way that we can have two different scales!

Therefore, two focal lengths doesn't make any sense.

� Here, I am avoiding the extensive proof for why

there exists a unique solution for v intersecting B

where

If you're really interested, I suggest Linear and

Geometric Algebra by Alan Macdonald, it does

contain such a proof in its exercises. If you're

interested in how point to plane distance is

calculated, see this excellent tutorial.

Argument of History

Okay, so perhaps geometrically this lens model is

wrong. However, we don't live in a perfect world and

our ideal physics equations don't always model

everything. Are and useful for some other

historical reason? Why did computer vision adopt this

model in the first place?

Well, the prevailing mythos is that it has to do with

those darn rectangular pixels! See this

StackOverflow post that tries to justify it. This

preconception has done considerable damage by

perpetuating this model. Rather than place blame

though, lets try to understand where this

Where o as a sub/superscript denotes the object

space coordinate frame, and i is a sub/superscript

denotes the image plane. In essence, is a function

that moves a point in object space (the 3D world) to

image space (the 2D plane of our image). Note that

 in the above equation is constant for all points,

because all points lie in the same image plane.

For the sake of simplicity, let's assume for this

modeling exercise that is known and constant.

This lets us substitute the right-hand side of the

equation with:

Where subscript denotes the transformed point. We

can re-order these equations to directly solve for our

image coordinates:

Remember, this is just a standard projective

transformation. The focal length has to be the same

for every point, because every point lies within our

ideal plane. The question remains: how do we get

 and as they are traditionally modeled? Well, let's

try identifying what these were proposed to fix, and

evaluate how that affects our final model.

Arguments of Scale

The focal length helps define a measure of scale

between our object-space coordinates and our

image-space coordinates. In other words, it is

transforming our real coordinates in object space

 into pixel coordinates in image space

 through scaling. How we define our focal

length has to be based in something, so lets look at

some arguments for how to model it.

7

https://mathworld.wolfram.com/Point-PlaneDistance.html
https://stackoverflow.com/questions/16329867/why-does-the-focal-length-in-the-camera-intrinsics-matrix-have-two-dimensions

Measured physical differences due to

rectangular pixels.

Differences between the clock frequencies of the

analogue CCD / CMOS clock and sampling

frequency of the Digital-Analog Converter (DAC)

in the frame grabber of the camera hardware.

The calibration data set has or had an

insufficient range of values in the set of

object-space points. Put more directly, this is a

lack of depth-of-field in our object points. Often

this occurs when calibration targets are within a

single plane (i.e. when using just a checkerboard,

and all your points are in a single plane).

 and terms. However, now we've tried to

conflate our model between something that does

exist (different pixel sizes) with something that does

not exist (separate distances from the image plane in

the x- and y-directions).

But this assumes that pitch is applied as a simple

multiplicative factor in this way. Modeling it this way

does not typically bode well for the adjustment. The

immediate question is then: is there a better way to

model this? Can we keep the geometric model and

still account for this difference? The answer,

unsurprisingly, is yes. However, to get there we first

have to talk more about this scale difference and

how we might model it directly in the image plane.

Differences in Pixel Pitch

Whenever adding a new term to our model, that term

must describe an effect that is observable

(compared to the precision of our measurements in

practice). It doesn't make sense to add a term if it

doesn't have an observable effect, as doing so would

be a form of over-fitting. This is a waste of time, sure,

but it also risks introducing new errors into our

system, which is not ideal.

So the first questions we have to ask when thinking

about pixel pitch is: how big is the effect, and how

well will we able to observe it? This effect appears

as if there is a scale difference in x and y. This could

be caused by one of a few factors:

misconception comes from. Consider an array of

pixels:

Fig. 2: Two possible arrays of pixels. On the left, we

have an ideal pixel grid, where the pixel pitch in x and

y is the same (i.e. we have a square pixel). On the right,

we have a pixel grid where we do not have equal pitch

in x and y (i.e. we have rectangular pixels).

The reason that and are used is to try and

compensate for the effect of rectangular pixels, as

seen in the above figure. From our previous

equations, we might model this as two different

scales for our pixel sizes in the image plane:

Where is the pixel pitch (scale) of pixels in the x-

direction, and is the pixel pitch (scale) of pixels in

the y-direction. Eventually we want to move these to

the other side as we did before, which gives us:

If we then define:

Then we have the standard computer vision model of

the collinearity equation. From the perspective of

what's going one with this example, it isn't completely

wild to bundle these together. Any least-squares

optimization process would struggle to estimate the

focal length and pixel pitch as separate quantities

for each dimension. From that perspective, it seems

practical to bundle these effects together into

8

are where we actually sample. We can see that the

sampled pixels (in orange) have a different pitch. The

columns (not shown here) are sampled evenly at the

original pixel pitch, but the rows were sampled

incorrectly at the scaled pixel pitch. As a result, we

would observe two different scales in the x and y

directions.

This effect can be overcome today with pixel-

synchronous frame grabbing (e.g. in a global shutter

synchronous camera) or on board digital-analog

conversion. However, this mechanic isn't in every

camera, especially when it comes to cheap off-the-

shelf cameras.

� It may also exist due to the CCD array configuration

in hardware, if pixels have different spacing in x and

y, but that again goes back to the first point where

we have to be able to measure these physical

differences somehow. Nonetheless, the effect is the

same on the end result (our pixel measurements).

The above "array configuration" problem is common

when for example we "interpolate" our pixel data

from a Bayer pattern of multiple pixels. This makes

the spacing uneven as we often have more of one

color pixel (green) than we do of other kinds of pixels

(red, blue). See our guest post on OpenCV's blog for

more info.

Insufficient Depth-of-Field

Even if we assume that our hardware was perfect

and ideal, and that our pixels were perfectly square,

we might still observe some scale difference in x and

y. This could be because our calibration data set

comprises only points in a single plane, and we lack

any depth-of-field within the transformation.

Unfortunately, this ends up appearing as a type of

projective compensation as a result of the first

derivative of our ideal model. Projective

compensation can occur when two parameters (e.g.

in a calibration) influence each other's values

because they cannot be estimated independently.

Measured Physical Differences

We've already discussed what physical differences in

the pixel size looks like (i.e. rectangular pixels). In

general, this is fairly rare. Not because rectangular

pixels don't exist, but because measuring each pixel

is fairly difficult: pixels are really small. For some

cameras, this isn't as difficult; many time-of-flight

cameras, for example, can have pixels with a pitch of

approximately 40μm (a relatively large size). But for

many standard digital cameras, pixel sizes range

from 3μm - 7μm.

If we're trying to estimate differences between the

pitch in x and y, how large do they have to be before

we notice them? If the difference was approximately

10% of a pixel, then for a 3μm pixel we'd need to be

able to observe changes in the image plane of

approximately 0.3μm. This is minuscule. The

difference in pixel size would have to be much larger

in order for us to actually observe such a difference.

Clock-Frequency Differences

Scale differences can also "appear" out of our data

due to frequency differences between the frequency

of the CCD pixel clock and the sampling frequency

of the DAC in the frame grabber of the digital

camera. For a single row of pixels, this frequency

difference would look similar to:

Fig. 3: Example of a signal being read out along a

line of pixels. Each vertical colored line is a pixel. In

the top version, the CCD pixel clock is what

determines the frequency of readout. In the bottom,

the DAC sampling frequency is used, which produces

a perceived difference in the final pixel pitch.

The purple lines are the true locations in the signal

that we should be sampling, but the orange lines are

9

https://opencv.org/in-living-color-or-not/

We maintain the original projective geometry of

the collinearity function.

We model scale differences in x and y in the

image plane directly.

Our calibration process has better observability

between and because we aren't conflating

different error terms together and are instead

modeling them independently based off a

physical model of how our system behaves.

image plane. Nowadays, this would mean that our

pixels are not a rectangle or a square, but rather

some rhombus. This isn't particularly realistic for

modern digital cameras, so we ignore it here.

In any case, we end up with the following additional

parameter to account for scale differences.

Where is a multiplicative factor applied to the x

coordinate. This model has a foundation in the

literature dating back decades.

Is There A Difference Between These Two

Models?

Mathematically, yes! This different model has a

couple things going for it:

That last point is the most important. Remember the

original systems of equations we ended up with:

From this, we bundled together the pixel pitch as if

that was the only effect. This was possible because

when optimizing, it's not possible to observe

differences between two multiplicative factors, e.g.:

This is the point where we would be going off into

the weeds of limits and derivatives, so we will leave

the explanation at that for now. The important

consideration is that even in an ideal world, we might

still actually observe this effect, and so we should

model it!

Scale and Shear in Film

So we've now ascertained that modeling these scale

differences as a factor of and doesn't make

sense geometrically. However, that doesn't mean

that we aren't going to see this in practice, even if

our camera is close to perfect. So how are we to

model this scale effect? Fortunately, the past has an

answer! Scale (and shear) effects were very common

back when cameras used to be analogue and based

on physical film.

Fig. 5: Example of how film is stretched across

a backplate in a traditional analogue camera.

Consider the above scenario where we are

stretching a film of some material across a backplate

in the camera. Tension across the film being

stretched over the backplate was in the x direction,

but not the y direction. This difference in tension

could cause a scale difference in the final developed

image, as that tension is not present when the film is

developed.

Back then, shear effects were also modeled in

addition to scale. This effectively meant that the

tension along one diagonal of the image was not

equal to the tension along the other diagonal. This

would result in a warping or shear effect in the final

10

https://www.sciencedirect.com/science/article/abs/pii/S0924271697000051
https://en.wikipedia.org/wiki/Shear_mapping

way is one key to removing projective compensation

between our parameters and to estimate all of our

model parameters independently. By doing so, we

avoid solving for "unstable" values of and ,

and instead have a model that generalizes beyond

the data we used to estimate it.

At the end of the day, it is easier to get a precise

estimate of:

as a model, over:

Conclusion

Hopefully we've demonstrated why the classical use

of and in most calibration pipelines is the

wrong model to pick. There's always different

abstractions for representing data, but using a single

focal length term better matches the geometry of our

problem, and doesn't conflate errors in the image

plane (scale differences in x and y directions of that

plane) with parameters that describe geometry

outside that image plane (the focal distance). Most

importantly, a single focal length avoids projective

compensation between the solution of that focal

length and measurement errors in our calibration

data set.

Modeling sensors is a difficult endeavor, but a

necessary step for any perception system. Part of

what that means is thinking extremely deeply about

how to model our systems, and how to do so in the

way that best generalizes across every scene,

environment, and application. While we've given a bit

of a taste of what that looks like here for cameras,

this may be a lot if you just want your system to work.

For a shortcut, try the Tangram Vision Platform if you

want to stop worrying about camera models, and

start building the next generation of perception-

based technology today!

If we know v and w as say, 2 and 8 respectively,

there's no way for us to cleanly estimate r and s as

separate quantities. Pairs of numbers that would

make that equality true could be 2 and 2, or 4 and 1,

or any other multitude of factors. In the same way, if

we try to reconstruct our original definitions for

 and we would get:

and similarly for y, where we would get:

However, remember that this only works if scale

differences are the only error factor in our image

plane. This is not often the case. If we have

additional errors and in our system, then

instead we would get:

Rather than modeling our calibration around the

physical reality of our camera systems, this bundles

all of our errors into our focal length terms. This leads

to an instability in our solution for and when

we perform a camera calibration, as we end up

correlating scene or image-specific errors of the

data we collected (that contain or) into

our solution for the focal length. If we don't use

 and , and and are uncorrelated (i.e.

independent variables) then we can easily observe

 independently. In doing so, we have a stronger

solution for our focal length that will generalize

beyond just the data set that was used in the

calibration to estimate it.

Now obviously, you would say, we want to model

 and , so that these are calibrated for in our

adjustment. Modeling our system to match the

physical reality of our camera geometry in a precise

11

https://www.tangramvision.com/tangram-vision-sdk

CAMERA MODELING:

EXPLORING DISTORTION

AND DISTORTION MODELS

Symmetric Radial Distortion

Asymmetric Radial Distortion

Tangential or De-centering Distortion

In this chapter, we want to explore another part of

the camera modeling process: modeling lens

distortions. One assumption behind our pinhole-

projection model is that light travels in straight rays,

and does not bend. Of course, our camera's lens is

not a perfect pinhole and light rays will bend and

distort due to the lens' shape, or due to refraction.

What does lens distortion look like?

Before we get into the actual models themselves, it is

good to first understand what lens distortion looks

like. There are several distinct types of distortions

that can occur due to the lens or imaging setup,

each with unique profiles. In total, these are typically

broken into the following categories:

Each of these is explored independently below. For

each of these distortions, consider the base-case

where there is no distortion:

In the above figure, we represent the image plane as

a grid. As we discuss the different kinds of

distortions, we'll demonstrate how this grid is warped

and transformed. Likewise, for any point (x, y) that we

refer to throughout this text, we're referring to the

12

coordinate frame of the image plane, centered (with origin) at the principal point. This makes the math

somewhat easier to read, and doesn't require us to worry about column and row offsets and when

trying to understand the math.

Symmetric Radial Distortions

Symmetric radial distortions are what are typically imagined when discussing image distortion. Often, this

type of distortion will be characterized depending on if it is positive (pincushion) or negative (barrel)

distortion.

13

Positive (Pincushion) Radial Distortion

It is "positive" because the projected distance

increases beyond the expected locations as

one moves farther away from the center of

the image plane.

Negative (Barrel) Radial Distortion

It is "negative" because the projected

distance decreases from the expected

locations as one moves farther away from the

center of the image plane

While the two distortions might seem as if they are fundamentally different, they are in fact quite alike!

The amount of distortion in the teal lines is greater in magnitude at the edges of our image plane, while

being smaller in the middle. This is why the black and teal lines overlap near the centre, but soon diverge

as distance increases.

Symmetric radial distortion is an after-effect of our lens not being a perfect pinhole. As light enters the

lens outside of the perspective centre it bends towards the image plane. It might be easiest to think of

symmetric radial distortion as if we were mapping the image plane to the convexity or concavity of the

lens itself. In a perfect pinhole camera, there wouldn't be any distortion, because all light would pass

through a single point!

Geometric effect of radial distortion

applied to a point in our image plane

coordinate frame. The effect is

characterized along the radial direction.

https://en.wikipedia.org/wiki/Distortion_(optics)

Since there doesn't tend to be big atmospheric

variances between objects that are close, and since

light is all traveling through the same medium, there

isn't much of an asymmetric refractive effect to

characterize or measure. As a result, this kind of

radial distortion isn't common when calibrating

cameras for these kinds of applications. If we can't

measure it, we shouldn't try to model it!

� You may be left wondering what is meant by "close"

when discussing "atmospheric variance between

objects that are close." In short: it is all relative to the

refractive index of the medium in which you are

imaging. On the ground it is atypical to have

atmospheric effects (we don't see pockets of ozone

on the ground, as an example).

This is not generally true underwater, nor if you are

performing some kind of aerial observation from the

stratosphere or higher. Additionally, even in such

scenarios, if all observed objects are roughly the

same distance away then it doesn't matter since

asymmetric radial distortion characterizes radial

effects as a result of the extra distance light travels

(and refracts) between two objects at different

distances from the camera.

Tangential (De-centering) Distortions

The last kind of distortions to characterize in a

calibration are tangential effects, often as a result of

de-centered lens assemblies. First, an (exaggerated)

example of what these might look like:

 Unlike radial distortion, the image plane is skewed, and

the distance from center is less important. The effect is

exaggerated: most cameras do not have tangential

distortions to this degree.

Cameras with long focal lengths and very-short

relative object distances. e.g. a very-near-field

telephoto lens that is capturing many objects

very close.

Observing objects through a medium of high-

refraction, or differing refractive indices. e.g. two

objects underwater where one is near and one is

far away.

This distortion is characterized as symmetric because

it only models distortion as a function of distance

from the centre of the image plane. The geometric

effect of radial distortion is only in the radial

direction, as characterized by in the above figure.

Asymmetric Radial Distortions

Asymmetric radial distortions are radial distortion

effects much like the above, but unlike symmetric

radial distortion, asymmetric radial distortion

characterizes distortion effects that are dependent

both on the distance from the image centre as well

as how far away the object being imaged is.

Asymmetric radial effects are most pronounced in

two scenarios:

1.

2.

This type of distortion is typically tricky to visualize, as

well as to quantify, because it is dependent on the

environment. In most robotic and automated vehicle

contexts, asymmetric radial distortion is not a great

concern! Why? Well, the difference in distortions

depends on the difference in distances between

objects. This is usually because of some kind of

refractive difference between two objects being

imaged, or because the objects are out of focus of

the camera (i.e. focal length is too large relative to

the object distance).

Neither of the above two scenarios are typical; as

such, asymmetric radial distortion is an important

aspect of modeling the calibration in applications

when these scenarios are encountered.

In most robotic contexts, the primary use for imaging

and visual-odometry is done in relatively short ranges

with cameras that have short focal lengths, and the

primary medium for light to travel through is air.

14

Tangential distortion is sometimes also called de-

centering distortion, because the primary cause is

due to the lens assembly not being centered over

and parallel to the image plane. The geometric

effect from tangential distortion is not purely along

the radial axis. Instead, as can be seen in the figure

above, it can perform a rotation and skew of the

image plane that depends on the radius from the

image center!

Example of lens geometry as it impacts tangential

distortion. In the top graphic, the lens is not parallel with

the image plane, which produces tangential distortion. In

the lower graphic, the lens is offset from the image plane.

While we might normally model this with and for a

single lens, if this is one lens offset among a collection of

lenses, the final effect projects into our image as

tangential or de-centering distortion.

In the above figure, one can see how the lens being

either angled with respect to the orthogonal axis of

the image plane, or shifted, would project an image

into a different spot on the plane. In most cameras

used for robotics or automated vehicle applications,

tangential distortion will usually be significant

enough to model, but is often an order of magnitude

smaller than e.g. symmetric radial distortion.

Compound Distortions

Typically when we think of distortion, we try to break

down the components into their constituent parts to

aid our understanding. However, most lens systems in

the real world will have what is often referred to as

compound distortion. There's no tricks here, it's simply

an aggregate effect of all the previous types of

distortions in some combination. This kind of

Example of a compound distortion profile, which

combines barrel, pincushion, and tangential effects.

distortion is especially prevalent in cameras with

compound lenses, or very complicated lens

assemblies.

Common Distortion Models

While there are more models than what is described

here, the industry has largely standardized on the

following two distortion models.

Brown-Conrady

Brown-Conrady distortion is probably what most think

of as the "standard" radial and tangential distortion

model. This model finds its roots in two | documents,

authored by Brown and Conrady. The documents are

quite old and date up to a century ago, but still form

the foundation of many of the ideas around

characterizing and modeling distortion today!

This model characterizes radial distortion as a series

of higher order polynomials:

In practice, only the through terms are typically

used. For cameras with relatively simple lens

assemblies (e.g. only contain one or two lenses in

front of the CMOS / CCD sensor), it is often

sufficient to just use the and terms.

15

http://close-range.com/docs/Decentering_Distortion_of_Lenses_Brown_1966_may_444-462.pdf
http://close-range.com/docs/Decentering_Distortion_of_Lenses_Brown_1966_may_444-462.pdf
https://doi.org/10.1093%2Fmnras%2F79.5.384

however this will typically take the form:

Because tangential distortion is usually small, we

tend to approximate it using only the first two terms.

It is rare for de-centering to be so extreme that our

tangential distortion requires higher order terms

because that would mean that our lens is greatly de-

centered relative to our image plane. In most cases,

one might ask if their lens should simply be re-

attached in a more appropriate manner.

Kannala-Brandt

Almost a century later (2006, from the original

Conrady paper in 1919), Juho Kannala and Sami

Brandt published their own paper on lens distortions.

The main contribution of this paper adapts lens

distortion modeling to be optimized for wide-angle,

ultra wide-angle, and fish-eye lenses. Brown &

Conrady's modeling was largely founded on the

physics of Seidel aberrations, which were first

formulated around 1867 for standard lens physics of

the time, which did not include ultra wide and fish-

eye lenses.

The primary difference that most folks will notice

using this model lies in symmetric radial distortion.

Rather than characterizing radial distortion in terms

of how far a point is from the image centre (the

radius), Kannala-Brandt characterizes distortion as a

function of the incidence angle of the light passing

through the lens. This is done because the distortion

function is smoother when parameterized with

respect to this angle , which makes it easier to

model as a power-series:

To relate this back to our image coordinate system

(i.e. x and y), we usually need to do some basic

trigonometry:

� The original documents from Brown and Conrady

did not express in just these terms, and in fact the

original documents state everything in terms of "de-

centering" distortion broken into radial and

tangential components. Symmetric radial distortion

as expressed above is a mathematical simplification

of the overall power-series describing the radial

effects of a lens. The formula we use above is what

we call the "Gaussian profile" of Seidel distortion.

Wikipedia has a good summary of the history here,

but the actual formalization is beyond the scope of

what we want to cover here.

Tangential distortion, as characterized by the Brown-

Conrady model, is often simplified into the following

x and y components. We present these here first as

they are probably what most are familiar with:

This actually derives from an even-power series much

like the radial distortion is an odd-power series. The

full formulation is a solution to the following:

Where P(r) is our de-centering distortion profile

function, is the polar angle of the image plane

coordinate, and is the angle to the axis of

maximum tangential distortion (i.e. zero radial

distortion). Expanding this into the general

parameter set we use today is quite involved (read

the original Brown paper!), however this will typically

take the form:

16

http://close-range.com/docs/A_GENERIC_CAMERA_MODEL_AND_CALIBRATION_METHOD_Kannala-Brandt_pdf697.pdf
https://en.wikipedia.org/wiki/Optical_aberration
http://close-range.com/docs/Decentering_Distortion_of_Lenses_Brown_1966_may_444-462.pdf

Above, we've shown the formula for when using

perspective projection, but the main advantage of

the Kannala-Brandt model is that it can support

different kinds of projection by swapping our formula

for , which is what makes the distortion function

smoother for wide-angle lenses. See the following

figure, shared here from the original paper, for a

better geometric description of :

Projection of quantities used in Kannala-Brandt distortion.

Shared from the original paper, "A Generic Camera Model

and Calibration Method for Conventional, Wide-angle, and

Fish-eye Lenses," by J. Kannala and S. Brandt

Kannala-Brandt also aims to characterize other

radial (such as asymmetric) and tangential

distortions. This is done with the following additional

parameter sets:

Overall, this results in a 23 parameter model! This is

admittedly overkill, and the original paper claims as

much. These models, unlike the symmetric radial

distortion, are an empirical model derived by fitting

an N-term Fourier series to the data being

calibrated. This is one way of characterizing it, but

over-parameterizing our final model can lead to poor

repeatability of our final estimated parameters. In

practice, most systems will characterize Kannala-

Brandt distortions purely in terms of the symmetric

radial distortion, as that distortion is significantly

larger in magnitude and will be the leading kind of

distortion in wider-angle lenses.

Overall, Kannala-Brandt has been chosen in many

applications for how well it performs on wide-angle

lens types. It is one of the first distortion models to

successfully displace the Brown-Conrady model after

decades.

Gaussian vs. Balanced Profiles

An astute reader of this article might be thinking

right now: "Hey, <library-that-I-use> doesn't use

these exact models! That math seems off!" You

would mostly be correct there: this math is a bit

different from how many popular libraries will model

distortion (e.g. OpenCV).

Using Brown-Conrady as an example, you might see

symmetric radial distortion formulated as so:

or for Kannala-Brandt:

This probably seems quite confusing, because all

these formulae are a bit different from the papers

presented in this article. The main difference here is

that the distortions have been re-characterized using

what is referred to in photogrammetry as the

Balanced Distortion Profile. Up until now, we have

been presenting distortions using what is referred to

in photogrammetry as the Gaussian Distortion
Profile.

17

https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html
https://docs.opencv.org/3.4/db/d58/group__calib3d__fisheye.html

Example comparing two equivalent distortion models. The left describes the Gaussian distortion profile,

whereas the right hand side describes a Balanced distortion profile. The distortions are effectively the same,

but the model is transformed in the balanced profile scenario. Notice the two different scales in the left

and right figures.

As can be seen in the figure above, the profile and maximum magnitude of distortion are fundamentally

different in the above cases. More specifically, the balanced profile is one way to limit the maximum

distortion of the final distortion profile, while still correcting for the same effects. So how does one go

from one representation to the other? For Brown-Conrady, this is done by scaling the distortion profile by

a linear correction:

18

Re-balancing Correction for Radial Distortion

A set of similar triangles representing the linear correction

done to re-balance the Gaussian distortion profile. Re-

balancing is used to set the distortion to zero at some

radius, or to reconfigure the distortion profile to

characterize itself for a virtual focal length.

All of the above math is derived from basic lens

geometry, and presents a problem if one has to

choose a focal length between and ! So if

you're already using and , removing all focal

length terms from e.g. Kannala-Brandt distortions

may appear to save you from having to make

poor approximations of the quantities involved.

Despite these reasons, there is also one very

important disadvantage. Notably: the balanced

profile with Brown-Conrady distortions introduces a

factor of into the determination of

 through . This may not seem like much, but it

means that we are introducing a correlation in the

determination of these parameters with our focal

length. If one chooses a model where and are

used, then the choice in parameterization will make

the entire calibration unstable, as small errors in the

determination of any of these parameters will bleed

into every other parameter. This is one kind of

projective compensation, and is another reason for

why the blog post we wrote on the subject

suggested not to use this parameterization.

It might also seem that with the Kannala-Brandt

distortion model, we simplify the math by cancelling

out from our determination of . This is true, and it

will make the math easier, and remove a focal length

term from our determination of the Kannala-Brandt

parameters. However, if one chooses a different

distortion projection, e.g. orthographic for a fish-eye

lens:

Then one will quickly notice that the limit of

 is not well defined as , and gives us a value

of . As we've tried to separate our focal

length from our parameters, we've ended up wading

into the territory of complex numbers! Since our max

radius and focal length are often proportional,

 does not suffer from the same breakdown

in values at the extremes.

By parameterizing the model with = 1, as

OpenCV does, it makes the math and partial

derivatives for self-calibration somewhat easier

to implement. This is especially true when using

the Kannala-Brandt model, since doing this

removes the focal length term from = arctan (r),

which means that there is one less partial

derivative to compute.

If you keep your entire self-calibration pipeline in

units of "pixels" as opposed to metric units like

millimeters or micrometers, then the Gaussian

profile will produce values for , , that are

relatively small. On systems that do not have full

IEEE-754 floats (specifically, systems that use 16-

bit floats or do not support 64-bit floats at all),

this could lead to a loss in precision. Some CPU

architectures today do lack full IEEE-754 support

(armel, I'm looking at you), so the re-balancing

could have been a consideration for retaining

machine precision without adding any

specialized code. There is no difference in the

final geometric precision or accuracy of the self-

calibration process as a result of the re-

balancing, as it is just a different model.

Given that, why does this discrepancy exist? There

are a few reasons this could be used. Historically, the

balanced profile was used because distortion was

measured manually through the use of mechanical

stereoplotters. These stereoplotters had a maximum

range in which they could move mechanically, so

limiting the maximum value of distortion made

practical sense.

But what does that mean for today? Nowadays with

the abundance of computing resources it is atypical

to use mechanical stereoplotters in favor of making

digital measurements on digital imagery. There

doesn't seem to be a paper trail for why this decision

was made, so it could just be a historical artifact.

However, doing the re-balancing has some

advantages:

19

https://www.tangramvision.com/blog/camera-modeling-focal-length-collinearity
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Stereoplotter

� It may seem like Kannala-Brandt is a poor choice of model as a result of this. For lenses with a standard

field-of-view, the Brown-Conrady model with the Gaussian profile does a better job of determining the

distortion without introducing data correlations between the focal length and

distortion parameters.

However, the Brown-Conrady model does not accommodate distortions from wide-field-of-view

lenses very well, such as when using e.g. fisheye lenses. This is because they were formulated on the

basis of Seidel distortions, which do not operate the same way as the field-of-view increases past 90°.

The Kannala-Brandt model, while introducing some correlation between our determination of and

our distortion coefficients through , does a better job of mapping distortion with stereographic,

orthographic, equidistance, and equisolid projections. As with anything in engineering there are

trade-offs, and despite the extra correlations, the Kannala-Brandt model will still often provide better

geometric precision of the determined parameters compared to the Brown-Conrady model in many

of these scenarios.

As can be seen, chasing simplicity in the mathematical representations is one way in which our choice

of model can result in unstable calibrations, or nonsensical math. Given that we want to provide the

most stable and precise calibrations possible, we lean towards favouring the Gaussian profile models

where possible. It does mean some extra work to make sure the math is correct, but also means that

by getting this right once, we can provide the most stable and precise calibrations ever after.

Wrapping Up

We've explored camera distortions, some common models for camera distortions, and explored the ways

in which these models have evolved and been implemented over the past century. The physics of optics

has a rich history, and there's a lot of complexity to consider when picking a model.

Modeling distortion is one important component of the calibration process. By picking a good model, we

can reduce projective compensations between our focal length and our distortion parameters, which

leads to numerical stability in our calibration parameters.

Fitting in with our previous camera model, we can formulate this in terms of the collinearity relationship

(assuming Brown-Conrady distortions):

or, with Kannala Brandt distortions:

Did we get too far into the weeds with this? Never fear, we have you covered. If you're worried about the

best model for your camera and would rather do anything else, check out the Tangram Vision Platform.

We're building perception tools that lift this and other burdens off your shoulders.

20

https://www.tangramvision.com/tangram-vision-sdk

In previous chapters, we’ve discussed some of the

modeling approaches we take here at Tangram

Vision, and tried to explore the history of how these

modeling approaches were formed. In "Camera

Modeling: Exploring Distortion And Distortion

Models", we mentioned the topic of projective

compensation. Projective compensation is prevalent

across most forms of optimization, but is so rarely

discussed in a computer vision context.

We aim to provide both a brief intuition behind

projective compensation and examples where it

crops up in camera calibration. All optimization

processes need to consider this topic to some extent,

but it holds particular importance when performing

calibration. Limiting the effects of projective

compensation is one of the easiest ways to ensure

that a calibration is consistent and stable.

What is Projective Compensation?

In optimization, process errors in the estimation of

one parameter project into the solution for other

parameters. Likewise, a change in a parameter’s

solution compensates for errors in the solution of

other parameters. This process of projective

compensation can happen for any number of

parameter errors and solutions in a system.

Visualizing a 2D Example

� Follow along: all of the code used to run the least-

squares problems can be found in the

Tangram Visions Blog Repository.

Let us first consider a Very Simple Problem: we want

to determine the position of a point (the circle)

located between two known points (the triangles).

PROJECTIVE

COMPENSATION

Projective compensation affects many calibration scenarios.

In this chapter, we'll explore what it is, how to detect it, and

how to address it.

21

https://www.tangramvision.com/blog/camera-modeling-exploring-distortion-and-distortion-models-part-i
https://www.tangramvision.com/blog/camera-modeling-exploring-distortion-and-distortion-models-part-ii
https://gitlab.com/tangram-vision/oss/tangram-visions-blog/-/tree/main/2022.04.05_ProjectiveCompensation

Unfortunately, the only way to find is to measure

its position relative to our known points. This means

that we’ll have two distances (and) that

should help us solve our problem.

After our measurements, we determine that = 1.12

and = 1.86. Since we have more observations

(two) than unknowns (one), this problem is over-

determined and we can use a least-squares

optimization to solve. Running this process, we get

the following results:

So far, so good, if not terribly interesting. In fact,

using an optimization process for this might be a bit

overkill, given that we could have just as easily taken

the average from our observations.

Let’s add a twist: suppose that when we were

recording the positions of our known points (the

triangles), we accidentally got the -coordinate of

one of them wrong. Instead of the point being

recorded as being at (8, 0), we recorded the point to

be at (8, 0.6):

Notice that neither or have changed, since

those were honest observations written down

correctly. However, the point that describes is no

longer as tightly determined. Based on our two

observations, could be in either the position of the

pink circle or in the position of the purple circle.

Luckily, our problem is still over-determined (i.e. we

have more observations of the point than we do

unknowns to solve for), so again we can perform a

least-squares optimization:

As can be seen, the solution for has changed

dramatically, and the final result has much larger

residual error (by a factor of 5-6!).

This is projective compensation at work. Errors in

one quantity (the -coordinate of a control point)

are being compensated for by projecting that error

across other quantities that are being estimated (the

 -coordinate of our point of interest,). The least-

squares optimization still ran, and still minimized error

as much as it could, but that error is still in the

optimization and has to be accounted for

somewhere.

The Effect of Data

One way to reduce the impact of projective

compensation is to have more data.

22

points, projective compensation will still occur; we

just can’t do anything about it.

Solving For Projective Compensation

Sadly, the heading above is somewhat of a trick — it

is not really possible to “solve for” or directly quantify

projective compensation. We can detect if it is

occurring, but we cannot quantify the exact amount

of error that is being projected across each

individual parameter; this effect worsens as more

parameters are added to our optimization. As long

as there are any errors within the system, there

will always be some degree of projective

compensation across a global optimization

process.

A least-squares optimization process, as is often

used in perception, is inherently designed to minimize

the square-sum error across all observations and

parameters. Projective compensation is described by

the correlations between estimated parameters, not

the parameters themselves; there aren’t any tools

within the least-squares optimization itself that can

minimize this error any more than is already being

done.

Since we can’t prevent or minimize projective

compensation explicitly, the best we can do is to

characterize it by analyzing the output of an

optimization. In the context of calibration, we’re

usually doing this as a quality check on the final

results, to make sure that the calibration parameters

and extrinsic geometry we have computed were

estimated as statistically independent entities.

The Giveaway: Parameter

Correlations & Covariance

Luckily for us, a least-squares optimization produces

both final parameter estimations and a set of

variances and covariances for those parameter

Let’s say we add two more points, as shown in the

following figure:

These two new points agree that is likely to be on

the pink point, whereas we still have our erroneous

point at (8, 0.6) that would imply should be at the

purple location. How much of an effect does this

have?

If we say = 1.36 and = 1.02, the least-squares

results are then:

This final value for (6.173) does start to approach

our original true value (6.13), but doesn’t quite get

there all the way. While additional data does make

the situation better, it doesn’t entirely ameliorate our

problem.

This demonstrates how projective compensation can

also be an effect of our underlying model. If we can’t

optimize the and -coordinates of our “known”

23

estimations and a set of variances and covariances

for those parameter estimations. These covariances

act as a smoke-signal: if large, we can bet that the

two parameters are highly coupled and exhibiting

projective compensation.

Unfortunately, in our example above, we couldn’t do

this at all! We constrained our problem such that we

were not optimizing for the and -coordinates of

our “known” points. This didn’t stop Projective

Compensation from affecting our final solution, but it

did make it so that we couldn’t observe when it was

occurring since we couldn’t directly relate the errors

we were witnessing back to a correlation between

estimated parameters.

� What constitutes a “high correlation” can be

somewhat up to interpretation. A good rule of thumb

to go by is that if a correlation between two

parameters exceeds 0.7, then it is quite large. The

0.5-0.7 range is large, but not egregious, and

anything less than 0.5 is a manageable quantity. This

is a very broad stroke however, so it doesn’t always

apply!

� This is one reason why Tangram Vision’s calibration

system optimizes the target field / object space in

addition to intrinsics and extrinsics of the cameras in

the system. Without doing so, we wouldn’t be able to

detect these errors or notify users of them at all, but

we’d still have to live with the consequences!

Calibration: Projective Compensation

In Practice

When it comes to camera calibration, certain

projective compensations are well-studied and

understood. We can break down the reasons for

projective compensation into two categories:

A modeling deficiency, e.g. parameters not being

entirely statistically independent.

A data deficiency in our input data.

1.

2.

Minimizing these projective compensations can be as

simple as collecting images from different

perspectives (overcoming modeling deficiency), or by

increasing the size of the observed target field /

checkerboard / targets themselves (overcoming data

deficiency).

We describe each of these two scenarios in a bit

more detail.

Model Deficiencies

Camera calibration is necessarily driven by model

selection. No amount of data will correct your model

if it is introducing parameter correlations due to the

very nature of the math.

For instance, some camera model parameters are

not strictly statistically independent; this means that

changes in value for one can affect the other. In

some scenarios, this is necessary and expected: in

Brown-Conrady distortion, we expect , ,

 etc. to be correlated, since they describe the same

physical effect modeled as a polynomial series.

However, this can be troublesome and unnecessary in

other scenarios such as e.g. and , which are

always highly correlated because they represent the

same underlying value, .

� This was somewhat touched upon in our previous

chapters, where we discussed different modeling

approaches to both projection/focal length, as well

as lens distortions.

For now, we’ll avoid diving too deep into the intuition

behind certain modeling practices, as the specifics

are particular to certain camera types and

configurations. Just know that choosing the right

24

https://www.tangramvision.com/blog/camera-modeling-focal-length-collinearity
https://www.tangramvision.com/blog/camera-modeling-focal-length-collinearity
https://www.tangramvision.com/blog/camera-modeling-focal-length-collinearity
https://www.tangramvision.com/blog/camera-modeling-focal-length-collinearity
https://www.tangramvision.com/blog/camera-modeling-exploring-distortion-and-distortion-models-part-i

There are more cases similar to the above. In such

cases, it is usually sufficient to add more data to the

calibration process. What data to add specifically

relates to the parameter correlations observed, and

are specific to particular kinds of projective

compensation.

� Read more about the perils of projective

compensation in the Tangram Vision Platform

Documentation!

Conclusion

Projective compensation is an effect that prominently

affects many calibration scenarios. From the simple

case described in this article, to much more complex

cases seen in practice, an understanding of what

projective compensation is and how to detect and

address it is fundamental for producing stable and

reliable calibrations.

Tangram Vision helps you reduce projective

compensation where possible, both by providing

support for a selection of models specialized for

different camera types, as well as providing best-in-

class documentation for understanding the right way

to collect data for your needs. We’re wrapping this

all up in the Tangram Vision Platform, with modules

like TVCal for calibration, TVMux for streaming, and

the Tangram Vision User Hub for cloud access to our

tools. And, as always, check out our Open-Source

Software for more perception resources.

 and may be correlated largely with the X

and Y components of the camera’s pose, due to

a lack of variation of pose perspectives in the

data. This results in extrinsic parameters being

highly tied to errors in the determination of the

intrinsic parameters, and vice-versa.

 may be highly correlated to , for the same

reason as above. The way to handle such

correlations is to add data to the adjustment

with the camera rotated 90° about the Z axis, or

rotating the target field / checkerboard 90°.

 may be highly correlated to all of the extrinsic

parameters in the standard model, if all the

observations lie within a single plane. This can

occur if one never moves a calibration board

around much at all. In degenerate cases your

calibration optimization won’t converge, but if it

does, it will be riddled with projective

compensations everywhere, and the variances of

the estimated quantities will be quite large.

model is one way we avoid coupling our parameters

together, and gives us tools to understand the

relationships between the parameters and the data

we’re collecting.

Data Deficiencies

In our Very Simple Problem at the beginning of the

article, we demonstrated both how bad input data

can damage the solution, as well as how additional

observations could improve it (if not perfectly). Our

lack of sufficient input data from that system

prevented us from observing any pair of parameters

independently, i.e. it affected the observability of a

quantity being modeled. Even if a calibration

problem is modeled sufficiently and correctly, it is still

possible for observability to suffer because of bad

data.

Here is a (non-exhaustive) list of scenarios where

projective compensation occurs in camera

calibration due to data deficiencies:

25

https://docs.tangramvision.com/tvcal/advtop/projective_compensation/
https://www.tangramvision.com/sdk/multimodal-calibration
https://www.tangramvision.com/sdk/sensor-stability-and-management
https://hub.tangramvision.com/
https://gitlab.com/tangram-vision/oss

Multi-sensor systems are becoming ever more

common as we seek to automate robotics,

navigation, or create a "smart" world. Any random

assortment of sensors could be sensing any number

of quantities, from barometric pressure, to

temperature, to even more complex sensors that

scan the world around us and produce 3D maps (like

LiDAR). These multi-sensor systems often carry a

great deal of complexity, to be able to learn about

the world to the same degree that we can just by

listening, feeling, and seeing our environment.

An important aspect of multi-sensor systems is how

we relate these assorted sensing platforms together.

If we are reading temperature, how do we use that

value to make decisions? If we have multiple

cameras, how can we tell if an object moves from

the view of one camera to the next? Individual

sensors on their own may be insufficient for

making decisions, and therefore need to be linked

together. There are a handful of ways we can

correlate data, but one of the most powerful ways is

to do so spatially. In this post, we're going to explore

some of the language and tools we use for doing so.

Location, location, location

It's all about location. No, really. All sensors have

some spatial property, and it is by relating sensors

together in this way that we can produce useful

results! Knowing that a sensor measured 30° C isn't

particularly useful on its own. Knowing that a sensor

in your thermostat measured 30° C is a much more

useful distinction. The same holds true for more

sophisticated sensors such as cameras, LiDAR,

accelerometers, etc. These "advanced" sensors are

even measuring spatial quantities, which are the

backbone of modern robotics and automation.

FOUNDATIONS FOR BUILDING CALIBRATION

COORDINATE FRAMES

FOR MULTI-SENSOR

SYSTEMS - PART I

Calibration is an essential tool for any perception-based product.

But, to do it right, you need to ground yourself in math and physics.

26

COORDINATE FRAMES

FOR MULTI-SENSOR

SYSTEMS

Many of the useful aspects of multi-sensor systems

are derived by a spatial understanding of the world

around us. Location helps us decide how related any

two quantities might be; rather, it is in relating things

spatially that our sensors can derive the context of

the world around us. Many of the problems in

integrating new sensors into a robotics or automation

system are therefore coordinate system problems. To

understand this, we first need to talk about

coordinate frames and then discuss how to relate

any two coordinate frames.

Sensors and Coordinate Frames

A coordinate frame or coordinate system is a way for

us to label the positions of some points using a set of

coordinates, relative to the system's origin. A

common type of coordinate frame is a Cartesian

coordinate frame, which labels positions along a set

of perpendicular axes. Consider the following

Cartesian grid, defining a coordinate frame:

27

An example of a Cartesian grid with three points

(p, q, r) plotted within. This grid represents a

coordinate frame or coordinate system with an

origin O and two perpendicular axes x and y.

For a Cartesian frame, we denote the position of our

points as a tuple with the offset from the origin O

https://en.wikipedia.org/wiki/Tuple

Your automated vehicle platform might

reference all cameras (local systems) to an on-

board inertial measurement unit (IMU). The IMU

may represent the "world" frame for that vehicle.

A mobile-mapping system may incorporate

cameras and LiDAR to collect street-view

imagery. The LiDAR system, which directly

measures points, may be treated as your world

frame.

� Typically, a Cartesian frame is represented as a

"right-handed" coordinate frame. The distinction

isn't super important, and the idea of left vs. right-

handed frames can be extremely confusing at first.

More often than not, you won't see a left-handed

Cartesian coordinate system that uses x / y / z

terminology. Moreover, right-handed frames are

more-or-less the standard for conventional robotics

sensing. All you need to know is that for what we're

doing here we will be representing all our math for

right-handed, Cartesian frames.

In order to spatially relate our sensors together, we

need to give each sensor its own local coordinate

frame. For a camera, this might be where the camera

lens is centered over the image plane, or what we

call the principal point. For an accelerometer, this

may be the centre of where accelerations are read.

Regardless of where this coordinate frame is defined

though, we need to have a "local" frame for each of

these sensors so that we can relate these together.

The "World Frame"

When relating multiple coordinate frames together, it

is often helpful to visualize a "world" frame. A world

frame is a coordinate frame that describes the

"world," which is a space that contains all other

coordinate frames we care about. The world frame is

typically most useful in the context of spatial data,

where our "world" may be the real space we inhabit.

Some common examples of "world" frames that get

used in practice:

O: The origin of our coordinate frame. This tells

us to what point every point is relative. Every

point is relative to the origin, and the origin can

be defined as a point that has zero offset

relative to itself.

x- and y-axes: Every coordinate frame will have a

number of axes used to describe the various

dimensions of the coordinate system. For now,

we're sticking with 2-dimensional (2D) data, so

we'll stick to labeling our axes as the x- and y-

axes. These could actually be called anything,

like the a- and b-axes, but the typical convention

for Cartesian coordinate frames is to name them

x and y.

Axes order: oftentimes you'll hear about left-

handed vs. right-handed coordinate systems.

There are ways to distinguish the difference, but

we're choosing to gloss over that for now in this

primer.

along each of the axes. In the above example, our

point p has a coordinate of (2, 2), while q has a

coordinate of (3, 4). For any point in the system, you

can describe its coordinate as for a point p,

where is the offset from the origin O along the

direction of the x-axis and is the offset from the

origin O along the direction of the y-axis.

� Other types of coordinate frames exist as well,

including polar coordinate systems and spherical

coordinate systems. Map projections such as

Mercator or Gnomonic maps are also a type of

projected coordinate system, that exist as a handy

way to plot and interpret the same data in different

ways. For now however, we will focus on Cartesian

coordinate frames, as they tend to be the most

commonly used coordinate frame to represent and

interpret spatial data.

From the example above, we can pick out a few

salient components of our Cartesian frame:

28

https://mathworld.wolfram.com/PolarCoordinates.html
https://mathworld.wolfram.com/SphericalCoordinates.html
https://en.wikipedia.org/wiki/Mercator_projection
https://en.wikipedia.org/wiki/Gnomonic_projection

The world frame as shown in the figure above is

useful as it demonstrates a coordinate frame in

which we can reference the coordinates of

and relative to the world frame. All coordinate

systems are relative to some position; however, if

 and are only relative to themselves, we have

no framework with which to relate them. So instead,

we relate them within our world frame, which helps

us visualize the differences between our coordinate

systems A and B.

Relating Two Frames Together

In the previous figure, we showed off two local

frames A & B inside our world frame W. An important

aspect in discussing coordinate frames is

A world frame, denoted by the orange and

teal axes with origin O_W. This world frame

contains two "local" coordinate frames A and

B, with origins and . A common point

p is also plotted. This point exists in all three

coordinate frames, but is only listed with a

coordinate for p_W, which is the point's

coordinates in the world frame.

establishing a consistent notation in how we refer to

coordinate frames and their relationships.

Fortunately, mathematics comes to the rescue here

as it provides some tools to help us derive a concise

way of relating coordinate frames together.

Let's suppose we still have two coordinate frames we

care about, namely coordinate frame A and

coordinate frame B. We have a coordinate in frame

A, , that we want to know the location of in frame

B (i.e. we are searching for). We know that this

point can exist in both frames, and therefore there is

a functional transformation to convert to from

. In mathematics, we express relations as a function:

We don't know what this function is yet, but we will

define it soon! It's enough to know that we are

getting a point in coordinate frame B from

coordinate frame A. The function is what we

typically call a transform. However, saying "the

coordinate frame B from coordinate frame A

transform" is a bit wordy. We tend to lean towards

referring to this transform as the B from A transform,

or B←A transform for brevity.

Notice the direction here is not A to B, but rather B

from A. While this is a bit of a semantic distinction,

the latter is preferred here because of how it is later

expressed mathematically. We will eventually define

a transformation matrix, , that describes the

transform above. The superscript and subscript are

conventionally written this way, denoting the B←A

relationship. Keeping many coordinate frames

consistent in your head can be difficult enough, so

consistency in our notation and language will help us

keep organized.

Now that we have a notation and some language to

describe the relationship between two coordinate

In the world frame, we can co-locate and relate

points from different local systems together. See the

below figure, which shows how a point p in the world

frame can be related between multiple other frames,

e.g. A and B. While we may only know the

coordinates for a point in one frame, we eventually

want to be able to express the coordinates of that

point in other coordinate frames as well.

29

frames. Fortunately, there's only 3 categories of

transformations that we need to care about:

translations, rotations, and scale!

Translation

Translations are the easiest type of coordinate

transform to understand. In fact, we've already taken

translation for granted when defining points in a

Cartesian plane as offsets from the origin. Given two

coordinate systems A and B, a translation between

the two might look like this:

Pretty simple addition, which makes this type of

transformation easy!

Rotation

Rotations are probably the most complex type of

transform to deal with. These transforms are not

fixed offsets like translations, but rather vary based

on your distance from the origin of your coordinate

frame. Given two coordinate frames A and B, a

rotation might look like so:

30

A world frame that shows two local frames,

A and B, which are related to each other

by a translation. This translation, T^B_A, is

just a set of linear offsets from one

coordinate frame to the other.

Mathematically, we might represent this as:

A world frame that shows two local frames,

A and B, which are related to each other

by a rotation. This rotation, R^B_A, is a

linear transformation that depends on the

angle of rotation, \theta

In the 2D scenario like shown above, we only have a

single plane (the XY-plane), so we only need to worry

about a single rotation. Mathematically, we would

represent this as:

� This rotation matrix assumes that positive rotations

are counter-clockwise. This is what is often referred

to as the right-hand rule.

https://en.wikipedia.org/wiki/Right-hand_rule#Curve_orientation_and_normal_vectors

To get a point from we then do:

The matrix multiplication is a bit more involved this

time, but remains quite straightforward. Fortunately

this is the most difficult transformation to formulate,

so we're almost there!

Scale

The final type of transformation we need to consider

is scale. Consider the following diagram, similar to

the ones we've shown thus far:

The two frames are again translated, but this is not

important for what we're looking at here. Notice that

the axes of A are a different length than the axes of

B. This is a visual trick to demonstrate what scale

transformations do between two coordinate frames.

An example of a real-world scale issue might be a

unit conversion. Namely, B might be in units of

meters, while A is in units of millimeters. This scale

difference will change the final results of any point

 relative to , by a multiplicative factor. If we

have an isometric scale, we might represent this

mathematically as:

Now, in this way, we are using a scalar value to

represent an isometric scale across both and

 axes. This is not always the case, as sometimes our

scale is not isometric. In robotics, we typically treat

most of our sensors as having an isometric scale, but

it is worth showing the mathematics for how one

might generalize this if the scale in is

different from the scale in :

By utilizing this more general matrix equation over

the scalar form above, it is easy to abstract between

isometric scales (where), and affine

transforms. Fortunately it's often very easy to get

away with assuming that our scale is isometric.

31

A world frame that shows two local frames,

A and B, which are related to each other

by both a translation and scale. The

translation exists to compare A and B side-

by-side, but the difference in axes lengths

between the A and B frames is a visual trick

used to demonstrate what a scale factor

might look like, assuming that two

coordinate frames are compared in

reference to a world frame.

Rotation

Scale

Translation

Putting It All Together

Now that we know the three types of transforms, how

do we put it all together? Any two coordinate frames

A and B could have any number of translations,

rotations, and scale factors between them. A

transform in the general sense incorporates all three

of these operations, and so we need a more formal

way to represent them. Using our previous notation,

we can formulate it as follows:

Keep in mind the order here:

1.

2.

3.

With all the multiplications going on, this can get very

confusing very quickly! Moreover, remembering the

order every time can be pretty difficult. To make this

more consistent, mathematicians and engineers

often try to represent it as a single matrix

multiplication. This way, the order is never confusing.

We call this single matrix . In plain English, we

typically call this the B from A transformation matrix,

or just the B←A transform. Unfortunately, however,

you'll notice that not every operation in our above

equation is a matrix multiplication, so the following

doesn't work!

This would be fine for rotation and scale, but doesn't

allow us to do anything about translations.

Fortunately, we can work around this somewhat by

leveraging a small trick of mathematics: increasing

the dimensionality of our problem. If we change

some of our definitions around, we can create a

nuisance or dummy dimension that allows us to

formulate as:

Notice that our last dimension on each point remains

equal to 1 on both sides of the transformation (this is

our nuisance dimension)! Additionally, the last row of

 is always zeros, except for the value in the

bottom right corner of the matrix, which is also a 1!

� If you want to learn more about the trick we're

applying above, search for homogeneous

coordinates or projective coordinates!

Try it for yourself with these Python functions! Find

this and the code used to generate our above figures

in our Tangram Visions Blog repository.

What was it all for?

Knowing how to express relationships between

coordinate frames both in plain English (I want the

B←A or B from A transformation) and in mathematics

(I want helps bridge the gap for how we relate

sensors to each other. In a more concrete example,

suppose we have two cameras: depth and color. We

might want depth←color, so that we can fuse

semantic information from the color camera with

spatial information from the depth camera.

Eventually, we want to then relate that information

back to real world coordinates (e.g. I want

32

https://github.com/Tangram-Vision/Tangram-Vision-Blog

world←depth).

Coordinate frames and coordinate systems are a key

component to integrating multi-sensor frameworks

into robotics and automation projects. Location is of

the utmost importance, even more when we consider

that many robotics sensors are spatial in nature.

Becoming an expert in coordinate systems is a path

towards a stable, fully-integrated sensor suite on-

board your automated platform of choice.

While these can be fascinating challenges to solve

while creating a multi-sensor-equipped system like a

robot, they can also become unpredictably time

consuming, which can delay product launches and

feature updates. The Tangram Vision Platform

includes tools and systems to make this kind of work

more streamlined and predictable.

33

https://www.tangramvision.com/

In the previous chapter, we covered how rotations,

scales, and translations work for 2D coordinate

frames. The most important takeaway was that we

were able to both think conceptually about

transformations, as well as express them in plain

English (I want the depth from color transform) and

mathematically (I want , or depth ← color).

While 2D coordinate frames are common in

mathematics, we interact with our world in three

dimensions (3D). In particular, many of the sensors

that Tangram Vision deals with every day have to be

related to each other in 3D space. This means that

most of the coordinate systems we are interested in

tend to be expressed in three dimensions as well.

Relating two 3D coordinate systems together must be

done regardless of how complex your sensor system

is. That includes anything from orienting two cameras

into the same frame, to combining LiDAR with other

sensors. This means that the 2D transforms we

derived last time won't be enough.

In this article, we aim to extend the previous

equations we formulated for 2D transforms and

derive equivalent 3D transforms. Let's get started!

You can follow along here, or at the full codebase at

the Tangram Visions Blog repository. Let's get

started!

34

Rotate, Scale, Translate:

Coordinate frames for multi-

sensor systems (Part 2)

COORDINATE SYSTEMS, AND

HOW TO RELATE MULTIPLE

COORDINATE FRAMES

TOGETHER. (PART 2)

Translation between two 3D coordinate frames, A and B.

https://gitlab.com/tangram-vision-oss/tangram-visions-blog/-/tree/main/2021.01.21_CoordinateFrames

Translation

Just like last time, we may have an isometric

scale , or we might have an affine

transform of some form (. . Fortunately,

our scale matrix remains simple to write and apply!

or, alternatively with projective coordinates:

35

Again, it comes out to be simple addition, which

keeps things easy.

Fortunately, this model still works! In 3D, our points

have three Cartesian axes: X, Y, and Z. Ultimately,

we are looking for one of the following forms:

Extending Our

Transformations to 3D

Recall that we try to express the entire

transformation process as a function applied over a

point. We started with the following equation:

As we did last time, let's look at each of these

coordinate transformations independently, and then

see how they combine together!

Just like last time, translations are the easiest

transformations to understand. We add an additional

translation dimension just as we did with our

definition of points above.

Scale

Scaling to an additional dimension changes the final

equation similarly to how it did with translation. We

add an extra element to the final matrix, producing:

Scaling between two 3D coordinate frames, A and B.

Notice the different lengths of the axes between A

and B.

https://en.wikipedia.org/wiki/Homogeneous_coordinates

Notice we called this the matrix above, as it

encodes rotations of angle about the Z axis. The

challenge we find ourselves with is that this matrix

can only rotate about the Z axis! It isn't possible to

perform any rotations of points in the XZ or YZ

planes with this matrix. For these, we would need to

rotate about the Y and X axes, respectively. For this

we define two new rotation matrices, and

 .

Rotation is again going to be the most complex out

of our transformations. First, let's extend our rotation

matrix from last time into three dimensions. Recall

that we were rotating the X and Y dimensions (i.e.

we were rotating about the Z axis):

Rotation about the Z axis between two 3D

coordinate frames A and B, centered on the same

origin point. See the rotation angle κ between the

respective axes of the two coordinate frames.

36

Rotation

Rotation about the Y axis between two 3D coordinate

frames A and B, centered on the same origin point. See the

rotation angle ϕ between the respective axes of the two

coordinate frames.

Rotation about the X axis between two 3D coordinate

frames A and B, centered on the same origin point. See the

rotation angle ω between the respective axes of the two

coordinate frames.

Each of these rotation matrices rotate about their respective axes by some angle

Colloquially, these are often referred to as roll, pitch, and yaw angles. We often refer to these as a

set of Euler Angles when referring to the entire set. With all these matrices, we're able to encode any arbitrary

rotation between two coordinate frames. The question is: how do we combine them?

For starters, lets extract the angle from this matrix above:

This is fine, except when (90° or 270°). If we expand the matrix to actual values assuming

that , we get:

This means that regardless of whether we change we have the same effect. Likewise, it means that

there is no way to individually extract these two values as we cannot differentiate between the two of them!

This is what is meant when someone states that there is a gimbal lock.

Gimbal lock motivates how one might choose a parameterization, to try and avoid it. There are 12 in all, as

described in this paper from NASA. The most common choices of parameterization you might see are

 the parameterizations, but others such as are also quite common. When choosing

a parameterization, remember that the resulting rotation matrix is just a combination of the individual

, and rotation matrices that were defined above!

One aspect that can drive which parameterization you pick is a concept known as gimbal lock. Gimbal lock is

a singularity in our parameterization that makes it impossible to extract our original Euler Angles from a

combined rotation matrix. That may not make a lot of sense, so here's an example:

Suppose we decided to choose the X Y Z parameterization, this would look like:

Unfortunately, the answer is not so clear. Different systems may use different conventions to combine these

rotation matrices. While the end result may be the same, the underlying angles and matrix components will not

be. Typically, picking an order to apply these matrices is called picking a parameterization. Which

parameterization you pick is likely to be driven by your application.

37

This is quite the equation! To make things easier, we might instead write the rotation matrix with some

placeholders so that we don't have to write every equation every time (and risk getting it wrong).

https://ntrs.nasa.gov/citations/19770024290
http://www.math.umd.edu/~immortal/MATH431/lecturenotes/ch_gimballock.pdf

Rotation

Scale

Translation

Just like last time, the order is:

1.

2.

3.

And just like last time, we can use projective or

homogeneous coordinates to convert this into a

single matrix:

� There are other parameterizations for rotations

(such as unit quaternions or the geometric algebra)

that don't have this problem with gimbal lock at all.

We haven't covered these, but they provide an

alternative if you're finding this 3D representation of

transformations problematic.

Like before, let's put this all together! Regardless of

how we parameterize our rotations, we get the

following relationship:

38

Putting it all together

Just as in the 2D case, the final dimension on our

points remains 1, even after multiplying by !

Moving from 2D to 3D

Relating 3D coordinate frames is a cornerstone

component of any multi-sensor system. Whether we

are relating multiple cameras, or stitching disparate

sensing technologies together, it is all about location

and where these sensors are relative to one another.

Unlike the 2D case, we discovered that 3D rotations

need to consider the problem of parameterization to

avoid a gimbal lock. This is something that all sensing

systems need to consider if they want to use the

matrix representation that we provide here. In fact,

Tangram Vision uses these same mathematics when

reasoning about device calibration in systems with

much more complexity.

The world of coordinates and mathematics can be

both fascinating and complex when working in multi-

sensor environments. However, if this all seems like

complexity that you would rather trust with experts,

The Tangram Vision Platform includes tools and

abstractions that simplify optimizing multi-sensor

systems for rapid integration and consistent

performance.

In this article we demonstrated how our language

and mathematical models for understanding 2D

coordinate frames can easily and readily be

extended into three dimensions with minimal effort.

Most importantly, we managed to preserve our ability

to talk about coordinate transformations at a high

level in English (I want the B from A transform) as well

as mathematically (I want).

https://www.tangramvision.com/
https://www.tangramvision.com/

� Warning: Math.

In the world of automated vision, there's only so much

one can do with a single sensor. Optimize for one

thing, and lose the other; and even with one-size-

fits-all attempts, it's hard to paint a full sensory

picture of the world at 30fps.

We have a rough idea of our current state (e.g.

the position of our robot), and we have a model

of how that state changes through time.

We have multiple sensor modalities, each with

their own data streams.

All of these sensors give noisy and uncertain

data.

So let's review our predicament:

Nonetheless, this is all that we have to work with. This

seems troubling; we can't be certain about anything!

Instead, what we can do is minimize our uncertainty.

Through the beauty of mathematics, we can combine

all of this knowledge and actually come out with a

more certain idea of our state through time than if

we used any one sensor or model.

39

Or, how to Kalman filter your way out

ONE-TO-MANY SENSOR

TROUBLE, PART 1

We use sensor combinations to overcome this

restriction. This intuitively seems like the right play;

more sensors mean more information. The jump from

one camera to two, for instance, unlocks binocular

vision, or the ability to see behind as well as in front.

Better yet, use three cameras to do both at once.

Add in a LiDAR unit, and see farther. Add in active

depth, and see with more fidelity. Tying together

multiple data streams is so valuable this act of

Sensor Fusion is a whole discipline in itself.

Yet this boon in information often makes vision-

enabled systems harder to build, not easier. Binocular

vision relies on stable intrinsic and extrinsic camera

properties, which cameras don't have. Depth sensors

lose accuracy with distance. A sensor can fail

entirely, like LiDAR on a foggy day.

Guessing

...just kidding. Though you would be surprised how

many times an educated guess gets thrown in! No,

we're talking...

This means that effective sensor fusion involves

constructing vision architecture in a way that

minimizes uncertainty in uncertain conditions.

Sensors aren't perfect, and data can be noisy. It's the

job of the engineer to sort this out and derive

assurances about what is actually true. This

challenge is what makes sensor fusion so difficult: it

takes competency in information theory, geometry,

optimization, fault tolerance, and a whole mess of

other things to get right.

So how do we start?

Kalman filters

This � is the magic of Kalman filters.

https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1

Let's pretend that we're driving an RC car in a

completely flat, very physics-friendly line.

There are two things that we can easily track about

our car's state: its position and velocity .

We can speed up our robot by punching the throttle,

something we do frequently. We do this by exerting a

force on the RC car's mass , resulting in an

acceleration (see Newton's Second LawS of

Motion).

With just this information, we can derive a model for

how our car will act over a time period using some

classical physics:

We can simplify this for ourselves using some

convenient matrix notation. Let's put the values we

can track, position and velocity , into a state

vector:

 is called our prediction matrix. It models

what our system would do over , given its

current state.

 is called our control matrix. This relates the

forces in our control vector to the state

prediction over .

By rolling up these terms, we get some handy

notation that we can use later:

40

Phase 1: Prediction

Any error we might get in an observation is

inherently random; that is, there isn't a bias

towards one result.

Errors are independent of one another.

However, we're not exactly sure whether or not our

state values are true to life; there's uncertainty! Let's

make some assumptions about what this uncertainty

might look like in our system:

These two assumptions mean that our uncertainty

follows the Central Limit Theorem! We can therefore

assume that our error follows a Normal Distribution,

aka a Gaussian curve.

� We will use our understanding of Gaussian curves

later to great effect, so take note!

Model Behavior

...and let's put out applied forces into a control

vector that represents all the outside influences

affecting our state:

Now, with a little rearranging, we can organize our

motion model for position and velocity into

something a bit more compact:

Uncertainty through PDFs

We're going to give this uncertainty model a special

name: a probability density function (PDF). This

represents how probable it is that certain states are

the true state. Peaks in our function correspond to

the states that have the highest probability of

occurrence.

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Gaussian_function

Our state vector represents the mean of this

PDF. To derive the rest of the function, we can model

our state uncertainty using a covariance matrix :

There are some interesting properties here in . The

diagonal elements represent how much

these variables deviate from their own mean. We call

this variance.

The off-diagonal elements of express

covariance between state elements. If is zero,

for instance, then we know that an error in velocity

won't influence an error in position. If it's any other

value, we can safely say that one affects the other in

some way. PDFs without covariance terms look like

Figure 1 above, with major and minor axes aligned

with our world axes. PDFs with covariance are

skewed off-axis depending on how extreme the

covariance is:

We know how to predict , but we also need the

predicted covariance if we're going to describe

our state fully. We can derive it from using some

(drastically simplified) linear algebra:

Notice that got tossed out! Control has no

uncertainty that we can directly observe, so we can't

use the same math that we did on .

However, we can factor in the effects of noisy

control inputs another way: by adding a process

noise covariance matrix :

Fig. 1. Our first PDF

Variance, covariance, and the related correlation of

variables are valuable, as they make our PDF more

information-dense.

41

Fig. 2. A PDF with non-zero covariance. Notice the 'tilt' in

the major and minor axes of the ellipsis.

We have now derived the full prediction step:

Yes, we are literally adding noise.

Prediction step, solved?

Our results are... ok. We got a good guess at our new

state out of this process, sure, but we're a lot more

uncertain than we used to be!

Fig. 3. Starting state PDF in red, predicted state PDF in

blue. Notice how the distribution is more spread out. Our

state is less certain than before.

https://en.wikipedia.org/wiki/Covariance_matrix

There's a good reason for that: everything up to this

point has been a sort of "best guess". We have our

state, and we have a model of how the world works;

all that we're doing is using both to predict what

might happen over time. We still need something to

support these predictions outside of our model.

Something like sensor measurements, for instance.

the motivation for using a Kalman filter in the first

place

a toy use case, in this case our physics-friendly

RC car

the Kalman filter prediction step: our best guess

at where we’ll be, given our state

We’re getting there! So far, this post has covered

42

We’ll keep it going in the next chapter by bringing in

our sensor measurements (finally). We will use these

measurements, along with our PDFs, to uncover the

true magic of Kalman filters!

Spoiler: it’s not magic. It’s just more math.

While we were busy predicting, the GPS on our RC

car was giving us positional data updates. These

sensor measurements give us valuable

information about our world.

However, and our state vector may not

actually correspond; our measurements might be in

one space, and our state in another! For instance,

what if we're measuring our state in meters, but all of

our measurements are in feet? We need some way to

remedy this.

...leaving us with predicted measurements that we

can now compare to our sensor measurements .

Note that H is entirely dependent on what's in your

state and what's being measured, so it can change

from problem to problem.

Fig. 1: Moving our state from state space (meters, bottom

left PDF) to measurement space (feet, top right PDF).

These equations represent the mean and

covariance of our predicted measurements.

For our RC car, we're going from meters to feet, in

both position and velocity. 1 meter is around 3.28 ft,

so we would shape H to reflect this:

Let's handle this situation by converting our state

vector into our measurement space using an

observation matrix H:

43

Phase 2: Updating Your Prediction

ONE-TO-MANY SENSOR

TROUBLE, PART 2

From State to Sensors

Our RC car example is a little simplistic, but this

ability to translate our predicted state into

predicted measurements is a big part of what

makes Kalman filters so powerful. We can effectively

compare our state with any and all sensor

measurements, from any sensor. That's powerful stuff!

� The behavior of H is important. Vanilla Kalman filters

use a linear Ft and H ; that is, there is only one set of

equations relating the estimated state to the

predicted state (), and predicted state to

predicted measurement (H). If the system is non-

linear, then this assumption doesn't hold. and H
might change every time our state does! This is where

innovations like the Extended Kalman Filter (EKF) and

the Unscented Kalman Filter come into play. EKFs are

the de facto standard in sensor fusion for this reason.

https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://en.wikipedia.org/wiki/Extended_Kalman_filter#Unscented_Kalman_filters

We're not out of the woods yet; we still need to

derive the math! Suffice to say... it's a lot. The basic

gist is that multiplying two Gaussian functions results

in its own Gaussian function. Let's do this with two

PDFs now, Gaussian functions with means and

variances . Multiplying these two PDFs leaves us

with our final Gaussian PDF, and thus our final mean

and covariance terms:

ISN'T THAT NEAT.

Let's add one more term for good measure: , our

sensor measurement covariance. This represents the

noise from our measurements. Everything is uncertain,

right? It never ends.

We multiply them together! The product of two

Gaussian functions is just another Gaussian function.

Even better, this common Gaussian has a smaller

covariance than either the predicted PDF or the

sensor PDF, meaning that our state is now much more

certain.

44

When we substitute in our derived state and

covariance matrices, these equations represent the

update step of a Kalman filter.

The Beauty of PDFs

 and , which make up the Gaussian PDF

for our predicted measurements

 and , which make up the PDF for our sensor

measurements

Since we converted our state space into the

measurement space, we now have 2 comparable

Gaussian PDFs:

The strongest probability for our future state is the

overlap between these two PDFs. How do we get this

overlap?

Fig. 2: Our predicted state in measurement space is in red.

Our measurements z are in blue. Notice how our

measurements z have a much smaller covariance; this is

going to come in handy.

Update Step, Solved.

Of course, if this is too much and you'd rather do…

anything else, Tangram Vision is developing solutions

to these very same problems! We're creating tools

that help any vision-enabled system operate to its

best. If you like this article, you'll love seeing what

we're up to.

This is admittedly pretty painful to read as-is. We can

simplify this by defining the Kalman Gain :

With in the mix, we find that our equations are

much kinder on the eyes:

We've done it! Combined, and create our

final Gaussian distribution, the one that crunches all

of that data to give us our updated state. See how

our updated state spikes in probability (the blue spike

in Fig. 3). That's the power of Kalman Filters!

Well... do it again! The Kalman filter is recursive,

meaning that it uses its output as the next input to

the cycle. In other words, is your new ! The

cycle continues in the next prediction state.

Kalman filters also allow for the selective use of

data. Did your sensor fail? Don't count that

sensor for this iteration! Easy.

They are a good way to model prediction. After

completing one pass of the prediction step, just

do it again (and again, and again) for an easy

temporal model.

� See reference (Bromiley, P.A.) for an explanation on

how to multiply two PDFs and derive the above. It

takes a good page to write out; you've been warned.

45

The code used to render these graphs and figures is

hosted on Tangram Vision's public repository for the

blog. Head down, check it out, and play around with

the math yourself! If you can improve on our

implementations, even better; we might put it in here.

And be sure to tweet at us with your improvements.

Fig. 3: Original state in green. Predicted state in red.

Updated final state in blue. Look at how certain we are

now! Such. Wow.

What now?

They extend to anything that can be modeled

and measured. Automotives, touchscreens,

econometrics, etc etc.

Your sensor data can come from anywhere. As

long as there's a connection between state and

measurement, new data can be folded in.

Kalman filters are great for all sorts of reasons:

Code Examples and Graphics

Further Reading

Faragher, R. (2012, September). Understanding

the Basis of the Kalman Filter.

https://drive.google.com/file/d/1nVtDUrfcBN9z

wKlGuAclK-F8Gnf2M_to/view

Bzarg. How a Kalman filter works, in pictures.

https://www.bzarg.com/p/how-a-kalman-filter-

works-in-pictures/

Teammco, R. Kalman Filter Simulation.

https://www.cs.utexas.edu/~teammco/misc/kal

man_filter/

Bromiley, P.A. Products and Convolutions of

Gaussian Probability Density Functions.

https://bit.ly/3nGDewe [PDF]

If this article didn't help, here are some other sources

that dive into Kalman Filters in similar ways:

1.

2.

3.

4.

http://www.tangramvision.com/
http://www.tangramvision.com/
https://bit.ly/3nGDewe
https://github.com/Tangram-Vision/Tangram-Vision-Blog
https://twitter.com/TangramVision
https://drive.google.com/file/d/1nVtDUrfcBN9zwKlGuAclK-F8Gnf2M_to/view
https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
https://www.cs.utexas.edu/~teammco/misc/kalman_filter/
https://bit.ly/3nGDewe

47

61

/ Building Calibration From Scratch (Using Rust)

/ Reverse Engineering Fiducial Markers For Perception

SECTION II:

CALIBRATION

IMPLEMENTATION

47

There are many existing tools one can use to

calibrate a camera. These exist both as standalone

programs and SDK libraries. Given this, why would

you want to write your own camera calibration

module? There are some real reasons to do so: for

instance, the existing tools may not support the

hardware platform or parametric camera models you

want to use.

Aside from any practical motivations, it’s useful to

work through the process of camera calibration to

gain a better understanding of what’s happening

when you use a tool like OpenCV.

Camera calibration is generally understood to be the

process of estimating the characteristics of a

camera that affect the formation of images of real

3D scenes. Principle among these is the effective

focal length of the lens which gives images a wide-

angle or telescopic character for a given camera

position and scene-being-image.

There are a wide range of models used to describe a

camera’s image formation behavior. Some are

relatively simple with mostly-linear equations of few

components and are only adequate to describe

simple camera systems. Others are highly non-linear,

featuring high-degree polynomials with many

coefficients.

Regardless of the camera model, one can use the

techniques in this guide to calibrate a single camera.

What's involved in creating a complete calibration pipeline? In

this in-depth guide, we'll cover the theory behind calibration,

the mathematics and principles, and then we'll show the results

from a self-built calibration module.

BUILDING

CALIBRATION

FROM

SCRATCH*

*Using Rust!

The full codebase for this tutorial can be found

at the Tangram Visions Blog Repository.

Motivation, Objectives, & Background

https://www.opencv.org/
https://gitlab.com/tangram-vision/oss/tangram-visions-blog/-/tree/main/2021.05.28_CalibrationFromScratch

Light in a 3D scene hits the various objects

therein and scatters.

Some of that scattered light enters the camera’s

aperture.

If a lens is present, the lens will refract (i.e.

redirect) the light rays directing them to various

pixels which measure the light incident to them

during the exposure period.

This is especially useful when trying to understand

why one of these tools may not be producing a

suitable calibration.

Camera calibration is built on a foundation of linear

algebra, 3D geometry and non-linear least squares

optimization. One need not be an expert in all of

these areas, but a basic understanding is necessary.

To keep the blog post a reasonable length, some

knowledge of linear algebra, the construction and

use of 3D transformations, multivariable calculus and

optimization (being able to understand a cost

function should suffice) techniques is assumed for

the result of the article.

The code snippets will be in Rust and we’ll be using

the NAlgebra linear algebra crate and the argmin

optimization crate. The entire example can be found

here.

Image Formation

To begin, we need a mathematical model of the

formation of images. This provides a compact

formula which approximately describes the

relationship of 3D points in the scene to their

corresponding 2D pixels in the image, aka image

formation or projection. Projection is generally

thought of in the following way:

One such model is called the pinhole model which

describes image formation for pinhole cameras and

camerae obscurae. We will use this model for this

post due to its simplicity.

The pinhole model can work for cameras with simple

lenses provided they’re highly rectilinear, but most

cameras exhibit some sort of lens distortion which

isn’t captured in a model like this. It's worth noting

that most camera models ignore a lot of the real-life

complexity of a lens (focus, refraction, etc).

Pinhole Background

In the pinhole model, the camera is said to be at the

origin of a camera coordinate system shown in the

diagram below. To image a 3D point, you draw a line

between the point in question and the camera and

see where that line intersects the virtual image plane,

which is a model stand-in for the camera's physical

sensor. This intersection point is then shifted and

scaled according to the sensor's resolution into a

pixel location. In the model, the image plane is set in

front of the camera (i.e. along the +Z axis) at a

distance called the focal length.

Figure 1: Pinhole camera model. Credit: OpenCV

The trick to deriving the formula for the intersection

point from this diagram is to consider just two

dimensions at a time. Doing this exposes a similar

triangles relationship between points on the plane

and points in the scene.

Figure 2: Pinhole model viewed from the side.

So we end up with the formula:

Which maps points in 3D to the virtual image plane.

48

https://docs.rs/nalgebra/0.26.2/nalgebra/
https://docs.rs/argmin/0.4.4/argmin/
https://gitlab.com/tangram-vision-oss/tangram-visions-blog/-/tree/main/2021.05.28_CalibrationFromScratch
https://gitlab.com/tangram-vision-oss/tangram-visions-blog/-/tree/main/2021.05.28_CalibrationFromScratch
https://en.wikipedia.org/wiki/Pinhole_camera
https://en.wikipedia.org/wiki/Camera_obscura
https://en.wikipedia.org/wiki/Rectilinear_lens
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://en.wikipedia.org/wiki/Similarity_(geometry)#Similar_triangles

The pixel pitch: the edge length of a pixel given

in meters-per-pixel (often micrometers-per-pixel)

The principal point: the pixel location that any

point on the camera’s Z-axis maps to. The

principal point () is usually in the center of

the image (e.g. at pixel 320, 240 for a 640x480

image) but often deviates slightly because of

small imperfections.

Getting To Pixels

The image plane is not an entirely abstract concept.

It represents the actual CMOS sensor or piece of film

of the camera. The intersection point is a point on

this physical sensor; and are thus

described in units of distance from a point on this

sensor (e.g. meters). A further transformation which

maps this plane location to actual pixels is required.

To do so, we need a few pieces of information:

The principal point accounts for the discrepancy

between the pixel-space origin and the intersection

point. An intersection point on the Z axis will have

zero X and Y components and thus projects to

(,) = (0,0). Meanwhile, the origin in pixel-

space is the upper left hand corner of the sensor.

After mapping to pixel space, we get our final

pinhole camera model:

It’s common in computer vision parlance to group the

focal length and pixel pitch terms into one pixel-unit

focal length term since they’re usually fixed for a

given camera (assuming the lens cannot zoom). It’s

also very common to see distinct focal length

parameters for the X and Y dimensions .

Historically, this was to account for non-square pixels

or for exotic lenses (e.g. anamorphic lenses), but in

many scenarios having two focal length parameters

isn’t well-motivated and can even be detrimental.

This results in the pinhole model in its most common

form:

It is the coefficients that we hope to

estimate using camera calibration, as we will show in

the next few sections of this guide.

Zhang's Method

Many camera calibration algorithms available these

days are some variant of a method attributed to

Zhengyou Zhang (A Flexible New Technique for

Camera Calibration by Zhengyou Zhang). If you've

calibrated with a checkerboard using OpenCV, this

is the algorithm you're using.

Put briefly, Zhang’s method involves using several

images of a planar target in various orientations

relative to the camera to estimate the camera

parameters. The planar target has some sort of

automatically-detectable features that provide

known data correspondences for the calibration

system. These are usually grids of checkerboard

squares or small circles. The planar target has known

geometry and thus the point features on the target

are described in some model or object coordinate

system; these are often points on the XY plane, but

that’s an arbitrary convention.

Detecting and localizing these features is a topic in

itself. We won't be covering it here.

An example planar target with points in a model

coordinate system .

49

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf

 is the ith imaged model point (a 2-Vector in

pixels)

 is the projection

model, with k parameters . This will be the

pinhole model in further examples.

 . is the ith model point transformed

into the camera’s coordinate frame.

From Object to Image Coordinates

Before getting into the algorithm, it’s useful to briefly

revisit image formation. Recall that in order to apply

a projection model, we need to be in the camera’s

coordinate system (i.e. camera at the origin, typically

camera looks down the +Z axis etc.). We only know

the target’s dimensions in its coordinate system; we

don’t know precisely where the target is relative to

the camera. Let’s say that the there is a rigid body

transform that maps points in the model coordinate

system to the camera coordinate system:

We can then write out the image formation equation

for a given model point:

Where:

We don't know this transform and moreover, we need

one such transform for each image in the calibration

data-set because either the camera or checkerboard

or both can and should move between image

captures. Thus we'll have to add these transforms to

the list of things to estimate.

Cost Function

Ultimately the algorithm boils down to a non-linear

least squares error minimization task. The cost

function is based around reprojection error which

broadly refers to the error between an observation

and the result of passing the corresponding model

point through the projection model. This is calculated

for every combination of model point and image.

Assuming we have good data and the model is a

good fit for our camera, if we've estimated the

parameters and transforms correctly, we should get

near-zero error.

Non-Linear Least Squares Minimization

It should be clear from the above cost function that

this is a least squares problem. In general, the cost

function will also be nonlinear, meaning there won’t

be a closed form solution and we’ll have to rely on

iterative methods. There’s a great variety of nonlinear

least squares solvers out there. Among them are:

Gauss-Newton (a good place to start if you want to

implement one of these yourself), Levenberg-

Marquardt, and Powell’s dog leg method. There are a

number of libraries that can implement these

algorithms. For any of these algorithms to work you

must provide them with (at a minimum) two things:

the residual (i.e. the expression inside the

part of the cost function, and the Jacobian (matrix of

first partial derivatives) of the residual.

Before we get into calculating these quantities, it’s

useful to reshape the cost function so that we have

one large residual vector. The trick is to see that

taking the sum of the norm-squared of many small

residual vectors is the same as stacking those vectors

into one large vector and taking the norm-squared.

50

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Calculating the residual is relatively straightforward. You simply apply the projection model and then subtract

the observation, stacking the results into one large vector. We'll demonstrate calculating the residual in the

code block below:

51

The Jacobian

The Jacobian is a bit more complicated. In this scenario, we’re interested in the Jacobian of the stacked

residual vector with-respect-to the unknown parameters that we’re optimizing. By convention this Jacobian

will have the following dimensions: . The number of rows is the dimension of the output of the

function which is 2NM because we have NM residuals each of which is 2D (because they’re pixel locations).

The number of columns is the number of parameters we're estimating and has two parts. The 4 represents the

four camera parameters we’re estimating. This number will change with the camera model. The 6M for M

images represents the camera-from-model transforms describing the relative orientation of the camera and

planar target in each image. A 3D transformation has six degrees of freedom.

The Jacobian can be thought of as being built up from "residual blocks". A residual block is one residual's

contribution to the Jacobian and in this case a residual block is a pair of rows (pair because the residual is

2D). While the camera model is part of every residual block, each residual block only has one relevant

transform.

 is a pair of rows

corresponding to the ith model point and jth

image. It's made up of smaller Jacobians that

pertain to the camera parameters or one of the

transforms.

 is the Jacobian of the residual

function of the ith model point and jth image

with respect to the four camera parameters.

 is the Jacobian of the residual

function of the ith model point and jth image

with respect to the jth transform.

 is the Jacobian of the residual

function of the any model point and jth image

with respect to the any transform but the jth one.

Only one transform appears in the residual

equation at a time, so Jacobians for other

transforms are always zero.

This results in the Jacobian having a sparse block

structure where, for a given residual block, only a few

columns, those relating to the camera parameters

and the transform at hand, will be non-zero. For

larger calibration problems or least squares problems

in general it can be beneficial to leverage the sparse

structure to improve performance.

Each

So now we know the coarse structure, but to fill out

this matrix, we’ll need to derive the smaller

Jacobians.

Jacobian of the Projection Function

Let’s define the residual function with respect to the

parameters:

We’re looking for the Jacobian with the partial

derivatives with-respect-to the model coefficients.

Since there are four inputs and two outputs, we

expect a Jacobian .

Jacobian of the Transformations

Because of the complexity of this topic, we're

necessarily streamlining a few details for the sake of

brevity. There’s a broad topic in computer vision,

computer graphics, physics, etc. of how to represent

rigid body transforms. Common representations are:

4x3 matrices used with homogeneous points,

separate rotation matrix and translation vector pairs,

quaternions and translation pairs and Euler angles

and translation pairs. Each of these have benefits

and drawbacks but most of them are difficult to use

in optimization problems. The main reason is that

most of the rotation representations have additional

constraints. For example, a rotation matrix must be

orthogonal and a quaternion must be a unit

quaternion. It’s difficult to encode these constraints

in the optimization problem without adding a lot of

complexity. Without the constraints the optimization

is free to change the individual elements of the

rotation such that the constraint is no longer

maintained. For example, with a rotation matrix

representation, you may end up learning more

general non-rigid linear transformation that can

stretch, skew, scale etc.

For this optimization we’re going to represent the

transformations as 6D elements of a “Lie Algebra”.

Unlike the other representations, all values of this 6D

vector are valid rigid-body transforms. I’m going to

defer to other texts to explain this topic, as they can

go pretty deep. The texts explain how to convert to

(an operation called the “log map”) a “lie algebra”

52

A micro Lie theory for state estimation in robotics by Solà et al

A tutorial on SE(3) transformation parameterizations and on-manifold optimization by Blanco-Claraco

element and convert from (an operation called the “exponetial map”) a “lie algebra”, as well as some

Jacobians:

We’ll need the Jacobian with the partial derivatives with-respect-to the six transform parameters. Since there

are six inputs and two outputs, we expect a Jacobian .

Since we’re observing the effects of the transformation through the projection function we’ll have to employ

the Chain rule:

So our Jacobian is written as a product of two other Jacobians. The first term is the matrix of partial derivatives

of the projection function with-respect-to the point-being-projected (evaluated at the transformed point)

53

https://arxiv.org/pdf/1812.01537.pdf
https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf
https://en.wikipedia.org/wiki/Chain_rule#Multivariable_case

The second term is the matrix of partial derivatives of a point being transformed with-respect-to the transform:

We’ll refer to the tutorial paper on how to derive this:

54

https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf

Building The Big Jacobian

We now have all the pieces we need to build the complete Jacobian. We do so two rows at a time for each

residual, evaluating the various smaller Jacobians as described above. It's important to take care to populate

the correct columns.

55

Running the Algorithm

Practically speaking, Zhang’s method involves iteratively minimizing the cost function, usually using a library.

This means evaluating the residual and Jacobian with the current estimate of the transforms and camera

parameters at each iteration until the cost function (hopefully) converges.

There are a few other practical concerns. The algorithm typically requires at least three images to get a good

result. Additionally, the algorithm expects some variation in the camera-target orientation. Specifically, the

algorithm performs better when the target is rotated away from the camera such that there’s some variation in

the depth of the target points. The original paper has further discussion about this.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf

If you’re calibrating a camera model that has distortion parameters, it’s also important to get enough images

to uniformly cover all areas of the image plane so that the distortion function is fit correctly.

Given that this is an iterative algorithm, it is somewhat sensitive to the initial guess of the parameters. The

original paper has some closed-form approximations which can provide good initial guesses. There seems to

be a relatively large space of parameters and transforms which still converge to the right answer. A ballpark

guess of the parameters and some reasonable set of transforms (e.g. ones that place the target somewhere

directly in front of the camera) is often good enough.

Putting It Together In Rust

Because the Tangram Vision Platform is written in Rust (with wrappers for C and ROS, of course), we'll

demonstrate how to create a calibration module in Rust. We’ll be using the NAlgebra linear algebra crate and

the argmin optimization crate. You can follow along here, or with the full codebase at the Tangram Visions

Blog repository. Let's get started.

Generating Data

In this tutorial we aren’t going to work with real images, but rather synthetically generate a few sets of image

points using ground truth transforms and camera parameters.

To start we’ll generate some model points. The planar target lies in the XY plane. It will be a meter on each

edge.

56

Model points in the model

coordinate system (on the XY plane).

Then we’ll generate a few arbitrary camera-from-model transforms and some camera parameters.

Finally we’ll generate the imaged points by applying the image formation model.

57

Building the Optimization Problem

We’re going to use the argmin crate to solve the optimization problem. To build your own problem with argmin, you

make a struct which implements the ArgminOp trait. The struct holds the data we're processing. Depending on the

optimization algorithm you select, you’ll have to implement some of the trait’s functions. We’re going to use the

Gauss-Newton algorithm which requires that we implement apply() which calculates the residual vector and

jacobian() which calculates the Jacobian. The implementations for each are in the previous sections.

During the optimization problem, the solver will update the parameters. The parameters are stored in a flat vector

and thus it's useful to make a function that converts the parameter vector into easily-used objects for calculating the

residual and Jacobian in the next iteration. Here's how we've done it:

58

Figure 4: synthetic images rendered by applying the ground truth camera-from-model transform and then

projecting the result using ground truth camera model.

Running the Optimization Problem

Before we run the optimization problem we’ll have to initialize the parameters with some reasonable guesses.

In the code block below, you'll see that we input four values for and .

Next we build the argmin "executor" by constructing a solver and passing in the ArgminOp struct.

59

After letting the module run for over 100 iterations, the cost function will be quite small and we can see that

we converged to the right answer.

In Conclusion

So there you have it - the theory and the execution of a built-from-scratch calibration module for a single

sensor.

Creating a calibration module for sensors is no trivial task. The simplified module and execution we've

described in these two posts provide the building blocks for a single camera approach, without optimizations

for calibration time, compute resources, or environmental variability. Adding these factors, and expanding

calibration routines to multiple sensors, makes the calibration challenge significantly more difficult to achieve.

That's why multi-sensor, multi-modal calibration is a key part of the Tangram Vision Platform.

60

https://www.tangramvision.com/tangram-vision-sdk

If you've been in or around computer vision for a

while, you might have seen one of these things:

61

ARUCO, CHARUCO, AND

APRILTAGS: CREATING

FIDUCIAL MARKERS FOR VISION

Different fiducial markers. From http://cs-

courses.mines.edu/csci507/schedule/24/ArUco.pdf

These are known as fiducial markers, and are used a

way to establish a visual reference in the scene.

They're easy to make and easy to use. When used in

the right context, extracting these markers from a

scene can aid in camera calibration, localization,

tracking, mapping, object detection... almost

anything that uses camera geometry, really.

What you might not know is that there are a lot of

different fiducial markers:

Some of these are older, some are newer, some are

"better" in a given scenario. However, all of them

share the same very clever mathematical foundation.

A few smart yet straightforward ideas allow these

fiducial markers to perform well under different

lighting conditions, upside-down, and in even the

harshest environment: the real world.

In my opinion, the best way to understand this math

magic is to try it ourselves. What goes into making a

https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
http://cs-courses.mines.edu/csci507/schedule/24/ArUco.pdf
http://cs-courses.mines.edu/csci507/schedule/24/ArUco.pdf

ArUco (also stylized ARUCO or Aruco) got its moniker

from Augmented Reality, University of Cordoba,

which is the home of the lab that created the marker.

At least, that's what it seems to be; I've never seen it

documented!

 robust fiducial marker? Can we pull it off? We'll use

the ArUco tag design as our reference. The ArUco

tag is one of the most common fiducial markers in

computer vision, and it checks a lot of boxes as far

as robustness and usability goes. Let's reverse-

engineer ArUco markers and discover why these work

so well.

62

If we want to maintain our not-from-nature design

choices, keeping black-and-white squares around

somehow makes sense. Why don't we use...

combinations of squares?

What To Look For

We can now differentiate, to some extent. But clever

minds will notice that a rotation in our camera will

confuse our identification:

No color gradients

Sharp, consistent angles

Consistent material

As a rule of thumb, our marker shouldn't look like

anything found in natural images:

It doesn't take much brainstorming to realize that

"black-and-white matte square" fits a lot of these

qualifications. In addition, square corners and edges

are each themselves unique features, giving us more

bang for our buck. Let's use this concept as our base.

It's easy enough to track one black-and-white square

frame to frame in a video (and some algorithms do!),

but what if we want to use more than one marker?

Having two identical squares makes it impossible to

identify which is which. We clearly need some way to

disambiguate.

Obviously, we'll have to do better than this.

Squares of Squares

...so let's use more squares! We can switch from

black to white across squares to up the entropy in

our pattern.

https://www.uco.es/investiga/grupos/ava/node/26
https://www.uco.es/investiga/grupos/ava/node/26

This looks better, but even with more squares, we still

have the risk of mixing it up with another marker

design. It's clear that we want to avoid mis-

classifying our markers, and the more differentiable

our markers are, the easier it will be to detect each

of them correctly. However, there's a balance to

strike here: if our patterns are too different from one

another, or don't have enough features, it won't be

easy for our camera to tell that something is a

marker at all!

63

Markers like ArUco do this by treating every square in

the pattern like a bit of information. Every pattern

can therefore be represented by a bit string, and the

difference between two patterns is the minimum

number of changes it takes to turn the first into the

second.

This is called the Hamming distance between

markers, named after mathematician Richard

Hamming. By representing the difference in Hamming

distance, we can formulate our goal in terms of

formulas, not just words.

This means that our squares should have a common

structure, but different and varied features. The

easiest way to add structure is to define a constant

shape (in square rows and columns) of every marker

that the camera might see. This specificity makes it

clearer what our algorithm is trying to find, and sets

conditions for identification once it finds it.

Now, with our structure well-defined, we can focus

on the original problem: making every individual

marker that fits this structure as different as possible

from all of its kin.

So, now that we can represent every marker as its

corresponding bit pattern, we can make some math!

We want to make sure that every marker has as many

black-to-white transitions as possible...

Hamming It Up, Going the

Distance, etc, etc

Let's put that another way: we want to maximize the

difference between all of our marker patterns that

share that same structure. Whenever the word

"maximize" comes up in algorithmic design, one

should immediately think of optimization. If we can

somehow translate our marker patterns into a

formula or algorithm, we can turn our predicament

into an optimization problem which can be better

understood and solved.

...while making its pattern as different as possible

from every other marker...

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Richard_Hamming

...while also making sure that this marker's rotations

are unique from itself, so that we don't mix it up with

another marker when our camera is tilted.

64

What if we misdetect several squares? At some point,

the misdetections will be too much for our poor

dictionary, and we'll start getting confused. But when

do we hit this threshold?

An easy way to set that breaking point ourselves is by

adding a minimum Hamming distance constraint

between all markers in our dictionary. If our minimum

Hamming distance is 9, and we generate a marker

that has a distance of 8 from the rest of the

dictionary, we throw it out. This process limits the

number of markers that we can add, but in exchange

we generate a dictionary that's more robust to

detection mistakes. This ability becomes more crucial

as your marker size grows and the feature details

become finer.

Richard Hamming's innovations around bit-wise

information storage and transfer were a huge

influence on the Information Age. Though we won't

cover them here, 3Blue1Brown's wonderful

explanation on the power and simplicity of Hamming

Codes is worth a watch.

Small disclaimer: Fiducial marker libraries like

AprilTag employ this strict Hamming distance

threshold when generating their libraries. However,

ArUco derives a maximum value to its cost functions

instead (those formulas we derived above). The

effect is the same: more robust dictionaries.

Hitting Our Limits

Now that we have our dictionary, we can start

detecting. Our optimization process gave us some

pretty cool abilities in this regard. For one, we have a

much lower chance of mixing up our markers (which

is what we optimized for). More surprisingly, though,

we've also made ourselves more robust to detection

mistakes.

For instance, what if we detect a white square in a

marker, when in reality that same square was black?

Since we've maximized the Hamming distance

between all of our markers, this mistake shouldn't

cost us. Instead, we'll select the matching marker in

our dictionary that has the closest Hamming distance

to our detected features. The misdetection was

unfortunate, but we took it in stride.

Create a varied, redundant pattern

Fit it to a certain mathematical structure

Generate as many markers as we can that fit this

structure

Throw out the markers that are too similar to any

other marker, or variants of itself, or within a

certain Hamming distance

There you have it: the basics of ArUco! All we needed

to do was

Of course, there are small tweaks and changes one

can make to this basic formula to up the robustness,

or variety, or usefulness in different environments.

This is where all those other markers come from!

Regardless, these other markers all considered the

same points we did today; they just arrived at

different solutions.

Now use all of these formulas together to optimize

every new marker you can generate. Collect those

markers that hit a certain threshold, and do it again

and again until you have as many as you need! We

now have a complete dictionary of fiducial markers.

A Solid Fiducial Marker

https://www.youtube.com/watch?v=X8jsijhllIA
https://www.youtube.com/watch?v=X8jsijhllIA
https://www.youtube.com/watch?v=X8jsijhllIA
https://april.eecs.umich.edu/media/pdfs/olson2011tags.pdf

Tangram Vision's calibration module can use several

fiducial types to help bootstrap the camera

calibration process. While we're no fan of the

checkerboard (which we'll let you know), we all

recognize the value of fiducials when used at the

right place and time. Even your humble author has

been known to wave around a few markers now and

then:

65

Automatic generation and detection of highly

reliable fiducial markers under occlusion. The

original ArUco paper!

ArUco Library Documentation. Docs on the

software that's used to produce and detect

ArUco targets. Written by the people who

created it.

Generation of fiducial marker dictionaries using

mixed integer linear programming. A good

overview of various fiducial optimization

techniques, while also offering the authors' own

takes on the process.

Further Reading

http://cs-courses.mines.edu/csci507/schedule/24/ArUco.pdf
https://docs.google.com/document/d/1QU9KoBtjSM2kF6ITOjQ76xqL7H0TEtXriJX5kwi9Kgc/edit
https://www.researchgate.net/publication/282426080_Generation_of_fiducial_marker_dictionaries_using_Mixed_Integer_Linear_Programming

67

72

/ Calibration Statistics: Accuracy Vs Precision

/ Why Calibration Matters For AI/ML

SECTION III:

UNDERSTANDING

CALIBRATION RESULTS

66

Imagine that we have a set of points on a graph. We

would like to predict the output value (the Y axis) of

every input value (the X axis).

Most people don't understand the distinction

between accuracy and precision in general,

much less in sensor calibration

It is not common practice to measure precision

anyway

One question that I have received time and time

again in my career is

"How accurate is your calibration process?"

This always bothers me. If I answer "very accurate, of

course!", what does that... mean? What should they

expect from results? What am I even claiming?

Even more interesting: a question that I've never been

asked, but that has equal or greater importance, is

"How precise is this calibration?"

Accuracy is always considered, while precision is

never questioned. What makes this so?

There are probably a few reasons for this:

1.

2.

Both of these points are a shame; one should have a

good understanding of accuracy and precision in

order to get the most out of their perception systems,

or any calibrated system for that matter. In order to

do this, though, we need some context.

67

CALIBRATION STATISTICS:

ACCURACY VS PRECISION

Caveat: Statistics is a very dense field of study.

There's a lot of nuance here that won't get covered

due to the inordinate amount of detail behind the

subject. However, the thesis should hopefully be

clear: most current calibration processes leave out

some important stuff. If you're the type of person to

dive deep into this kind of thing, and are looking for

a career in perception...you know where to find us.

Accuracy and Precision in

Model Fitting

We do this because we are totally normal and cool

and have fun in our free time.

https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/careers

Now the linear model we derived looks a little less

perfect, huh? Yet this is not reflected in our results

at all. If every input point measurement was actually

a bit different than what's shown, the true model for

this data is something else entirely. All of our

predictions are off.

The good news is that there are ways to

compensate for this uncertainty. Through the magic

of statistics, we can translate the input variance

into variance of our learned model parameters:

The input-output points that are on our graph are

close to or on the line that we derived. This means

that our linear model has a high accuracy given

this data.

Yet there's something that's not shown in this

graph. When we collected our datapoints, we used

a tool that only measured so well. In other words, it

was impossible to get exact measurements; we just

used the best measurements we could get. This

means that every datapoint has an uncertainty, or

variance, associated with it. This is a

representation of the precision of the input space.

When we factor in the input space variance, our

graph of points really looks like this:

This gives us a much richer understanding of our

input-output space. Now we know that our model

can be trusted much more with certain inputs than

with others. If we're trying to predict in a region

outside of our input data range, we have a good

idea of how much we can trust (or be skeptical of)

the data. This is called extrapolation; it's a hard

thing to get right, but most people do it all the time

without considering the precision of their model.

68

You can try this for yourself by playing around with

the source code used to develop these graphs. Find

it at the Tangram Visions Blog repository.

There's a strong moral here: accuracy isn't everything.

Our model looked accurate, and given the input

data, it was! However, it didn't tell the whole story.

We needed the precision of our model to truly

understand our predictive abilities.

We can do this by fitting a model to the data.

Good models give us a general idea of how data

behaves. From the looks of it, these points seem to

follow a straight line; a linear model would

probably work here. Let's do this:

https://gitlab.com/tangram-vision/oss/tangram-visions-blog

The object-to-image data in each camera frame

act like the points in our linear fit example above.

The camera model we refine with this data

provides a prediction about how light bends

through the camera's lens.

Our target provides metric data that we can use

to connect the camera frame with the world

frame; we call this metric data the object space.

An image taken by the camera of the target

captures a projection of the object space onto

the image plane; this is called image space. We

produce a new set of object space inputs to

image space outputs with every image.

69

For those who are familiar with camera calibration:

It's important to note that reprojection error

calculated on the input data alone doesn't tell the

whole story. In order to actually get accuracy

numbers for a calibration model, one should

calculate the reprojection error again using data

from outside of your training set. This is why some

calibration processes put aside every other reading

or so; it can use those readings to validate the

model at the end of optimization.

A common rule of thumb is if the reprojection root

mean squared error (RMSE) is under 1 pixel, the

camera is "calibrated". This is the point where

most calibration systems stop. Does anything

seem off with this?

Precision in Camera

Calibration

The answer is yes! Red flags abound, and they all

lie in our uncertainties. Except this time, it's more

than just our inputs; in camera calibration, we

have knowledge, and therefore uncertainty,

about our parameters as well.

To dive into the mathematics of this process, see

our blog post on camera calibration in Rust.

Just like in our graph, the accuracy of our derived

camera model is a comparison of predicted and

actual outputs. For camera calibration, this is

commonly measured by the reprojection error,

the distance in image space between the

measured and predicted point.

Accuracy in Camera

Calibration

The same logic that we used in the line-fitting

example applies directly to calibration. After all,

calibration is about fitting a model to available

data in order to predict the behavior of outputs

from our inputs. We get better prediction with a

better understanding of both the calibration

accuracy and precision.

To demonstrate this, let's calibrate a camera

using a target.

https://www.tangramvision.com/blog/calibration-from-scratch-using-rust-part-1-of-3

This is a step that very few calibration processes

take into account. Unless the target is mounted

on a perfectly flat surface like a pane of glass,

there will be inconsistencies in the plane

structure. This will lead to a calibration that is

imprecise. However, given that the target points

are taken as ground truth, the calibration model

will give the illusion of accuracy. Whoops.

However, what happens when this board bends?

This assumption of a planar metric space is no

longer valid. Luckily, we can account for this through

a variance value for each object space point.

70

As an example applied to camera calibration: the

principal point of a camera lens is often found

around the center of the image. We're fairly

certain that our lens will follow this paradigm, so

we can assign a low variance to these parameters.

If we have enough of an understanding of our

model, we can do this for every parameter value.

Now our optimization process has a bit more

information to work with; it knows that some

parameters have more room to deviate from their

initial guess than others.

"Perfectly flat" here is relative. If the deviation

from the plane is small enough that we can't

observe it... it's flat enough.

Parameter Space

We can get a better idea of this effect by looking

at its extreme. Let's assign all of our parameters a

variance of 0.00, i.e. no uncertainty at all.

In our linear model example above, we didn't

know what real-world effect our line was

modeling. Any guess at our parameter values

before the line fit would have probably been way

off. But what if we were confident in our initial

guesses? How would we convey this information

to our model fitting optimization?

Good news: variances do this, too! Assigning

variances to our parameters tells the model

optimization how certain we are of the initial

guess. It's a straightforward way to tune the

optimization, as we'll see later

Object Space

Let's start with the object space, i.e. our input.

Traditional calibration targets are mounted on a

flat surface. This gives us metric points on a plane.

This makes sense, since we indicated to the model

optimization that we knew that our initial

parameters had no uncertainty via the 0.00

variance value. Thus, a larger variance value allows

the parameter value to move around more during

optimization. If we're very uncertain about our

guess, we should assign a large initial variance.

Our parameter variances will change as we fit our

model to the input data. This becomes a good

measure of model precision, just like in our linear

fit example. We're now armed with enough

knowledge to predict our model's behavior

confidently in any scenario.

Now, when we calibrate over our object space

with these parameter values, we find that... our

model doesn't change! All of our parameters

have been fixed.

71

And yet...

You might have guessed, but Tangram Vision is

already addressing this heartache through the

Tangram Vision Platform by providing both

accuracy and precision for every calibration

process we run. Calibration is a core part of our

platform, and we hope to offer the best

experience available.

Another way to conceptualize data quality

Better understanding of model fit and use

Methods to communicate prior knowledge to the

calibration pipeline

With all of that said, when is the last time you

measured the precision in your calibration process?

Odds are that the answer is "never". Most calibration

systems don't include these factors! That's a huge

problem; as we've seen, accuracy won't paint the

whole picture. Factoring in precision gives

...among other useful features. Being aware of these

factors can save you a lot of heartache down the

road, even if you continue to use a calibration process

that only uses accuracy as a metric.

https://www.tangramvision.com/sdk/multimodal-calibration

In the beginning, there were pictures. Simple, static

pictures of all sorts of scenes and objects: Dogs.

Cars. Houses. People. Fed into systems like

DeepMind, they trained classifiers which then

generated their own hallucinated outputs from those

inputs. Some of the results were predictably hilarious.

But some were also incredibly realistic, and hard to

discern from the real-world inputs from which they

were derived.

Intermittent communication faults (for instance, a

flaky USB connection)

External impediments (for instance, road dust

occluding a camera lens)

Unnoticed or inconsistent shifts in sensor

calibration (for instance, a sensor with an

insecure mounting)

Improperly configured sensors (for instance, a

camera that does not operate properly in typical

daylight settings)

Sensors, as we know, can fail in multiple ways during

deployment:

Worse yet, sensors often fail silently. They still emit a

data stream, and the ML system assumes that that

means the sensors are functioning 100% properly.

However, if any of the above scenarios are occurring,

they will be sending anomalous data into the ML

system. This can create corrupted data sets that lead

to immediate errors, or compounding errors that

increase over time.

72

The Evolution of Image-Based

Inputs for Machine Learning

WHY CALIBRATION MATTERS

FOR AI/ML

Next, came pre-recorded video. In this phase of

image-based machine learning (hereafter referred to

as "ML"), these video streams were often used to

train systems to separate objects from environments,

or to discern different environmental states based on

multiple observed factors. These formed some of the

first data sets to be used to train machine learning

systems used for autonomous vehicles (aka, an "AV").

But, and this is important to note, they were not used

in real-time during an AV's operation.

Now, however, the applications that rely on imagery-

trained ML systems have significantly leveled up.

These new applications are low-latency and they are

real-time. They span a range of industries and use

cases, from self driving cars to supply chain robots.

Real-Time Image-Based

Machine Learning Relies on

Reliable Sensing Inputs

The real-time nature of these applications presents a

critical challenge that must be properly managed by

the sensor systems that feed them: the data that they

receive must be accurate, as it is processed and

analyzed in real-time to determine the immediate

and subsequent actions of the application.

https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tangramvision.com/blog/coordinate-systems-and-how-to-relate-multiple-coordinate-frames-together-part-1
https://www.tesla.com/autopilotAI
https://plusonerobotics.com/

Some of the current thinking around sensor failures in

machine learning systems suggests that the errors

themselves are a valid input for training. This is true,

to a degree. The challenge, however, is that the

system needs to be able to recognize that a sensor is

failing and properly classify that input as such.

The System: A new autonomous taxi designed

to operate in urban settings

The Task: Recognize when the autonomous taxi

is too close to a curb while in motion

The Key Parameter: Distances under 1.2m

present an unsafe condition due to the

presence of bike lanes and cyclists in urban

settings

The Inputs: GPS data; wheel encoders to

measure distance traveled; LiDAR sensors and

HDR CMOS sensors to capture scene geometry

The Problem: Silent LiDAR sensor calibration

fault due to a loosened sensor mount; extrinsic

calibration shifts by 3cm in two axes when AV

is in forward motion; returns to near-calibrated

state at rest. AV driven during rain results in

water occlusion on CMOS sensors.

The Result: Undetected anomalous data that

becomes part of the training set causes the AV

to operate within 0.7m of the curb, which is

0.5m too close.

Consider the below scenario:

73

The Impact of Silent Sensor

Failures on ML Systems: An

Example

Capturing and analyzing statistically significant

subsets of sensor logs to identify and properly

classify common failure states

Visually assessing sensors for external

impediments after sessions when failures are

detected

Confirming sensor calibration and recalibrating

sensors frequently

Testing sensors with multiple configurations, and

then capturing and analyzing sensor logs to

identify operational deficiencies before

determining the optimal configuration

This is easier to do under controlled circumstances. In

the real world, relying on these processes can

become a riskier proposition.

Therefore, the best practice remains ensuring that

sensors operate accurately and reliably as much as

possible. Achieving this requires effort. It involves:

Ensuring Reliable, Accurate

Sensor Inputs for ML

This is not an insignificant amount of work. It requires

data analysis, sensor expertise, calibration expertise

and copious amounts of engineering time. But, as is

the case with any data-driven system, it's a matter of

garbage in, garbage out. The investment in proper

sensor operation pays off when data sets deliver the

expected outcomes, and the ML-powered agent can

operate successfully in the real world.

75

79

81

/ Printable Calibration Targets

/ Calibration Reading List

/ About Tangram Vision & The Tangram Vision Platform

APPENDIX:

RESOURCES

74

Instructions: Full-size target on page 76. Print edge-to-edge

on a standard 8.5 x 11 sheet of paper. Target can be increased

in size and printed in larger formats. Mount to as flat and rigid

of a surface as possible, such as a mirror, glass pane, or

straightened foam core.

Instructions: Full-size target on page 77. Print edge-to-edge

on a standard 8.5 x 11 sheet of paper. Target can be increased

in size and printed in larger formats. Mount to as flat and rigid

of a surface as possible, such as a mirror, glass pane, or

straightened foam core.

Instructions: Full-size target on page 78. Print edge-to-edge

on a standard 8.5 x 11 sheet of paper. Target can be increased

in size and printed in larger formats. Mount to as flat and rigid

of a surface as possible, such as a mirror, glass pane, or

straightened foam core.

6X6 GRID

5X7 GRID

7X6 GRID

CALIBRATION TARGETS

Kalibr/AprilCal

AprilCal

OpenCV

75

One of the seminal works in calibration, and the source for the

multi-pose calibration process that we now now as "Zhang's

Method." The link in the title above goes to the original paper,

including updates to August 2008.

Image credit: Microsoft Research, Microsoft Corporation

If you've studied computer vision in college, you will have been

assigned to read some, or all, of this important textbook. For

both beginning and advanced computer vision engineers,

Multiple View Geometry is a critical text to review to

understand the principles underlying much of perception.

An essential primer on the mathematics and methodology

behind photogrammetry. Many of the techniques and

applications found within this book are directly applicable to

common computer vision tasks involving mapping and

navigation.

ZHENGYOU ZHANG

RICHARD HARTLEY, ANDREW ZISSERMAN

THOMAS LUHMANN, STUART ROBSON,

STEPHEN KYLE, JAN BOEHM

CALIBRATION READING LIST

A Flexible New Technique for Camera Calibration

Multiple View Geometry In Computer Vision

Close-Range Photogrammetry and 3D Imaging

79

https://www.barnesandnoble.com/s/%22Thomas%20Luhmann%22;jsessionid=C9B7D1C0D6507CD45A90CDE5B9D925C2.prodny_store01-atgap06?Ntk=P_key_Contributor_List&Ns=P_Sales_Rank&Ntx=mode+matchall
https://www.barnesandnoble.com/s/%22Stuart%20Robson%22;jsessionid=C9B7D1C0D6507CD45A90CDE5B9D925C2.prodny_store01-atgap06?Ntk=P_key_Contributor_List&Ns=P_Sales_Rank&Ntx=mode+matchall
https://www.barnesandnoble.com/s/%22Stephen%20Kyle%22;jsessionid=C9B7D1C0D6507CD45A90CDE5B9D925C2.prodny_store01-atgap06?Ntk=P_key_Contributor_List&Ns=P_Sales_Rank&Ntx=mode+matchall
https://www.barnesandnoble.com/s/%22Jan%20Boehm%22;jsessionid=C9B7D1C0D6507CD45A90CDE5B9D925C2.prodny_store01-atgap06?Ntk=P_key_Contributor_List&Ns=P_Sales_Rank&Ntx=mode+matchall
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf
https://www.robots.ox.ac.uk/~vgg/hzbook/
https://www.barnesandnoble.com/w/close-range-photogrammetry-and-3d-imaging-thomas-luhmann/1118200909

Along with "Close-Range Photogrammetry and 3D Imaging", the

Manual of Photogrammetry provides a comprehensive

reference to the techniques and methods that underpin many

mapping, reconstruction, and navigation tasks performed in the

field of computer vision.

The original paper behind the Conrady-Brown model commonly

used for camera calibration. A great way to understand the

principles and mathematics behind calibration system inputs.

J. CHRIS MCGLONE, EDITOR

A.E. CONRADY

CALIBRATION READING LIST

Manual of Photogrammetry, Sixth Edition

Decentred Lens Systems

80

https://my.asprs.org/ASPRSMember/Store/StoreLayouts/Item_Detail.aspx?iProductCode=4737&Category=MANUALS&WebsiteKey=9126ee3f-e9e1-43bd-a00c-0cfa63182579
https://academic.oup.com/mnras/article/79/5/384/1078771?login=false

Integration tools simplify prototyping by making any sensor, any

modality plug-and-play. Just connect all your sensors to the

Tangram Vision Platform and start streaming instantly. After

deployment, integration tools manage sensor stability to

provide ongoing uptime in harsh environments.

Deploying 100 robots with eight sensors each means managing

800 sensors. A spatial asset database tracks all deployed

sensors, including operational health indicators like uptime,

errors, calibrations, and more. This data can be accessed via

the Tangram Vision Hub or by API.

Eliminate lengthy development cycles by deploying world-class

multi-modal calibration and sensor fusion from day one. The

Tangram Vision Platform is constantly evolving, with new

modalities and manufacturers being added regularly so you

won't have to.

To learn more about all of these modules and more, visit

www.tangramvision.com.

RUNTIME, SENSOR FUSION

PERCEPTION MANAGEMENT, HEALTH CHECKS

MULTIMODAL CALIBRATION, DATA MANAGEMENT

THE TANGRAM VISION PLATFORM

Sensor Stability with TVMux

Data Management with the Hub

Sensor Optimization with TVCal & TVFuse

81

https://www.tangramvision.com/
https://www.tangramvision.com/sdk/sensor-stability-and-management
https://www.tangramvision.com/sdk/the-tangram-vision-platform-hub
https://www.tangramvision.com/sdk/multimodal-calibration
https://www.tangramvision.com/sdk/multimodal-sensor-fusion-tvfuse-by-tangram-vision

CONTACT US

www.tangramvision.com
info@tangramvision.com
@tangramvision

Copyright 2022 Tangram Robotics, Inc.

https://www.tangramvision.com/
https://www.twitter.com/tangramvision

