
SMART CONTRACT AUDIT

Jun 17, 2021 | v.	1.0

GOOD

PASS
Zokyo’s Security Team has 
concluded that this smart contract
passes security qualifications to be
listed on digital asset exchanges.

This document outlines the overall security of the Bridge Mutual smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Bridge Mutual smart contract
codebase for quality, security, and correctness.

. . .

1

Bridge Mutual Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that’s able to withstand the Ethereum network’s fast-paced and
rapidly changing environment, we at Zokyo recommend that the Bridge Mutual team put in
place a bug bounty program to encourage further and active analysis of the smart contract.

Table of Contents

3Auditing Strategy and Techniques Applied

5Executive Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

7Manual Review

. . .

2

Bridge Mutual Contract Audit

3

Bridge Mutual Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract’s source code was taken from the Bridge Mutual repository –
. 

Last commit – .
https://github.com/Bridge-Mutual/bridgemutual-core/tree/

6fa471de9330743512d55cac63d7613a06d13c1e

. . .

Requirements:

Whitepaper:
https://uploads-ssl.webflow.com/5fac3e348dbd5932a7578690/60a7ffd8a8874fc955e
580ac_Bridge%20Mutual%20WP%20v1.pdf
Pitch Deck:
https://uploads-ssl.webflow.com/5fac3e348dbd5932a7578690/6004108498ed9eacd5
5c3807_BridgeMutual%20BP%201.85.pdf
Token Economics:
https://uploads-ssl.webflow.com/5fac3e348dbd5932a7578690/600ecf0d85f4ea7616b
1fe74_Bridge%20Economics%20-%20Final.pdf

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

https://github.com/Bridge-Mutual/bridgemutual-core/tree/
https://github.com/Bridge-Mutual/bridgemutual-core/tree/6fa471de9330743512d55cac63d7613a06d13c1e
https://uploads-ssl.webflow.com/5fac3e348dbd5932a7578690/60a7ffd8a8874fc955e580ac_Bridge%20Mutual%20WP%20v1.pdf
https://uploads-ssl.webflow.com/5fac3e348dbd5932a7578690/60a7ffd8a8874fc955e580ac_Bridge%20Mutual%20WP%20v1.pdf
https://uploads-ssl.webflow.com/5fac3e348dbd5932a7578690/6004108498ed9eacd55c3807_BridgeMutual%20BP%201.85.pdf
https://uploads-ssl.webflow.com/5fac3e348dbd5932a7578690/6004108498ed9eacd55c3807_BridgeMutual%20BP%201.85.pdf
https://uploads-ssl.webflow.com/5fac3e348dbd5932a7578690/600ecf0d85f4ea7616b1fe74_Bridge%20Economics%20-%20Final.pdf
https://uploads-ssl.webflow.com/5fac3e348dbd5932a7578690/600ecf0d85f4ea7616b1fe74_Bridge%20Economics%20-%20Final.pdf

4

Bridge Mutual Contract Audit

. . .

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of Bridge Mutual smart contracts. To do so, the code is reviewed
line-by-line by our smart contract developers, documenting any issues as they are discovered.
Part of this work includes writing a unit test suite using the Truffle testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Executive Summary

. . .

5

Bridge Mutual Contract Audit

There were no critical issues found during the audit. All the mentioned findings may have an
effect only in the case of specific conditions performed by the contract owner.

This audit certifies that all issues found by the Consensys Diligence team were successfully
fixed. Zokyo auditing team has found a couple of additional issues that were not raised
previously. All of them were resolved by Bridge Mutual developers so they won’t bear any risk
for the end-user.

The contracts are quite complex and sophisticated. Despite all known issues and
vulnerabilities being fixes as of now, Zokyo auditing team can not guarantee that all issues are
found as the contracts are still being developed by the team. Hence, we at Zokyo recommend
to run additional audits at the final points of development.

Contracts are well written and structured. The findings during the audit have no impact on
contract performance or security, so it is fully production-ready.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

Bridge Mutual Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Manual Review

. . .

7

Bridge Mutual Contract Audit

HIGH

Contract PolicyBook is not letting to withdraw available liquidity by liquidity provider, even if
that is available.

Snippet:

function getAvailableDAIXWithdrawalAmount(address _userAddr)

 external

 view

 override

 returns (uint256)

{

 uint256 allCover = totalCoverTokens.add(_getUserAvailableDAI(_userAddr));

 return totalLiquidity > allCover ? totalLiquidity - allCover : 0;

}

Recommendation:
Available liquidity should be calculated as totalLiquidity substracing totalCoverTokens.

. . .

8

Bridge Mutual Contract Audit

HIGH

PolicyBook is incorrectly plans premium distribution in case if distribution was not executed
for more than 91 days.

Snippet:

function _distributePremiums() internal {

 uint256 currentEpoch = _getDistributionEpoch();

 uint256 lastEpoch = lastPremiumDistributionEpoch;

 if (currentEpoch > lastEpoch) {

 int256 currentDistribution = lastPremiumDistributionAmount;

 uint256 newTotalLiquidity = totalLiquidity;

 uint256 distributionEpoch =

 Math.min(currentEpoch, lastEpoch + MAX_PREMIUM_DISTRIBUTION_EPOCHS + 1);

 for (uint256 i = lastEpoch + 1; i <= distributionEpoch; i++) {

 currentDistribution += premiumDistributionDeltas[i];

 newTotalLiquidity = newTotalLiquidity.add(uint256(currentDistribution));

 }

 lastPremiumDistributionAmount = currentDistribution;

 lastPremiumDistributionEpoch = currentEpoch;

 totalLiquidity = newTotalLiquidity;

 }

}

Recommendation:
Set lastPremiumDistributionEpoch to last epoch of premiums distribution.

. . .

9

Bridge Mutual Contract Audit

HIGH

Policy holder is not able to make appeal claim if initial voting took time more than 2 weeks
after ending of cover.

Snippet #1:

function _submitClaimAndInitializeVoting(address claimer, bool appeal) internal {

 require(policyRegistry.isPolicyActive(claimer, address(this)), "PB: Policy is not active");

 claimVoting.initializeVoting(

 claimer,

 address(this),

 policyHolders[claimer].coverTokens,

 policyHolders[claimer].payed.mul(PROTOCOL_PERCENTAGE).div(PERCENTAGE_100),

 appeal

);

}

Snippet #2:

function isPolicyActive(address _userAddr, address _policyBookAddr)

 public

 view

 override

 returns (bool)

{

 uint256 endTime = policyInfos[_userAddr][_policyBookAddr].endTime;

 return endTime == 0 ? false : endTime.add(STILL_CLAIMABLE_FOR) > block.timestamp;

}

Recommendation:
Let Policy holder to make new appeal claims for specific period after declining previous claim.

. . .

10

Bridge Mutual Contract Audit

MEDIUM

Contract LiquidityMining accepts any EIP1155 token transfer, but knows how to work only with
liquidity mining NFT contract.

Snippet:

function onERC1155Received(

 address operator,

 address from,

 uint256 id,

 uint256 value,

 bytes calldata data

) external pure override returns (bytes4) {

 return 0xf23a6e61;

}

function onERC1155BatchReceived(

 address operator,

 address from,

 uint256[] calldata ids,

 uint256[] calldata values,

 bytes calldata data

) external pure override returns (bytes4) {

 return 0xbc197c81;

}

Recommendation:
Add validation that token transfer is done only from liquidity mining NFT contract.

. . .

11

Bridge Mutual Contract Audit

MEDIUM

Method upgradePolicyBooks of PolicyBookAdmin contract is passing implementation address
without validation of it.

Snippet:

function upgradePolicyBooks(

 address policyBookImpl,

 uint256 offset,

 uint256 limit

) external onlyOwner {

 _setPolicyBookImplementation(policyBookImpl);

 address[] memory _policies = policyBookRegistry.list(offset, limit);

 uint256 to = (offset.add(limit)).min(_policies.length).max(offset);

 for (uint256 i = offset; i < to; i++) {

 upgrader.upgrade(_policies[i], policyBookImpl);

 }

}

Recommendation:
Verify that passed policy book implementation address is valid contract address.

. . .

12

Bridge Mutual Contract Audit

MEDIUM

Method updateEpochsInfo of contract PolicyBook is vulnerable to `Out of gas` error in certain
circumstances.

Snippet:

function updateEpochsInfo() public override {

 uint256 _countOfPassedEpoch = block.timestamp.sub(epochStartTime).div(EPOCH_DURATION);

 uint256 _newTotalCoverTokens = totalCoverTokens;

 uint256 _newEpochNumber = _countOfPassedEpoch + 1;

 for (uint256 i = currentEpochNumber; i < _newEpochNumber; i++) {

 _newTotalCoverTokens = _newTotalCoverTokens.sub(epochAmounts[i]);

 delete epochAmounts[i];

 }

 currentEpochNumber = _newEpochNumber;

 totalCoverTokens = _newTotalCoverTokens;

}

Recommendation:
 Set hard-limit to number of iterations of the cycle.

. . .

13

Bridge Mutual Contract Audit

MEDIUM

By passing reward calculation amount equals to 0 contract lets to call that method before
start of liquidity mining.

Snippet:

function getReward() external override returns (uint256) {

 require(

 startLiquidityMiningTime == 0 || block.timestamp > getEndLMTime(),

 "LM: 2 weeks after LME block"

);

 address _teamAddr = usersTeamInfo[msg.sender].teamAddr;

 uint256 _userReward = checkAvailableBMIReward(msg.sender);

 if (_userReward == 0) {

 return 0;

 }

 bmiToken.transfer(msg.sender, _userReward);

 emit RewardSent(_teamAddr, msg.sender, _userReward);

 usersTeamInfo[msg.sender].countOfRewardedMonth += _getAvailableMonthForReward(msg.sender);

 return _userReward;

}

Recommendation:
Verify that startLiquidityMiningTime is greater than 0.

. . .

14

Bridge Mutual Contract Audit

LOW

State variable names policiesByInsuredAddress & _policies of contract PolicyBookRegistry are
misleading.

Snippet:

mapping(address => address) public policiesByInsuredAddress;

EnumerableSet.AddressSet private _policies;

Recommendation:
Rename state variable policiesByInsuredAddress to policyBookssByInsuredAddress and _policies
to _policyBooks respectively.

LOW

Method getAvailableDAIXWithdrawalAmount of contract PolicyBook is returning DAI instead of
DAIX.

Snippet:

function getAvailableDAIXWithdrawalAmount(address _userAddr)

 external

 view

 override

 returns (uint256)

{

 uint256 allCover = totalCoverTokens.add(_getUserAvailableDAI(_userAddr));

 return totalLiquidity > allCover ? totalLiquidity - allCover : 0;

}

Recommendation:
Rename method to getAvailableDAIWithdrawalAmount.

. . .

15

Bridge Mutual Contract Audit

LOW

Method stats of contract PolicyBook is returning static information instead of statistics.

Snippet:

function stats()

 external

 view

 override

 returns (

 string memory _symbol,

 address _insuredContract,

 IPolicyBookFabric.ContractType _contractType,

 bool _whitelisted

)

{

 return (symbol(), insuranceContractAddress, contractType, whitelisted);

}

Recommendation:
Rename method to indicate that it returns static information instead of any statistic.

LOW

Method uri from contract BMIDaiStaking is not returning token specific metadata url.

Snippet:

function uri(uint256) external view override returns (string memory) {

 return _uri;

}

Recommendation:
Return uri that includes token id.

We are grateful to have been given the opportunity to work
with the Bridge Mutual team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the Bridge Mutual
team put in place a bug bounty program to encourage further
analysis of the smart contract by third parties.

