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A. Hlobilová Translation from the UQLab manual



Document Data Sheet

Document Ref. UQ[PY]LAB-V0.9-107
Title: UQ[PY]LAB user manual – Structural reliability (Rare event estima-

tion)

Authors: S. Marelli, R. Schöbi, B. Sudret
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Abstract

Structural reliability methods aim at the assessment of the probability of failure of complex

systems due to uncertainties associated to their design, manifacturing, environmental and

operating conditions. The name structural reliability comes from the emergence of such

computational methods back in the mid 70’s to evaluate the reliability of civil engineering

structures. As these probabilities are usually small (e.g. 10−2 − 10−8), this type of problems

is also known as rare events estimation in the recent statistics literature.

The structural reliability module of UQ[PY]LAB offers a comprehensive set of techniques for

the efficient estimation of the failure probability of a wide range of systems. Classical (crude

Monte Carlo simulation, FORM/SORM, Subset Simulation) and state-of-the-art algorithms

(AK-MCS) are available and can be easily deployed in association with other UQ[PY]LAB

tools, e.g. surrogate modelling or sensitivity analysis.

The structural reliability user manual is divided in three parts:

• A short introduction to the main concepts and techniques used to solve structural reli-

ability problems, with a selection of references to the relevant literature

• A detailed example-based guide, with the explanation of most of the available options

and methods

• A comprehensive reference list detailing all the available functionalities in the UQ[PY]LAB

structural reliability module.

Keywords: Structural Reliability, FORM, SORM, Importance Sampling, Monte Carlo Simula-

tion, Subset Simulation, AK-MCS, UQ[PY]LAB, rare event estimation
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Chapter 1

Theory

1.1 Introduction

A structural system is defined as a structure required to provide specific functionality under

well-defined safety constraints. Such constraints need to be taken into account during the

system design phase in view of the expected environmental/operating loads it will be subject

to.

In the presence of uncertainties in the physical properties of the system (e.g. due to tolerances

in the manufacturing), in the environmental loads (e.g. due to exceptional weather condi-

tions), or in the operating conditions (e.g. traffic), it can occur that the structure operates

outside of its nominal range. In such cases, the system encounters a failure.

Structural reliability analysis deals with the quantitative assessment of the probability of

occurrence of such failures (probability of failure), given a model of the uncertainty in the

structural, environmental and load parameters.

Following the formalism introduced in Sudret (2007), this chapter is intended as a brief

theoretical introduction and literature review of the available tools in the structural reliability

module of UQ[PY]LAB. Consistently with the overall design philosophy of UQ[PY]LAB, all

the algorithms presented follow a black-box approach, i.e. they rely on the point-by-point

evaluation of a computational model, without knowledge about its inner structure.

1.2 Problem statement

1.2.1 Limit-state function

A limit state can be defined as a state beyond which a system no longer satisfies some perfor-

mance measure (ISO Norm 2394). Regardless on the choice of the specific criterion, a state

beyond the limit state is classified as a failure of the system.

Consider a system whose state is represented by a random vector of variables X ∈ DX ⊂ RM .

One can define two domains Ds,Df ⊂ DX that correspond to the safe and failure regions of

the state space DX , respectively. In other words, the system is failing if the current state

x ∈ Df and it is operating safely if x ∈ Ds. This classification makes it possible to construct

a limit-state function g(X) (sometimes also referred to as performance function) that assumes

1
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Figure 1: Schematic representation of the safe and failure domains Ds and Df and the cor-
responding limit-state surface g(x) = 0.

positive values in the safe domain and negative values in the failure domain:

x ∈ Ds ⇐⇒ g(x) > 0

x ∈ Df ⇐⇒ g(x) ≤ 0
(1.1)

The hypersurface in M dimensions defined by g(x) = 0 is known as the limit-state surface,

and it represents the boundary between safe and failure domains. A graphical representation

of Ds,Df and the corresponding limit-state surface g(x) = 0 is given in Figure 1.

1.2.2 Failure Probability

If the random vector of state variables X is described by a joint probability density function

(PDF) X ∼ fX(x), then one can define the failure probability Pf as:

Pf = P (g(X) ≤ 0) . (1.2)

This is the probability that the system is in a failed state given the uncertainties of the state

parameters. The failure probability Pf is then calculated as follows:

Pf =

∫
Df

fX(x)dx =

∫
{x: g(x)≤0}

fX(x)dx. (1.3)

Note that the integration domain in Eq. (1.3) is only implicitly defined by Eq. (1.1), hence

making its direct estimation practically impossible in the general case. This limitation can be

circumvented by introducing the indicator function of the failure domain, a simple classifier

given by:

1Df
(x) =

{
1 if g(x) ≤ 0

0 if g(x) > 0
, x ∈ DX .

In other words, 1Df
(x) = 1 when the input parameters x cause the system to fail and

UQ[PY]LAB-V0.9-107 - 2 -
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1Df
(x) = 0 otherwise. This function allows one to cast Eq. (1.3) as follows:

Pf =

∫
DX

1Df
(x)fX(x)dx = E

[
1Df

(X)
]
, (1.4)

where E [·] is the expectation operator with respect to the PDF fX(x). This reduces the

calculation of Pf to the estimation of the expectation value of 1Df
(X).

1.3 Strategies for the estimation of Pf

From the definition of 1Df
(x) in Section 1.2.2 it is clear that determining whether a certain

state vector x ∈ DX belongs to Ds or Df requires the evaluation of the limit-state function

g(x). In the general case this operation can be computationally expensive, e.g. when it

entails the evaluation of a computational model on the vector x. For a detailed overview

of standard structural reliability methods and applications, see e.g. Ditlevsen and Madsen

(1996); Melchers (1999); Lemaire (2009).

In the following, three strategies are discussed for the evaluation of Pf , namely approxima-

tion, simulation and adaptive surrogate-modelling-based methods.

Approximation methods

Approximation methods are based on approximating the limit-state function locally at a

reference point (e.g. with a linear or quadratic Taylor expansion). This class of methods

can be very efficient (in that only a relatively small number of model evaluations is needed

to calculate Pf ), but it tends to become unreliable in the presence of complex, non-linear

limit-state functions. Two approximation methods are currently available in UQ[PY]LAB:

• FORM (First Order Reliability Method) – it is based on the combination of an iterative

gradient-based search of the so-called design point and a local linear approximation of

the limit-state function in a suitably transformed probabilistic space.

• SORM (Second Order Reliability Method) – it is a second-order refinement of the solution

of FORM. The computational costs associated to this refinement increase rapidly with

the number of input random variables M .

Simulation methods

Simulation methods are based on sampling the joint distribution of the state variables X

and using sample-based estimates of the integral in Eq. (1.4). At the cost of being compu-

tationally very expensive, they generally have a well-characterized convergence behaviour

that can be exploited to calculate confidence bounds on the resulting Pf estimates. Three

sampling-based algorithms are available in UQ[PY]LAB:

• Monte Carlo simulation – it is based on the direct sample-based estimation of the expec-

tation value in Eq. (1.4). The total costs increase very rapidly with decreasing values

of the probability Pf to be computed.

UQ[PY]LAB-V0.9-107 - 3 -
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• Importance Sampling – it is based on improving the efficiency of Monte Carlo simulation

by changing the sampling density so as to favour points in the failure domain Df . The

choice of the importance sampling (a.k.a. instrumental) density generally uses FORM

results.

• Subset Simulation – it is based on iteratively solving and combining a sequence of condi-

tional reliability analyses by means of Markov Chain Monte Carlo (MCMC) simulation.

Metamodel-based adaptive methods

Metamodel-based adaptive methods are based on iteratively building surrogate models

that approximate the limit-state function in the direct vicinity of the limit-state surface.

The metamodels (see e.g. UQ[PY]LAB User Manual – Polynomial Chaos Expansions and

UQ[PY]LAB User Manual – Kriging (Gaussian process modelling)) are adaptively refined by

adding limit-state function evaluations to their experimental designs until a suitable conver-

gence criterion related to the accuracy of Pf is satisfied. One algorithm is currently available

in UQ[PY]LAB, namely Adaptive Kriging Monte Carlo Simulation (AK-MCS). It is based on

building a Kriging (aka Gaussian process regression) surrogate model from a small initial

sampling of the input vector X. The surrogate is then iteratively refined close to the cur-

rently estimated limit-state surface so as to evaluate accurately the probability of failure.

In the following, a detailed description of each of the methods is given.

1.4 Approximation methods

1.4.1 First Order Reliability Method (FORM)

The first order reliability method aims at the approximation of the integral in Eq. (1.3) with

a three-step approach:

• An isoprobabilistic transform of the input random vector X ∼ fX(x) into a standard

normal vector U ∼ N (0, IM )

• A search for the most likely failure point in the standard normal space (SNS), known

as the design point U∗

• A linearization of the limit-state surface at the design point U∗ and the analytical com-

putation of the resulting approximation of Pf .

1.4.1.1 Isoprobabilistic transform

The first step of the FORM method is to transform the input random vector X ∼ fX into

a standard normal vector U ∼ N (0, IM ). The corresponding isoprobabilistic transform T
reads:

X = T −1(U) (1.5)

UQ[PY]LAB-V0.9-107 - 4 -
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Figure 2: Graphical representation of the isoprobabilistic transform from physical to standard
normal space in Eq. (1.5). From Sudret, 2015: Lectures on structural reliability and risk
analysis.

For details about the available isoprobabilistic transforms in UQ[PY]LAB, please refer to the

UQ[PY]LAB User Manual – the INPUT module .

This transform can be used to map the integral in Eq. (1.3) from the physical space of X to

the standard normal space of U :

Pf =

∫
Df

fX(x)dx =

∫
{u∈RM : G(u)≤0}

φM (u)du (1.6)

where G(u) = g(T −1(u)) is the limit-state function evaluated in the standard normal space

and φM (u) is the standard multivariate normal PDF given by:

φM (u) = (2π)−M/2 exp

(
−1

2
(u21 + · · ·+ u2M )

)
. (1.7)

A graphical illustration of the effects of this transform for a simple 2-dimensional case is

given in Figure 2. The advantage of casting the problem in the standard normal space is that

it is a probability space equipped with the Gaussian probability measure PG:

PG(U ∈ A) =

∫
A
φM (u)du =

∫
A
(2π)−M/2 exp

(
u21 + · · ·+ u2M

)
du. (1.8)

This probability measure is spherically symmetric: φM (u) only depends on ∥u∥2 and it de-

cays exponentially as φM (u) ∼ exp
(
−∥u∥2/2

)
. Therefore, when evaluating the integral in

Eq. (1.6) in the standard normal space, most of the contributions are given by the region clos-
est to the origin. The FORM method capitalizes on this property by linearly approximating

the limit-state surface in the region closest to the origin of the standard normal space.

UQ[PY]LAB-V0.9-107 - 5 -
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Figure 3: Graphical representation of the linearization of the limit-state function around the
design point at the basis of the FORM estimation of Pf . From Sudret, 2015: Lectures on
structural reliability and risk analysis.

1.4.1.2 Search for the design point

The design point U∗ is defined as the point in the failure domain closest to the origin of the

standard normal space:

U∗ = argmin
u∈RM

{∥u∥, G(u) ≤ 0)} . (1.9)

Due to the probability measure in Eq. (1.8), U∗ can be interpreted as the most likely failure

point in the standard normal space. The norm of the design point ∥U∗∥ is an important

quantity in structural reliability known as the Hasofer-Lind reliability index (Hasofer and Lind,

1974):

βHL = ∥U∗∥. (1.10)

An important property of the βHL index is that it is directly related to the exact failure prob-

ability Pf in the case of linear limit-state function in the standard normal space:

Pf = Φ(−βHL), (1.11)

where Φ is the standard normal cumulative density function. The estimation of Pf in the

FORM algorithm is based on approximating the limit-state function as the hyperplane tan-

gent to the limit-state function at the design point. Figure 3 illustrates this approximation

graphically for the two-dimensional case.

In the general non-linear case, Eq. (1.9) may be cast as a constrained optimization problem

with Lagrangian:

L(u, λ) = 1

2
∥u∥2 + λG(u) (1.12)

UQ[PY]LAB-V0.9-107 - 6 -
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where λ is the Lagrange multiplier. The related optimality conditions read:

∇uL(U∗, λ∗) = 0,

∂L
∂λ

(U∗, λ∗) = 0,
(1.13)

which can be explicitly written as:

G(U∗) = 0,

U∗ + λ∗∇G(U∗) = 0.
(1.14)

The first condition in Eq. (1.14) guarantees that the design point belongs to the limit-state

surface. The second condition guarantees that the vector U∗ is colinear to the limit-state

surface normal vector at U∗, i.e. ∇G(U∗). The standard iterative approach to solve this non-

linear constrained optimization problem is given by the Rackwitz-Fiessler algorithm (Rackwitz

and Fiessler, 1978).

Hasofer-Lind - Rackwitz-Fiessler algorithm (HL-RF)

The rationale behind the Rackwitz-Fiessler algorithm is to iteratively solve a linearized

problem around the current point. Normally, the algorithm is started with U0 = 0.

At each iteration, the limit-state function is approximated as:

G(U) ≈ G(Uk) +∇G|Uk
· (U −Uk) (1.15)

The two optimality conditions in Eq. (1.14) read for each iteration k:

∇G|Uk
· (Uk+1 −Uk) +G(Uk) = 0

Uk+1 = λ∇G|Uk
,

(1.16)

which after some basic algebra reduce to:

Uk+1 =
∇G|Uk

·Uk −G(Uk)

∥∇G|Uk
∥2

∇G|Uk
. (1.17)

By introducing the unit vector:

αk = −
∇G|Uk

∥∇G|Uk
∥
, (1.18)

one finally obtains:

Uk+1 =

[
αk ·Uk +

G(Uk)

∥∇G|Uk
∥

]
αk. (1.19)

The associated estimate of the reliability index βk associated to the k-th iteration is then:

βk = αk ·Uk +
G(Uk)

∥∇G|Uk
∥
. (1.20)

Perfect convergence of the algorithm is obtained when G(U∗) = 0, yielding βHL = α∗ ·U∗.

However, in practice the algorithm is iterated until some stopping criteria are satisfied, i.e.,

UQ[PY]LAB-V0.9-107 - 7 -
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Table 1: Common stopping criteria for the FORM algorithm and associated description.

Criterion Typical value Description
|βk+1 − βk| ≤ ϵβ 10−3 Stability of β between iterations
∥Uk+1 −Uk∥ ≤ ϵU 10−3 Stability of U between iterations
|G(Uk+1)/G(U0)| ≤ ϵG 10−6 Closeness to the limit-state surface

until one or more convergence conditions are verified. The standard stopping criteria used

in FORM are reported in Table 1.

Note: In UQ[PY]LAB the gradients ∇G(Uk) in Eqs. (1.13) to (1.20) are calculated
numerically in the standard normal space and not in the physical space.

Improved HL-RF algorithm (iHL-RF)

The Rackwitz-Fiessler algorithm is a particular case of a wide class of iterative algorithms

generically denoted as descent direction algorithms, of the form:

Uk+1 = Uk + λkdk, (1.21)

where λk is the step size at the k-th iteration and dk is the corresponding descent direction
given by:

dk =
∇G|Uk

·Uk −G(Uk)

∥∇G|Uk
∥2

∇G|Uk
−Uk. (1.22)

In the original HL-RF algorithm, λk = 1 ∀k. Zhang and Der Kiureghian (1995) proposed

an “improved” version of the same algorithm that takes advantage of a more sophisticated

step-size calculation based on the assumption that G(U) is differentiable everywhere. They

introduced the merit function m(U):

m(U) =
1

2
∥U∥+ c|G(U)|, (1.23)

where c >
∥U∥

∥∇G(U)∥
is a real penalty parameter. This function has its global minimum in the

same location as the original Eq. (1.9), as well as the same descent direction d. In addition,

it allows one to use the Armijo rule (Zhang and Der Kiureghian, 1995) to determine the best

step length λk at each iteration as:

λk = max
s

{bs | m(Uk + bsdk)−m(Uk) ≤ −abs∇m(Uk) · dk}, (1.24)

where a, b ∈ (0, 1) are pre-selected parameters, and s ∈ N.

1.4.1.3 FORM results

Once the design point U∗ is identified, it can be used to extract additional important infor-

mation. According to Eq. (1.20), after the convergence of FORM the Hasofer-Lind index βHL

UQ[PY]LAB-V0.9-107 - 8 -
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is given by:

βHL = α∗ ·U∗, (1.25)

with associated failure probability:

Pf,FORM = Φ−1(βHL) (1.26)

The local sensitivity indices Si are defined as the fraction of the variance of the safety margin

g(X) = G(U) due to the component of the design vector Ui. It can be demonstrated that

they are given by:

Si =

(
∂G

∂ui

∣∣∣∣
U∗

)2

/∥∇G(U∗)∥2. (1.27)

From Eq. (1.18) it follows that:

Si = α2
i . (1.28)

If the input variables are independent, then each coordinate in the SNS Ui corresponds to a

single input variable in the physical space Xi. Therefore, the importance factor of each Xi is

identified with α2
i .

1.4.2 Second Order Reliability Method (SORM)

The second-order reliability method (SORM) is a second-order refinement of the FORM Pf

estimate. After the design point U∗ is identified by FORM, the failure probability is approxi-

mated by a tangent hyperparaboloid defined by the second order Taylor expansion of G(U∗)

given by:

G(U) ≈ ∇GT
|U∗ · (U −U∗) +

1

2
(U −U∗)TH(U −U∗), (1.29)

where H is the Hessian matrix of the second derivatives of G(U) evaluated at U∗.

The failure probability in the SORM approximation can be written as a correction factor of

the FORM estimate that depends on the curvatures of the hyper-hyperboloid in Eq. (1.29).

To estimate the curvatures, the hyperparaboloid in Eq. (1.29) is first cast in canonical form

by rotating the coordinates system such that one of its axes is the α vector. Usually the last

coordinate is chosen arbitrarily for this purpose. A rotation matrix Q can be built by setting

α as its last row and by using the Gram-Schmidt procedure to orthogonalize the remaining

components of the basis. Q is a square matrix such that QTQ = I. The resulting vector V

satisfies:

U = QV . (1.30)

In the new coordinates system and after some basic algebra (see e.g. Breitung (1989) and

Cai and Elishakoff (1994)), one can rewrite Eq. (1.29) as:

G(V ) ≈ ∥∇G(U∗)∥(β − VM ) +
1

2
(V − V ∗)QHQT(V − V ∗) (1.31)

where β is the Hasofer-Lind reliability index calculated by FORM, VM
def
= αT(QTV ) and

UQ[PY]LAB-V0.9-107 - 9 -
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Figure 4: Comparison between FORM and SORM approximations of the failure domain for
a simple 2-dimensional case. From Sudret, 2015: Lectures on structural reliability and risk
analysis.

V ∗ = {0, · · · , β}T is the design point in the new coordinates system. By dividing Eq. (1.31)

by the gradient norm ∥∇G(U∗)∥ and introducing the matrix A
def
= QHQT/∥∇G(U∗)∥, one

obtains:

G̃(V ) ≈ β − VM +
1

2
(V − V ∗)A(V − V ∗), (1.32)

where G̃(V ) = G(V )/∥∇G(U∗)∥. After neglecting second-order terms in VM and diagonal-

izating the A matrix via eigenvalue decomposition one can rewrite Eq. (1.32) explicitly in

terms of the curvatures κi of an hyper-paraboloid with axis α:

G̃(V ) ≈ β − VM +
1

2

M−1∑
1

κiVi. (1.33)

For small curvatures κi < 1, the failure probability Pf can be approximated by the Breitung

formula (Breitung, 1989):

PB
f,SORM = Φ(−βHL)

M−1∏
i=1

(1 + βHL κi)
− 1

2 κi < 1 (1.34)

Note that for small curvatures the Breitung formula approaches the FORM linear limit. The

accuracy of Eq. (1.34) decreases for larger values of κi, sometimes even if κi < 1 (Cai and

Elishakoff, 1994). A more accurate formula is given by the Hohenbichler formula (Hohen-

bichler et al., 1987):

PH
f,SORM = Φ(−βHL)

M−1∏
i=1

(
1 +

φ(βHL)

Φ(−βHL)
κi

)− 1
2

. (1.35)

Additional methods are available in the literature for the exact computation of the failure

probability, e.g.Tvedt (1990). They are, however, outside the scope of this manual.
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1.5 Simulation methods

1.5.1 Monte Carlo Simulation

Monte Carlo (MC) simulation is used to directly compute the integral in Eq. (1.4) by sampling

the probabilistic input model. Given a sample of size N of the input random vector X,

X =
{
x(1), . . .x(N)

}
, the unbiased MCS estimator of the expectation value in Eq. (1.4) is

given by:

Pf,MC
def
= P̂f =

1

N

N∑
k=1

1Df
(x(k)) =

Nfail

N
, (1.36)

where Nfail is the number of samples such that g(x) ≤ 0. In other words, the Monte Carlo

estimate of the failure probability is the fraction of samples that belong to the failure domain

over the total number of samples. An advantage of Monte Carlo simulation is that it provides

an error estimate for Eq. (1.36). Indeed the indicator function 1Df
(x) follows by construction

a Bernoulli distribution with mean µ1Df
= Pf and variance σ2

1Df
= Pf (1 − Pf ). For large

enough N it can be approximated by the normal distribution:

P̂f ∼ N
(
µ̂1Df

, σ̂1Df

)
, (1.37)

where µ̂1Df
= P̂f and σ̂1Df

=
√

P̂f (1− P̂f ). Hence, the estimator of Pf has a normal

distribution with mean P̂f and variance given by:

σ̂2
Pf

=
σ2
1Df

N
=

P̂f (1− P̂f )

N
. (1.38)

Confidence intervals on P̂f can therefore be given as follows (Rubinstein, 1981):

P̂f ∈
[
P̂−
f

def
= P̂f + σ̂Pf

Φ−1(α/2), P̂+
f

def
= P̂f + σ̂Pf

Φ−1(1− α/2)
]
, (1.39)

where Φ(x) is the standard normal CDF and α ∈ [0, 1] is a scalar such that the calculated

bounds correspond to a confidence level of 1 − α. An important measure for assessing the

convergence of a MCS estimator is given by the coefficient of variation CoV defined as:

CoV =
σ
P̂f

P̂f

=

√√√√1− P̂f

NP̂f

. (1.40)

The coefficient of variation of the MCS estimate of a failure probability therefore decreases

with
√
N and increases with decreasing Pf . To give an example, to estimate a Pf = 10−3

with 10% accuracy N = 105 samples are needed. The CoV is often used as a convergence

criterion to adaptively increase the MC sample size until some desired CoV is reached.

An associated generalized reliability index βMCS can be defined as:

βMCS = −Φ−1(P̂f ). (1.41)
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In analogy, upper and lower confidence bounds on βMCS can be directly inferred from the

confidence bounds on P̂f in Eq. (1.39):

β±
MCS = −Φ−1(P̂±

f ). (1.42)

The MCS method is powerful, when applicable, due to its statistically sound formulation and

global convergence. However, its main drawback is the relatively slow converge rate that

depends strongly on the probability of failure.

1.5.2 Importance Sampling

Importance sampling (IS) is an extension of the FORM and MCS methods that combines the

fast convergence of FORM with the robustness of MC. The basic idea is to recast Eq. (1.4) as:

Pf =

∫
DX

1Df
(x)

fX(x)

Ψ(x)
Ψ(x)dx = EΨ

[
1Df

(X)
fX(X)

Ψ(X)

]
, (1.43)

where Ψ(X) is an M−dimensional sampling distribution (also referred to as importance dis-
tribution) and EΨ denotes the expectation value with respect to the same distribution. The

estimate of Pf given a sample X =
{
x(1), . . . ,x(N)

}
drawn from Ψ is therefore given by:

Pf,IS =
1

N

N∑
k=1

1Df
(x(k))

fX(x(k))

Ψ(x(k))
. (1.44)

In the standard normal space, Eq. (1.43) can be rewritten as:

Pf = EΨ

[
1Df

(T −1(U))
φM (U)

Ψ(U)

]
. (1.45)

When the results from a previous FORM analysis are available, a particularly efficient sam-

pling distribution in the standard normal space is given by (Melchers, 1999):

Ψ(u) = φM (u−U∗) (1.46)

where U∗ is the estimated design point. Given a sample U =
{
u(1), . . . ,u(N)

}
of Ψ(u), the

estimate of Pf becomes:

Pf,IS =
1

N
exp

(
−β2

HL/2
) N∑
k=1

1Df

(
T −1(u(k))

)
exp

(
−u(k) ·U∗

)
(1.47)

with corresponding variance:

σ̂2
Pf,IS

=
1

N

1

N − 1

N∑
k=1

(
1Df

(
T −1(u(k))

) φ(u(k))

Ψ(u(k))
− Pf,IS

)2

. (1.48)

The coefficient of variation and the confidence bounds P±
f,IS can be calculated analogously to

Eqs. (1.40) and (1.39), respectively, and can be used as a convergence criterion to adaptively
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improve the estimation of Pf,IS. The corresponding generalized reliability index reads:

βIS = −Φ−1(P̂f,IS), (1.49)

with upper and lower bounds:

β±
IS = −Φ−1(P̂±

f,IS). (1.50)

Note that exact convergence of FORM is not necessary to obtain accurate results, even an

approximate sampling distribution can significantly improve the convergence rate compared

to standard MC sampling.

1.5.3 Subset Simulation

Monte Carlo simulation may require a large number of limit-state function evaluations to

converge with an acceptable level of accuracy when Pf is small (see Eq. (1.40)). Subset sim-

ulation is a technique introduced by Au and Beck (2001) that aims at offsetting this limitation

by solving a series of simpler reliability problems with intermediate failure thresholds.

Consider a sequence of failure domains D1 ⊃ D2 ⊃ · · · ⊃ Dm = Df such that Df =
⋂m

k=1Dk.

With the conventional definition of limit-state function in Eq. (1.1), such sequence can be

built with a series of decreasing failure thresholds t1 > · · · > tm = 0 and the corresponding

intermediate failure domains Dk = {x : g(x) ≤ tk}. One can then combine the probability

mass of each intermediate failure region by means of conditional probability. By introducing

the notation P (DX) = P (x ∈ DX) one can write (Au and Beck, 2001):

Pf = P (Dm) = P

(
m⋂
k=1

P (Dk)

)
= P (D1)

m−1∏
i=1

P (Di+1|Di) . (1.51)

With an appropriate choice of the intermediate thresholds t1, . . . , tm, Eq. (1.51) can be eval-

uated as a series of structural reliability problems with relatively high probabilities of failure

that are then solved with MC simulation. In practice the intermediate probability thresholds

ti are chosen on-the-fly such that they correspond to intermediate values P (Dk) ≈ 0.1. The

convergence of each intermediate estimation is therefore much faster than the direct search

for Pf given in Eq. (1.36).

1.5.3.1 Sampling

To estimate Pf from Eq. (1.51) one thus needs to estimate the intermediate probabilities

P (D1) and conditional probabilities {P (Di+1|Di) , i = 1, . . . ,m− 1}. Given an initial thresh-

old t1, P (D1) can be readily estimated from a sample of size NS of the input distribution

X =
{
x(1), . . . ,x(N)

}
with Eq. (1.36):

P (D1) ≈ P̂1 =
1

NS

NS∑
k=1

1D1(x
(k)). (1.52)

The remaining conditional probabilities can be estimated similarly, but an efficient sampling
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algorithm is needed for the underlying conditional distributions. The latter can be efficiently

accomplished by using the modified Metropolis-Hastings Markov Chain Monte Carlo (MCMC)

simulation introduced by Au and Beck (2001).

1.5.3.2 Intermediate failure thresholds

The efficiency of the subset-simulation method depends on the choice of the intermediate

failure thresholds tk. If the thresholds are too large the MCS convergence in each subset

would be very good, but the number of subsets needed would increase. Vice-versa, too small

intermediate thresholds would correspond to fewer subsets with inaccurate estimates of the

underying P (Dk). A strategy to deal with this problem comes by sampling each subset Dk and

determining each threshold tk as the empirical quantile that correspond to a predetermined

failure probability, typically P (Dk) ≈ P0 = 0.1. Note that for practical reasons, P0 is normally

limited to 0 < P0 ≤ 0.5. For each subset, the samples falling below the calculated threshold

are used as MCS seeds for the next subset (Au and Beck, 2001).

1.5.3.3 Subset simulation algorithm

The subset simulation algorithm can be summarized in the following steps:

1. Sample the original space with standard MC sampling (see UQ[PY]LAB User Manual –

the INPUT module for efficient sampling strategies)

2. Calculate the empirical quantile tk in the current subset such that P̂k ≈ P0

3. Using the samples below the identified quantile as the seeds of parallel MCMC chains,

sample Dk+1|Dk until a predetermined number of samples is available

4. Repeat Steps 2 and 3 until the identified quantile tm < 0

5. Calculate the failure probability of the last subset P̂m by setting tm = 0

6. Combine the intermediate calculated failure probabilities into the final estimate of P̂f .

The last step of the algorithm consists simply in evaluating Eq. (1.51) with the current esti-

mates of the conditional probabilities Pi:

P̂f,SS =

m∏
i=1

P̂i = Pm−1
0 P̂m. (1.53)

1.5.3.4 Error estimation

Due to the intrinsic correlation of the samples drawn from each subset resulting from the

MCMC sampling strategy, the estimation of a CoV for the Pf estimate in Eq. (1.53) is non-

trivial. Au and Beck (2001) and Papaioannou et al. (2015) derived an estimate for the CoV

of P̂f :

CoVf ≈
m∑
i=1

δ2i , (1.54)
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where m is the number of subsets and δi is defined as:

δi =

√
1− Pi

NPi
(1 + γi), (1.55)

with

γi = 2

N/Ns∑
k=1

(
1− kNs

N

)
ρi(k), (1.56)

where NS is the number of seeds, Pi is the conditional failure probability of the i−th subset

and ρi(k) is the average k-lag auto-correlation coefficient of the Markov Chain samples in

the i−th subset. By assuming normally distributed errors, confidence bounds P±
f,SS can be

given on Pf,SS based on the calculated CoVf in analogy with Eq. (1.39). The corresponding

generalized reliability index reads:

βSS = −Φ−1(P̂f,SS), (1.57)

with upper and lower bounds:

β±
SS = −Φ−1(P̂±

f,SS). (1.58)

1.6 Metamodel-based methods

1.6.1 Adaptive Kriging Monte Carlo Simulation

Adaptive Kriging Monte Carlo Simulation (AK-MCS) combines Monte Carlo simulation with

adaptively built Kriging (a.k.a. Gaussian process modelling) metamodels. In cases where

the evaluation of the limit-state function is costly, Monte Carlo simulation and its variants

may become intractable due to the large number of limit-state function evaluations they

require. In AK-MCS, a Kriging metamodel surrogates the limit-state function to reduce the

total computational costs of the Monte Carlo simulation.

Kriging metamodels (see UQ[PY]LAB User Manual – Kriging (Gaussian process modelling))

predict the value of the limit-state function most accurately in the vicinity of the experi-

mental design samples X =
{
X(1), . . . ,X(n)

}
. These samples, however, are generally not

optimal to estimate the failure probability. Thus, an adaptive experimental design algorithm

is introduced to increase the accuracy of the surrogate model in the vicinity the limit-state

function. This is achieved by adding carefully selected samples to the experimental design of

the Kriging metamodel based on the current estimate of the limit-state surface (g(x) = 0).

The adaptive experimental design algorithm is summarized as follows (Echard et al., 2011;

Schöbi et al., 2016):

1. Generate a small initial experimental design X =
{
x(1), . . . ,x(N0)

}
and evaluate the

corresponding limit-state function responses Y =
{
y(1), . . . , y(N0)

}
=
{
g(x(1)), . . . , g(x(N0))

}
2. Train a Kriging metamodel ĝ based on the experimental design {X ,Y}
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3. Generate a large set of NMC candidate samples S =
{
s(1), . . . , s(NMC)

}
and predict the

corresponding metamodel responses
{
ĝ(s(1)), . . . , ĝ(s(NMC))

}
4. Choose the best next sample s∗ to be added to the experimental design X based on an

appropriate learning function

5. Check whether some convergence criterion is met. If it is, skip to Step 7, otherwise

continue with Step 6

6. Add s∗ and the corresponding limit-state function response y∗ = g(s∗) to the experi-

mental design of the metamodel. Return to Step 2

7. Estimate the failure probability through Monte Carlo simulation with the final limit-

state function surrogate ĝ(x).

1.6.1.1 Selection of the best next candidate sample

A learning function is a measure of the attractiveness of a candidate sample X with respect to

improving the estimate of the failure probability when it is added to the experimental design

X . A variety of learning functions are available in the literature (Bichon et al., 2008; Dani

et al., 2008; Echard et al., 2011; Srinivas et al., 2012; Ginsbourger et al., 2013; Dubourg,

2011), amongst which the U -function (Echard et al., 2011). The U -function is based on the

concept of misclassification and is defined for a Gaussian process as follows:

U(X) =

∣∣µĝ(X)
∣∣

σĝ(X)
, (1.59)

where µĝ(X) and σĝ(X) are the prediction mean and standard deviation of ĝ. A misclassifica-

tion happens when the sign of the surrogate model and the sign of the underlying limit-state

function do not match. The corresponding probability of misclassification is then:

Pm(X) = Φ (−U(X)) ,

where Φ is the CDF of a standard Gaussian variable.

The next candidate sample from the set S =
{
s(1), . . . , s(NMC)

}
is chosen as the one that

maximizes the probability of misclassification or, in other words, as the one most likely to

have been misclassified as safe/failed by the surrogate limit-state function ĝ(x):

s∗ = argmin
s∈S

U(s) ≡ argmax
s∈S

Pm(s). (1.60)

Another popular learning function is the expected feasibility function (EFF) (Bichon et al.,
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2008):

EFF (x) = µĝ(x)

[
2Φ

(
−µĝ(x)

σĝ(x)

)
− Φ

(
−ϵ− µĝ(x)

σĝ(x)

)
− Φ

(
ϵ− µĝ(x)

σĝ(x)

)]
− σĝ(x)

[
2φ

(
−µĝ(x)

σĝ(x)

)
− φ

(
−ϵ− µĝ(x)

σĝ(x)

)
− φ

(
ϵ− µĝ(x)

σĝ(x)

)]
+ ϵ

[
Φ

(
ϵ− µĝ(x)

σĝ(x)

)
− Φ

(
−ϵ− µĝ(x)

σĝ(x)

)]
, (1.61)

where ϵ = 2σĝ(x) and φ is the PDF value of a standard normal Gaussian variable. The next

candidate sample is then chosen by:

s∗ = argmax
s∈S

EFF (s). (1.62)

1.6.1.2 Convergence criteria

The convergence criterion terminates the addition of samples to the experimental design of

the Kriging metamodel and thus terminates the improvement in the accuracy of the fail-

ure probability estimate. The standard convergence criterion related to the U -function is

defined as follows (Echard et al., 2011): the iterations stop when mini U(s(i)) > 2 where

i = 1, . . . , NMC . Schöbi et al. (2016) demonstrated that this criterion is very conservative

and that an alternative stopping criterion, related to the uncertainty in the estimate of the

failure probability itself, is often more efficient in the context of structural reliability. It is

given by the following condition:
P̂+
f − P̂−

f

P̂ 0
f

≤ ϵ
P̂f
, (1.63)

where ϵ
P̂f

= 10% and the three failure probabilities are defined as:

P̂ 0
f = P

(
µĝ(X) ≤ 0

)
, (1.64)

P̂±
f = P

(
µĝ(X)∓ kσĝ(X) ≤ 0

)
, (1.65)

where k = Φ−1(1− α/2) sets the confidence level (1− α), typically k = Φ−1 (97.5%) = 1.96.

A similar convergence criterion can be defined for the reliability index:

β̂+ − β̂−

β̂0
≤ ϵ

β̂
, (1.66)

where the threshold ϵ
β̂f

= 5% and the three reliability indices correspond to the aforemen-

tioned failure probabilities:

β̂0 = −Φ−1(P̂ 0
f ), (1.67)

β̂± = −Φ−1(P̂∓
f ). (1.68)
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1.6.1.3 AK-MCS with a PC-Kriging metamodel

As originally proposed by Echard et al. (2011), AK-MCS uses an ordinary Kriging model for

approximating the limit-state function. As demonstrated by Schöbi et al. (2016) replacing

the ordinary Kriging metamodel with a Polynomial-Chaos-Kriging (PC-Kriging) one (see also

UQ[PY]LAB User Manual – PC-Kriging) can significantly improve the convergence of the

algorithm. The corresponding reliability methods is called Adaptive PC-Kriging Monte Carlo
Simulation (APCK-MCS) and is available in UQ[PY]LAB as an advanced option of AK-MCS

(see Section 2.3.6.2).
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Usage

In this section, a reference problem will be set up to showcase how each of the techniques in

Chapter 1 can be deployed in UQ[PY]LAB.

2.1 Reference problem: R-S

The benchmark of choice to showcase the methods described in Section 1.3 is a basic problem

in structural reliability, namely the R-S case. It is one of the simplest possible abstract setting

consisting of only two input state variables: a resistance R and a stress S. The system fails

when the stress is higher than the resistance, leading to the following limit-state function:

X = {R,S} g(X) = R− S; (2.1)

The two-dimensional probabilistic input model consists of independent variables distributed

according to Table 2.

Table 2: Distributions of the input parameters of the R− S model in Eq. (2.1).

Name Distributions Parameters Description
R Gaussian [5, 0.8] Resistance of the system
S Gaussian [2, 0.6] Stress applied to the system

An example UQ[PY]LAB script that showcases how to deploy all of the algorithms available

in the structural reliability module can be found in the example file:

1-RS.py

2.2 Problem set-up

Solving a structural reliability problem in UQ[PY]LAB requires the definition of three basic

components:

• a MODEL object that describes the limit-state function

• an INPUT object that describes the probabilistic model of the random vector X
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• a reliability ANALYSIS object.

The UQ[PY]LAB framework is first initialized with the following command:

from uqpylab import sessions

# Start the session
mySession = sessions.cloud()
# (Optional) Get a convenient handle to the command line interface
uq = mySession.cli
# Reset the session
mySession.reset()

The model in Eq. (2.1) can be added as a MODEL object directly with a Python vectorized

string as follows:

MOpts = {
'Type': 'Model',
'mString': 'X(:,1) - X(:,2)',
'isVectorized': 1
}

myModel = uq.createModel(MOpts)

For more details on the available options to create a model object in UQ[PY]LAB, please

refer to the UQ[PY]LAB User Manual – the MODEL module.

Correspondingly, an INPUT object with independent Gaussian variables as specified in Table 2

can be created as:

IOpts = {
'Marginals': [

{'Name': 'R', # Resistance
'Type': 'Gaussian',
'Moments': [5.0 , 0.8]
},
{'Name': 'S', # Stress
'Type': 'Gaussian',
'Moments': [2.0 , 0.6]
}

]
}

myInput = uq.createInput(IOpts)

For more details about the configuration options available for an INPUT object, please refer

to the UQ[PY]LAB User Manual – the INPUT module.

2.3 Reliability analysis with different methods

This section showcases how all the methods introduced in Section 1.3, can be deployed in

UQ[PY]LAB. In addition, visualization and advanced options are also described in detail.

The following methods are showcased in this section:

• FORM: Section 2.3.1

• SORM: Section 2.3.2
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• Monte Carlo Simulation: Section 2.3.3

• Importance Sampling: Section 2.3.4

• Subset Simulation: Section 2.3.5

• AK-MCS: Section 2.3.6

2.3.1 First Order Reliability Method (FORM)

Running a FORM analysis on the specified UQ[PY]LAB MODEL and INPUT objects does not

require any specific configuration. The following minimum syntax is required:

FORMOpts = {
'Type': 'Reliability',
'Method':'FORM'

}
FORMAnalysis = uq.createAnalysis(FORMOpts)

Once the analysis is performed, a report with the FORM results can be printed on screen by:

uq.print(FORMAnalysis)

which produces the following:

---------------------------------------------------
FORM
---------------------------------------------------
Pf 1.3499e-03
BetaHL 3.0000
ModelEvaluations 8
---------------------------------------------------
Variables R S
Ustar -2.400000 1.800000
Xstar 3.08e+00 3.08e+00
Importance 0.640000 0.360000
---------------------------------------------------

The results can be visualized graphically as follows:

uq.display(FORMAnalysis)

which produces the images in Figure 5. Note that the graphical representation of the FORM

iterations (right panel of Figure 5) is only produced for the 2-dimensional case.
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Figure 5: Graphical visualization of the results of the FORM analysis in Section 2.3.1.

Note: In the preceding example no specifications are provided. If not further specified
the FORMruns with the following defaults:

– Algorithm to find the design point: 'iHLRF';

– Starting point for the Rackwitz-Fiessler (RW) algorithm: (0, . . . , 0);

– Tolerance value for the RW algorithm on the design point: 10−4;

– Tolerance value for the RW algorithm on the limit-state function: 10−4;

– Maximum number of iterations for the RW algorithm: 100;

– Failure is defined for: limit-state g(x) ≤ 0.

Since FORM is a gradient-based method, the gradient of the limit-state function
needs to be computed. This is done using finite differences with the following
defaults:

– Type of finite difference scheme: 'forward';

– Value of the difference scheme: 10−3.

2.3.1.1 Accessing the results

The analysis results can be accessed in the FORMAnalysis['Results'] dictionary:

{
'BetaHL': 3,
'Pf': 0.0013,
'Ustar': [-2.4000 1.8000],
'Xstar': [3.0800 3.0800],
'Importance': [0.6400 0.3600],
'ModelEvaluations': 8,
'Iterations': 2,
'History': {...}

}
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In the Results dictionary , Pf is the estimate of Pf according to Eq. (1.26), BetaHL the

corresponding Hasofer-Lindt reliability index, Ustar the design point U∗ in the standard

normal space, Xstar the correspondingly transformed design point in the original space

X∗ = T −1(U∗), Importance the importance factors Si in Eq. (1.28), Iterations the num-

ber of FORM iterations needed to converge, ModelEvaluations the total number of eval-

uations of the limit-state function, and History a set of additional information about the

convergence behaviour of the algorithm.

2.3.1.2 Advanced options

Several advanced options are available for the FORM method to tweak which algorithm is

used to calculate the solution. They can be specified by adding a FORM key to the FORM

options dictionary FORMOpts. In the following, the most common advanced options for

FORM are specified:

• Specify the FORM algorihm: by default, the iHL-RF algorithm is used (see page 8).

The original HL-RF algorithm (see page 7) can be enforced by adding:

FORMOpts['FORM'] = {'Algorithm': 'HLRF'}

• Specify a starting point: by default the search of the design point is started in the

SNS at U0 = 0. It is possible to specify an alternative starting point (useful, e.g., when

multiple design points are expected) as:

FORMOpts['FORM'] = {'StartingPoint': [u1,...,uM]}

where [u1,...,uM] are the desired coordinates of the starting point in the SNS.

• Numerical calculation of the gradient: advanced options related to the numerical

calculation of the gradient can be specified by using the FORMOpts['Gradient'] dic-

tionary. As an example, to specify a gradient relative step-size h = 0.001 one can write:

FORMOpts['Gradient'] = {'h': 0.001}

Details on the gradient computation options are given in Table 7, page 46.

For a comprehensive list of the advanced options available to the FORM method, please see

Table 6, page 45.

2.3.2 Second Order Reliability Method (SORM)

A SORM analysis is set up very similarly to its FORM counterpart:

SORMOpts = {
'Type': 'Reliability',
'Method': 'SORM'

}

SORMAnalysis = uq.createAnalysis(SORMOpts)
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Once the analysis is performed, a report with the FORM+SORM results can be printed by:

uq.print(SORMAnalysis)

which produces the following:

---------------------------------------------------
FORM/SORM
---------------------------------------------------
Pf 1.3499e-03
BetaHL 3.0000
PfFORM 1.3499e-03
PfSORM 1.3499e-03
PfSORMBreitung 1.3499e-03
ModelEvaluations 20
---------------------------------------------------
Variables R S
Ustar -2.400000 1.800000
Xstar 3.08e+00 3.08e+00
Importance 0.640000 0.360000
---------------------------------------------------

The results can be visualized graphically as follows:

uq.display(SORMAnalysis)

which produces the same images as in FORM (Figure 5), as SORM is only a refinement of

the final FORM Pf estimate.

Note: In the preceding example no specifications are provided. If not further specified
the SORM runs with the same defaults as FORM.

2.3.2.1 Accessing the results

The analysis results can be accessed in the SORMAnalysis['Results'] dictionary:

{
'BetaHL': 3,
'Pf': 0.0013,
'Ustar': [-2.4000, 1.8000],
'Xstar': [3.0800, 3.0800],
'Importance': [0.6400, 0.3600],
'ModelEvaluations': 20,
'Iterations': 2,
'History': {...},
'PfSORM': 0.0013,
'PfSORMBreitung': 0.0013,
'BetaSORM': 3.0000,
'BetaSORMBreitung': 3.0000,
'Curvatures': [-2.8422e-10, 0],
'PfFORM': 0.0013

}

The Results dictionary contains the same keys as FORM (see Section 2.3.1) (when nec-

essary with a FORM or SORM suffix for clarity). In addition, the two PfSORMBreitung and

PfSORM keys provide the Pf,SORM and PH
f,SORM given in Eqs. (1.34) and (1.35), respectively.
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2.3.2.2 Advanced options

The SORM method shares the same advanced options as the FORM method, described in

Section 2.3.1.2.

2.3.3 Monte Carlo Simulation (MCS)

The Monte Carlo simulation (MCS) algorithm only requires the user to specify the maximum

number of limit-state function evaluations, corresponding to N in Eq. (1.36), if different from

the default value N = 105. As an example, to run a reliability analysis with N = 106 samples

one can write:

MCOpts = {
'Type': 'Reliability',
'Method': 'MCS'
'Simulation': {

'MaxSampleSize': 1e6
}

}
MCAnalysis = uq.createAnalysis(MCOpts)

Once the analysis is performed, a report with the Monte Carlo simulation results can be

printed on screen by:

uq.print(MCAnalysis)

which produces the following:

---------------------------------------------------
Monte Carlo simulation
---------------------------------------------------
Pf 1.4000e-03
Beta 2.9889
CoV 0.0267
ModelEvaluations 1000000
PfCI [1.3267e-03 1.4733e-03]
BetaCI [2.9733e+00 3.0053e+00]
---------------------------------------------------

The results can be visualized graphically as follows:

uq.display(MCAnalysis)

which produces the convergence plots in Figure 6 and the plot of Monte Carlo sample points

in Figure 7. Note that in uq.display, the maximum number of samples plotted is n = 105

to limit the size of the figure.

Note: In the preceding example only the maximum sample size for the analysis is pro-
vided. If not further specified the Monte Carlo simulation runs with the following
defaults:

– Confidence level: 0.05;

– Number of samples evaluated per batch: 104;

– Failure is defined for: limit-state g(x) ≤ 0.
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Figure 6: Graphical visualization of the convergence of the Monte Carlo simulation analysis
in Section 2.3.3.

2.3.3.1 Accessing the results

The analysis results can be accessed in the MCAnalysis['Results'] dictionary:

{
'Pf': 0.0014,
'Beta': 2.9889,
'CoV': 0.0267,
'ModelEvaluations': 1000000,
'PfCI': [0.0013, 0.0015],
'BetaCI': [2.9733, 3.0053],
'History': {...},

}

The Results dictionary contains the following keys : Pf, the estimated P̂f,MC as in Eq. (1.36);

Beta, the corresponding generalized reliability index in Eq. (1.41); CoV, the coefficient of

variation calculated with Eq. (1.40); ModelEvaluations, the total number of limit-state

function evaluations; PfCI, the confidence intervals calculated with Eq. (1.39); BetaCI, the

corresponding confidence intervals on βHL calculated with Eq. (1.42); History, a dictio-

nary containing the convergence of Pf , CoV and the corresponding confidence intervals

calculated at preset sample batches (by default once every 104 samples). The content of the

History dictionary is used to produce the convergence plot shown in Figure 6.

2.3.3.2 Advanced options

The advanced options available in Monte Carlo simulation are related to the convergence

criterion of the algorithm and to the definition of the confidence bounds reported in the

MCAnalysis['Results'] dictionary. In the following, a list of the most commonly used

parameters for a MC analysis are given:

• Specify a target CoV and a corresponding batch size: in addition to specifying the
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Figure 7: Graphical visualization of the samples of the Monte Carlo simulation analysis in
Section 2.3.3.

MaxSampleSize option, one can specify a target CoV . The algorithm will sequentially

add batches of points to the current sample and stop as soon as the current CoV is be-

low the specify threshold. To specify a target CoV = 0.01 and batches of size NB = 104,

one can write:

MCOpts['Simulation'] = {
'TargetCoV': 0.01,
'BatchSize': 1e4

}

Note that the two options are independent from each other. The BatchSize option is

also used to set the breakpoints for the MCAnalysis['Results']['History'] dictio-

nary.

• Specify α for the confidence intervals: the α in Eq. (1.39) can also be specified. To

set α = 0.1, one can write:

MCOpts['Simulation'] = {'Alpha': 0.1}

For a comprehensive list of the advanced options available for Monte Carlo simulation, please

refer to Table 5, page 44.

2.3.4 Importance Sampling

Importance sampling shares configuration options from both the FORM and the Monte Carlo

simulation methods. A basic IS analysis can be setup with the following code:

ISOpts = {
'Type': 'Reliability',
'Method': 'IS'

}
ISAnalysis = uq.createAnalysis(ISOpts)
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Using this minimal setup the analysis will run FORM first with the default options as in Sec-

tion 2.3.1 to determine the design point U∗. Then the standard normal importance density

centred at the obtained design point is used. Sampling is carried out with the following

default options: N = 1000, batch size NB = 100.

Once the analysis is performed, a report with the importance sampling results can be printed

on screen by:

uq.print(ISAnalysis)

which produces the following:

---------------------------------------------------
Importance Sampling
---------------------------------------------------
Pf 1.3549e-03
Beta 2.9989
CoV 0.0590
ModelEvaluations 1008
PfCI [1.1983e-03 1.5114e-03]
BetaCI [2.9654e+00 3.0361e+00]
---------------------------------------------------

The results can be visualized graphically as follows:

uq.display(ISAnalysis)

which produces the convergence image in Figure 8. As with FORM, the second panel in

Figure 8 is produced only in the 2D case.

Figure 8: Graphical visualization of the convergence of the importance sampling analysis in
Section 2.3.4.

UQ[PY]LAB-V0.9-107 - 28 -



Structural reliability (Rare event estimation)

Note: In the preceding example no specifications are provided. The Importance Sam-
pling shares the same defaults values as FORM and MCS. The exceptions are:

– Maximum number of evaluated samples: 103;

– Number of samples evaluated per batch: 102.

2.3.4.1 Accessing the results

The results of the importance sampling analysis can be accessed with the ISAnalysis['Results']

dictionary:

'Pf': 0.0014,
'Beta': 2.9989,
'CoV': 0.0590,
'PfCI': [0.0012, 0.0015],
'BetaCI': [2.9654, 3.0361],
'ModelEvaluations': 1008,
'History': {...},
'FORM': {...},

The basic dictionary of Results closely resembles that of Monte Carlo simulation (see Sec-

tion 2.3.3.1). However, an additional dictionary Results['FORM'] is available:

'BetaHL': 3,
'Pf': 0.0013,
'ModelEvaluations': 8,
'Ustar': [-2.4000, 1.8000],
'Xstar': [3.0800, 3.0800],
'Importance': [0.6400, 0.3600],
'ModelEvaluations': 8,
'Iterations': 2,
'History': {...}

This dictionary is identical to the FORM results given in Section 2.3.1.1.

2.3.4.2 Advanced options

The importance sampling algorithm accepts all of the options specific to both FORM and

Monte Carlo simulation, described in Section 2.3.1.2 and Section 2.3.3.2. In addition, two

additional options can be specified for importance sampling:

• Specify existing FORM results: by default, importance sampling first runs FORM to

determine the design point, followed by sampling around this design point to calculate

Pf,IS. If the results of a previous FORM analysis are already available, they can be

specified so as to avoid running FORM again. If the results are stored in a FORMResults

dictionary with the same format as described in Section 2.3.1.1, one can write:

ISOpts['IS'] = {'FORM': FORMResults}

Alternatively, one can also directly specify a pre-existing UQ[PY]LAB FORM or SORM

analysis, say FORMAnalysis:
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ISOpts['IS'] = {'FORM': FORMAnalysis}

• Specify a custom sampling distribution: alternatively, one can directly specify a cus-

tom sampling distribution. This can be achieved by providing the marginals and copula

structure of the desired distribution, e.g.IOpts in Section 2.2, as follows:

ISOpts['IS'] = {'Instrumental': IOpts}

Alternatively, a pre-existent UQ[PY]LAB INPUT object, say myISInput, can also be

specified:

ISOpts['IS'] = {'Instrumental': myISInput}

In case the model has multiple outputs Nout, it might be desirable to specify a custom

sampling distribution for each one of them. This can be done by either providing the

IOpts as a 1×Nout dictionary or the pre-existing inputs myISInputs as a 1×Nout

uq_input object. Please note, that custom distributions should be specified either for

all outputs or for none.

For a complete overview of the available options specific to the importance sampling algo-

rithm, see Table 8.

2.3.5 Subset Simulation

The subset simulation algorithm can be used with the default options P0 = 0.1 and NS = 103

by specifying:

SSOpts = {
'Type': 'Reliability',
'Method': 'Subset'

}
SSimAnalysis = uq.createAnalysis(SSOpts);

Once the analysis is performed, a report with the subset-simulation results can be printed on

screen by:

uq.print(SSimAnalysis)

which produces the following:

---------------------------------------------------
Subset simulation
---------------------------------------------------
Pf 1.3300e-03
Beta 3.0045
CoV 0.2520
ModelEvaluations 2689
PfCI [6.7300e-04 1.9870e-03]
BetaCI [2.8802e+00 3.2060e+00]
---------------------------------------------------

The results can be visualized graphically as follows:
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uq.display(SSimAnalysis)

which illustrates the samples of each subset in Figure 9 (applicable only for one and two-

dimensional problems).

Figure 9: Graphical visualization of the convergence of the subset simulation analysis in
Section 2.3.5.

Note: In the preceding example no specifications are provided. Additionally, there are
the following default values:

– Target conditional failure probability of auxiliary limit-states: 0.1;

– Maximum number of subsets: 20;

– Type of the proposal distribution in the Markov Chain: 'uniform';

– Parameter (standard deviation / halfwidth) of the proposal distribution: 1.

2.3.5.1 Accessing the results

The results of subset simulation are stored in the SSimAnalysis['Results'] dictionary:

{
'Pf': 0.00133,
'Beta': 3.0045,
'History': {...},
'CoV': 0.2520,
'ModelEvaluations': 2689,
'NumberSubsets': 3,
'PfCI': [0.0006730, 0.001987],
'BetaCI': [2.8802, 3.2060]

}

The keys in the Results dictionary have the same meaning as their counterparts in im-

portance sampling and Monte Carlo simulation. Further, the key NumberSubsets denotes

the number of subsets. Note that the ModelEvaluations key does not contain exactly the
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expected N = NS ∗m∗ (1−P0) = 2700 limit-state function evaluations, but a slightly smaller

N = 2689. This discrepancy is due to the modified Metropolis-Hastings MCMC acceptance

criterion described in Au and Beck (2001), which in some uncommon cases can reject sam-

ples without the need of evaluating the limit-state function.

2.3.5.2 Advanced options

Subset simulation uses the same advanced options as Monte Carlo simulation described in

Section 2.3.3.2, as well as some additional options. The most important are summarized in

the following:

• Specify P0: the value of P0 in Eq. (1.53) can be specified in 0 < P0 ≤ 0.5. One can set

e.g. P0 = 0.2 as follows:

SSOpts['SubsetSim'] = {'p0': 0.2}

• Specify the number of samples in each subset: the number of samples in each subset

NS can be specified by using the ['Simulation']['BatchSize'] key . To set it to

NS = 1000 one can write:

SSOpts['Simulation'] = {'BatchSize': 1000}

For a comprehensive overview of the available options specific to subset simulation see Ta-

ble 9, page 47.

2.3.6 Adaptive Kriging Monte Carlo Simulation (AK-MCS)

Adaptive Kriging Monte Carlo simulation method with default values (see Table 11 and the

related linked tables for details on the defaults) can be deployed in UQ[PY]LAB with the

following code:

AKOpts = {
"Type": "Reliability",
"Method":"AKMCS"

}
AKAnalysis = uq.createAnalysis(AKOpts)

Once the analysis is complete, a report with the AK-MCS results can be printed on screen by:

uq.print(AKAnalysis)

which produces the following:

---------------------------------------------------
AK-MCS
---------------------------------------------------
Pf 1.4200e-03
Beta 2.9845
CoV 0.0839
ModelEvaluations 17
PfCI [1.1866e-03 1.6534e-03]
BetaCI [2.9377e+00 3.0391e+00]
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PfMinus/Plus [1.4200e-03 1.4200e-03]
---------------------------------------------------
-------------------------------------------

The results can be visualized graphically as follows:

uq.display(AKAnalysis)

which produces the images in Figure 10. Note that the plot on the right of Figure 10 is

only available when the input is two-dimensional. Additionally, if the verbosity is set to

['Display'] ≥ 5 the AK-MCS analysis will plot the convergence of Pf and β while the

analysis is running.

Figure 10: Graphical visualization of the convergence of the AK-MCS analysis in Sec-
tion 2.3.6.

Note: In the preceding example no specifications are provided. If not further specified
the Monte Carlo simulation runs with the following defaults:

– Confidence level: 0.05;

– Maximum number of evaluated samples: 105;

– Number of samples evaluated per batch: 104;

– Failure is defined for: limit-state g(x) ≤ 0;

– Type of metamodel: 'Kriging';

– Learning function to determine the best next sample(s): 'U';

– Convergence criterion for the adaptive ED algorithm: 'stopU';

– Number of samples added to the ED for the metamodel: 103;

– Number of samples in the initial ED: Nini = max(10, 2M)

– Initial ED sampling strategy: 'LHS'.
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2.3.6.1 Accessing the results

The results from the AK-MCS algorithm are stored in the AKAnalysis['Results'] dictio-

nary:

{
'Pf': 0.00142,
'Beta': 2.984545456825952,
'CoV': 0.08385853278663276,
'ModelEvaluations': 17,
'PfCI': [0.0011866092202373964, 0.0016533907797626035],
'BetaCI': [2.9376799928499784, 3.0390545929919957],
'Kriging': 'Model 2',
'History': {...}

}

The keys in the Results dictionary have the same meaning as their counterparts in Monte

Carlo simulation. Further, the key Kriging contains a string with a UQ[PY]LAB name of

the Kriging metamodel. To retrieve the metamodel, one can write:

parentName = AKMCSAnalysis['Name']
objPath = 'Results.Kriging'
myKriging = uq.extractFromAnalysis(parentName=parentName,objPath=objPath)

This metamodel can be reused within UQ[PY]LAB for any other purpose, see UQ[PY]LAB

User Manual – Kriging (Gaussian process modelling) for details.

2.3.6.2 Advanced options

AK-MCS uses the same advanced options as Monte Carlo simulation described in Section 2.3.3.2,

as well as some additional options. The most important are summarized in the following:

• Convergence criterion: There are three different convergence criteria mentioned in

Section 1.6.1.2. They are all available and can be specified e.g.criterion on failure

probability:

AKMCSOpts['AKMCS'] = {'Convergence': 'stopPf'}

• Specify the Kriging metamodel: The specifications for the Kriging metamodel (see

also UQ[PY]LAB User Manual – Kriging (Gaussian process modelling)) can be set in

the key ['AKMCS']['Kriging'] e.g.for an ordinary Kriging model:

AKMCSOpts['AKMCS'] = {
'Kriging': {

'Trend': {
'Type': 'ordinary'

}
}

}

• Specify the initial experimental design: Apart from specifying a number of points

and a sampling strategy, the initial experimental design can be specified by providing
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X =
{
x(1), . . . ,x(N0)

}
in the matrix X and the corresponding limit-state function values{

g(x(1), . . . ,x(N0)
}

in G:

AKOpts['AKMCS'] = {
'IExpDesign': {

'X': X.tolist(),
'G': G.tolist()

}
}

• Specify the number of added experimental design points: The maximum number of

samples added to the experimental design of the Kriging metamodel can be specified

to e.g.100:

AKOpts['AKMCS'] = {'MaxAddedED': 100}

Note that the total number of runs of the limit-state function then is at most the initial

ED size plus the above number.

• Use a PC-Kriging metamodel: Instead of Kriging, a PC-Kriging model (see also UQ[PY]LAB

User Manual – PC-Kriging) can be used as a surrogate model in AK-MCS.

AKOpts['AKMCS'] = {'MetaModel': 'PCK'}

Specific options of the PCK model can be added in the key ['AKMCS']['PCK']. As an

example, a Gaussian correlation function in PC-Kriging is set as:

AKMCSOpts['AKMCS'] = {
'PCK': {

'Kriging': {
'Corr': {

'Family': 'Gaussian'
}

}
}

}

For an overview of the advanced options available for the AK-MCS method, refer to Table 11,

page 48.

2.4 Advanced limit-state function options

2.4.1 Specify failure threshold and failure criterion

While it is normally good practice to define the limit-state function directly as a UQ[PY]LAB

MODEL object as in Section 2.2, in some cases it can be useful to be able to create one from

small modifications of existing MODEL objects. A typical scenario where this is apparent is

when the same objective function needs to be tested against a set of different failure thresh-

olds, e.g. for a parametric study. In this case, the limit-state specifications can be modified.

As an example, when g(x) ≤ T = 5 defines the failure criterion, one can use the following

syntax:
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MCOpts['LimitState'] = {
'Threshold': 5,
'CompOp': '<='

}

UQ[PY]LAB offers several possibilities to create simple (or arbitrarily complex) objective

functions from existing MODEL objects (see also UQ[PY]LAB User Manual – the INPUT mod-

ule).

For an overview of the advanced options for the limit-state function, refer to Table 4, page

44.

2.4.2 Vector Output

In case the limit-state function g(X) results in a vector rather than a scalar value, the struc-

tural reliability module estimates the failure probability for each component independently.

Note: There is no system-type reasoning implemented to combine the failure probabil-
ities of each component.

However, the implemented methods make use of evaluations of the limit-state function if

available, as follows:

• Monte Carlo simulation: The enrichment of the sample size is increased until the

convergence criteria are fulfilled for all components.

• Subset Simulation: The first batch of samples (MCS) is reused for every output com-

ponent limit-state.

• AK-MCS: The initial experimental design for the Kriging model of output component i

consists of the final experimental design of component i− 1.

2.5 Excluding parameters from the analysis

In various usage scenarios (e.g. parametric studies) one or more input variables may be set

to fixed constant values. This can have important consequences for many of the methods

available in UQ[PY]LAB e.g. FORM/SORM and AK-MCS, whose costs increase significantly

with the number of input variables. Whenever applicable, UQ[PY]LAB will appropriately

account for the set of constant input parameters and exclude them from the analysis so as to

avoid unnecessary costs. This process is transparent to the user as the analysis results will

still show the excluded variables, but they will not be included in the calculations.

To set a parameter to constant, the following command can be used when the probabilistic

input is defined (See UQ[PY]LAB User Manual – the INPUT module):

InputOpts['Marginals']['Type'] = 'Constant'
InputOpts['Marginals']['Parameters'] = [value]
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Furthermore, when the standard deviation of a parameter equals zero, UQ[PY]LAB treats it

as a Constant. For example, the following uniformly distributed variable whose upper and

lower bounds are identical is automatically set to a constant with value 1:

InputOpts['Marginals']['Type'] = 'Uniform'
InputOpts['Marginals']['Parameters'] = [1, 1]
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Chapter 3

Reference List

How to read the reference list

Python dictionaries play an important role throughout the UQLAB syntax. They offer a natu-

ral way to semantically group configuration options and output quantities. Due to the com-

plexity of the algorithms implemented, it is not uncommon to employ nested dictionaries to

fine-tune the inputs and outputs. Throughout this reference guide, a table-based description

of the configuration dictionaries is adopted.

The simplest case is given when a value of a dictionary key is a simple value or a list:

Table X: Input

 Name String A description of the field is put here

which corresponds to the following syntax:

Input = {
'Name' : 'My Input'

}

The columns, from left to right, correspond to the name, the data type and a brief description

of each key-value pair. At the beginning of each row a symbol is given to inform as to whether

the corresponding key is mandatory, optional, mutually exclusive, etc. The comprehensive

list of symbols is given in the following table:

 Mandatory
□ Optional
⊕ Mandatory, mutually exclusive (only one of

the keys can be set)
⊞ Optional, mutually exclusive (one of them

can be set, if at least one of the group is set,
otherwise none is necessary)
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When the value of one of the keys of a dictionary is a dictionary itself, a link to a table that

describes the structure of that nested dictionary is provided, as in the case of the Options

key in the following example:

Table X: Input

 Name String Description

□ Options Table Y Description of the Options
dictionary

Table Y: Input.Options

 Field1 String Description of Field1

□ Field2 Double Description of Field2

In some cases, an option value gives the possibility to define further options related to that

value. The general syntax would be:

Input = {
'Option1' : 'VALUE1',
'VALUE1' : {
'Val1Opt1' : ... ,
'Val1Opt2' : ...

}
}

This is illustrated as follows:

Table X: Input

 Option1 String Short description

'VALUE1' Description of 'VALUE1'

'VALUE2' Description of 'VALUE2'

⊞ VALUE1 Table Y Options for 'VALUE1'

⊞ VALUE2 Table Z Options for 'VALUE2'

Table Y: Input.VALUE1

□ Val1Opt1 String Description

□ Val1Opt2 Float Description

Table Z: Input.VALUE2

□ Val2Opt1 String Description
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□ Val2Opt2 Float Description
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3.1 Create a reliability analysis

Syntax

myAnalysis = uq.createAnalysis(ROpts)

Input

All the parameters required to determine the analysis are to be given as keys of the struc-

ture ROpts. Each method has its own options, that will be reviewed in different tables. The

options described in Table 3 are common to all methods.

Table 3: ROpts

 Type 'uq_reliability' Identifier of the module. The options
corresponding to other types are in
the corresponding guides.

 Method String Type of structural reliability method.
The available options are listed
below:

'MCS' Monte Carlo simulation.

'FORM', First order reliability method.

'SORM', Second order reliability method.

'IS' Importance sampling.

'Subset' Subset simulation.

'AKMCS' Adaptive Kriging Monte Carlo
Simulation (AK-MCS).

□ Name String Name of the module. If not set by
the user, a unique string is
automatically assigned to it.

□ Input INPUT object INPUT object used in the analysis. If
not specified, the currently selected
one is used.

□ Model MODEL object MODEL object used in the analysis. If
not specified, the currently selected
one is used.

□ LimitState See Table 4 Specification of the limit-state
function.
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□ Display String
default: 'standard'

Level of information displayed by the
methods.

'quiet' Minimum display level, displays
nothing or very few information.

'standard' Default display level, shows the most
important information.

'verbose' Maximum display level, shows all the
information on runtime, like updates
on iterations, etc.

□ Simulation See Table 5 Options key for the simulation
methods. Only applies when
ROpts['Method'] is 'MCS',
'IS', 'SS', or 'AKMCS'.

□ FORM See Table 6 Options key for the FORM algorithm
methods. Only applies when
ROpts['Method'] is 'FORM',
'SORM', or 'IS'.

□ Gradient See Table 7 Options key for computing the
gradient. It applies to the methods
that use FORM, namely, when
ROpts['Method'] is 'FORM',
'SORM', or 'IS'.

□ IS See Table 8 Options key for importance
sampling. It applies only when
ROpts['Method'] is 'IS'.

□ Subset See Table 9 Options key for subset simulation. It
applies only when
ROpts['Method'] is 'Subset'.

□ AKMCS See Table 11 Options key for the adaptive
experimental design algorithm in
AK-MCS. This applies when
ROpts['Method'] is 'AKMCS'.

□ SaveEvaluations Logical
default: True

Storage or not of performed
evaluations of the limit-state
function.

True Store the evaluations.

False Do not store the evaluations.

In order to perform a structural reliability analysis, the limit-state function g(x) is compared
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to a threshold value T (by default T = 0). In analogy with Eq. (1.1), failure is defined as

g(x) ≤ T . Alternatively, failure can be specified as g(x) ≥ T by adjustment of the key

ROpts['LimitState']['CompOp'] to '>='. The relevant options are summarized in Ta-

ble 4:

Table 4: ROpts['LimitState']

□ Threshold Float
default: 0

Threshold T , compared to the
limit-state function g(x).

□ CompOp String
default: '<='

Comparison operator for the
limit-state function.

'<', '<=' Failure is defined by g(x) < T .

'>', '>=' Failure is defined by g(x) > T .

The available methods to perform structural reliability analysis are Monte Carlo simulation,

importance sampling, subset simulation, AK-MCS, FORM, and SORM. The first four methods

share the simulation options. FORM and SORM are gradient-based, so they allow the user to

specify the finite difference options as well as the algorithm options.

In Table 5, the options for the simulation methods (Monte Carlo, importance sampling, subset

simulation and AK-MCS) are shown:

Table 5: ROpts['Simulation']

□ Alpha Float
default: 0.05

Confidence level α. For the Monte
Carlo estimators, a confidence
interval is constructed with
confidence level 1− α.

□ MaxSampleSize Integer
default: 103 for 'IS';
105 otherwise

Maximum number of samples to be
evaluated. If there is no target
coefficient of variation (CoV), this is
the total number of samples to be
evaluated. If the target CoV is
present, the method will run until
TargetCoV or MaxSampleSize is
reached. In this case, the default
value of MaxSampleSize, if not
specified in the options, is Inf,
i.e.the method will run until the
target CoV is achieved.
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□ TargetCoV Float Target coefficient of variation. If
present, the method will run until
the estimate of the CoV (Eq. (1.40))
is below TargetCoV or until
MaxSampleSize function
evaluations are performed. The
value of the coefficient of variation of
the estimator is checked after each
BatchSize evaluations. By default
this option is disabled. Note: this
option has no effect in
Method = 'Subset' and
'AKMCS'.

□ BatchSize Integer
default: 104 for 'MCS'
and 'AKMCS';
103 for 'Subset';
102 for 'IS'

Number of samples that will be
evaluated at once. Note that this
option has no effect in
Method = 'AKMCS'.

Note: In order to use importance sampling after an already computed FORM analysis,
one can provide these results to the analysis options in order to avoid repeating
FORM. If FORMResults is a structure containing the results of a FORM analysis,
the syntax reads:
ISOpts['Type'] = 'Reliability;

ISOpts['Method'] = 'IS'

ISOpts['FORM'] = FORMResults

ISAnalysis = uq.createAnalysis(ISOpts)

The FORM algorithm has special parameters that can be tuned in the key FORM of the op-

tions. These parameters also affect the methods that depend on FORM, namely importance

sampling and SORM. These are listed in Table 6.

Table 6: ROpts['FORM']

□ Algorithm String
default: 'iHLRF'

Algorithm used to find the design
point.

'iHLRF' Improved HLRF.

'HLRF' HLRF.

□ StartingPoint 1 × M List with Float
entries
default:
np.zeros(M).tolist()

Starting point for the
Rackwitz-Fiessler algorithm.
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□ StopU Float
default: 10−4

Tolerance value for the
Rackwitz-Fiessler algorithm on the
design point. The algorithm will stop
when |Uk+1 −Uk| < StopU .

□ StopG Float
default: 10−6

Tolerance value for the
Rackwitz-Fiessler algorithm on the
limit-state function value. The
algorithm will stop when
|G(Uk)
G(U0)

| < StopG.

□ MaxIterations Integer
default: 100

Maximum number of iterations
allowed in the Rackwitz-Fiessler
algorithm. If this property should be
ignored, it can be set to Inf.

Since FORM is a gradient-based method, the gradient of the limit-state function needs to be

computed. This is done using finite differences. The options for the differentiation are listed

in Table 7.

Table 7: ROpts['Gradient']

□ h Float
default: 10−3

Value of the difference for the
scheme.

□ Method String
default: 'forward'

Specifies the type of finite differences
scheme to be used.

'forward' Forward finite differences. ∂g
∂xi

is
approximated using g(x) and
g(x+ hei).

'backward' ∂g
∂xi

is approximated using g(x) and
g(x− hei).

'centered' ∂g
∂xi

is approximated using g(x+ hei)
and g(x− hei). (More accurate and
more costly.)

The options specifically set for the importance sampling are presented in Table 8. Note that

the options of Simulation and FORM are also processed in the case of importance sampling

due to the nature of the MCS, FORM and IS.

Table 8: ROpts['IS']
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□ Instrumental 1×Nout INPUT object or
Dictionary

Instrumental distribution defined as
either a dictionary of input
marginals and copula or an INPUT

object (refer to UQ[PY]LAB User
Manual – the INPUT module for
details).

□ FORM FORM ANALYSIS object or
FORMAnalysis['Results']
Dictionary

FORM results computed previously.
See Section 2.3.4.2 for details.

The options specifically set for subset simulation are presented in Table 9. Note that the

options of Simulation are also processed in the case of subset simulation due to the similar

nature of Monte Carlo simulation and subset simulation.

Table 9: ROpts['Subset']

□ p0 Float
default: 0.1

Target conditional failure probability
of auxiliary limit-states
(0 <p0≤ 0.5).

□ Proposal See Table 10 Description of the proposal
distribution in the Markov Chain.

□ MaxSubsets Integer
default:
MaxSampleSize
BatchSize·(1−p0)

Maximum number of subsets. In the
subset simulation algorithm, the
maximum number of subsets is set to
the minimum of MaxSubsets and
MaxSampleSize
BatchSize·(1−p0)

.

The settings of the Markov Chain Monte Carlo simulation in subset simulation are summa-

rized in Table 10. Note that the default values are taken from Au and Beck (2001).

Table 10: ROpts['Subset']['Proposal'] (Proposal distributions)

□ Type String
default: 'Uniform'

Type of proposal distribution (in the
standard normal space).

'Gaussian' Gaussian distribution.

'Uniform' Uniform distribution.
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□ Parameters Float
default: 1

Parameter of the proposal
distribution. Corresponds to the
standard deviation for a Gaussian
distribution and the half-width for
the uniform distribution.

AK-MCS is a combination of Kriging metamodels and Monte Carlo simulation. The options

for the Kriging metamodel and the adaptive experimental design algorithm are listed here.

Table 11: ROpts['AKMCS']

□ MetaModel String
default: 'Kriging'

Choice of metamodel in AK-MCS.

⊞ Kriging Dictionary Kriging options when key
MetaModel = 'Kriging'. If
none is set, then the default Kriging
options are used (refer to
UQ[PY]LAB User Manual – Kriging
(Gaussian process modelling)). Note
that a small nugget of 10−10 is added
by default to the correlation options
to improve numerical stability.

⊞ PCK Dictionary PC-Kriging options when key
MetaModel = 'PCK'. If none is
set, then the default PC-Kriging
options are used (refer to
UQ[PY]LAB User Manual –
PC-Kriging). Note that a small
nugget of 10−10 is added by default
to the correlation options to improve
numerical stability.

□ LearningFunction String
default: 'U'

Learning function to determine the
best next sample(s) to be added to
the experimental design.

'U' U -function (see Eq. (1.59)).

'EFF' Expected feasibility function (see
Eq. (1.61)).

□ Convergence String
default: 'stopU'

Convergence criterion for the
adaptive experimental design
algorithm.

'stopU' Convergence when minU(x) ≥ 2
(see Echard et al. (2011)) on the
candidate set.
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'stopPf' Convergence criterion based on the
convergence of the failure
probability estimate (see Eq. (1.63)).

'stopBeta' Convergence criterion based on the
convergence of the reliability index
estimate (see Eq. (1.66)).

□ MaxAddedED Integer
default: 1000

Number of samples added to the
experimental design of the Kriging
metamodel.

□ IExpDesign See Table 12 Specification of the initial
experimental design of the
metamodel.

The initial experimental design of AK-MCS can either be given by a number of samples and

a sampling method or by a matrix containing the set of input samples and the corresponding

values of the limit-state function.

Table 12: ROpts['AKMCS']['IExpDesign']

□ N Integer
default: 10

Number of samples in the initial
experimental design.

□ Sampling String
default: 'LHS'

Sampling techniques of the initial
experimental design. See
UQ[PY]LAB User Manual – the INPUT

module for more sampling
techniques.

□ X N ×M List of lists with
Float entries

Matrix containing the initial
experimental design.

□ G N ×Nout List of lists
with Float entries

Vector containing the responses of
the limit-state function
corresponding to the initial
experimental design, corrected by
the threshold k (see also Table 4):
(g(x)− T ) for Criterion = '<=',
(T − g(x)) for Criterion = '>='.

3.2 Accessing the results

Syntax

myAnalysis = uq.createAnalysis(ROpts)
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Output

The information stored in the myAnalysis['Results'] dictionary depends on which kind

of analysis is performed. In the sequel, the results for each of the methods are reviewed.

• Monte Carlo - Table 13

• FORM - Table 15

• SORM - Table 17

• Importance sampling - Table 18

• Subset simulation - Table 19

• AK-MCS - Table 21

3.2.1 Monte Carlo

The results are summarized in Table 13.

Table 13: myAnalysis['Results']

Pf Float Estimator of the failure probability, Pf,MCS.

Beta Float Associated reliability index,
βMCS = −Φ−1(Pf,MCS).

CoV Float Coefficient of variation.

ModelEvaluations Integer Total number of model evaluations performed
during the analysis.

PfCI 1× 2 List with
Float entries

Confidence interval of the failure probability.

BetaCI 1× 2 List with
Float entries

Confidence interval of the associated reliability
index.

History See Table 14 If the simulation is carried out using batches of
points, History[i-1] contains results
obtained after the i-th batch.

If the simulation has been carried out by using various batches of points, the information on

the convergence in each step is stored in the structure History. Its contents are described in

Table 14.

Table 14: myAnalysis['Results']['History']
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Pf Float Failure probability estimate after each batch.

CoV Float Coefficient of variation after each batch.

Conf Float Confidence interval after each batch.

X N ×M List of
lists with Float
entries

Matrix containing the input vectors in the
original space evaluated by the limit-state
function.

U N ×M List of
lists with Float
entries

Matrix containing the input vectors in the
standard normal space evaluated by the
limit-state function.

G N ×Nout List
of lists with
Float entries

Values of the limit-state function along the
FORM iterations i.e.
g(xk)− T for Criterion = '<=',
T − g(xk) for Criterion = '>='.

3.2.2 FORM and SORM

FORM and SORM methods are very close in terms of calculations. Indeed, SORM can be

understood as a correction of the FORM estimation of the probability. Therefore, the results

dictionaries are very similar. The results of FORM are shown in Table 15. When executing

SORM, some keys will be added to the FORM Results dictionary, shown in Table 17.

Table 15: myAnalysis['Results']

BetaHL Float Hasofer-Lind reliability index, βHL.

Pf Float Estimator of the failure probability,
Pf,FORM = Φ(−βHL).

ModelEvaluations Integer Total number of model evaluations performed
to solve the analysis.

Ustar 1×M List with
Float entries

Design point U∗ in the standard normal space.

Xstar 1×M List with
Float entries

Design point X∗ the original space.

Importance 1×M List with
Float entries

Importance factors Si.

Iterations Integer Number of iterations carried out by the
optimization algorithm.
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Method String Method used to solve the analysis.

History See Table 16 Dictionary with information about the
algorithm steps and runtime information.

The key History of the results contains more detailed information extracted from the algo-

rithm steps.

Table 16: myAnalysis['Results']['History']

ExitFlag String Reason why the algorithm stopped.

BetaHL Float Values of the reliability index along the FORM
iterations.

OriginValue Float Value of the limit-state function G(u = 0).

G N ×Nout List
of lists with
Float entries

Values of the limit-state function along the
FORM iterations i.e.
g(xk)− T for Criterion = '<=',
T − g(xk) for Criterion = '>='.

Gradient Float Values of the gradient of the limit-state
function along the FORM iterations.

StopU Float Values of the stopping criterion on the design
point convergence, |Uk+1 −Uk|, along the
FORM iterations.

StopG Float Values of the stopping criteria on the limit-state
function, |G(Uk)

G(U0)
|, along the FORM iterations.

U N ×M List of
lists with Float
entries

Coordinates of the points Uk in the standard
normal space.

X N ×M List of
lists with Float
entries

Coordinates of the points Xk in the original
space.

If SORM is also performed, two keys are added to the Results, and two keys are added to

Results['History'], as shown in Table 17.

Table 17: myAnalysis['Results']
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PfSORM Float SORM estimator of the failure probability,
Pf,SORM, using Hohenbichler’s formula.

PfSORMBreitung Float SORM estimator of the failure probability,
Pf,SORM, using Breitung’s formula.

BetaSORM Float Associated reliability index
βSORM = −Φ−1(Pf,SORM), using Hohenbichler’s
formula.

BetaSORMBreitung Float Associated reliability index
βSORM = −Φ−1(Pf,SORM), using Breitung’s
formula.

History['FORMEvals']
Integer Number of model evaluations carried out to

perform the FORM analysis.

History['Hessian'] M ×M List of
lists with Float
entries

Hessian matrix of the limit-state function at the
design point, U∗.

3.2.3 Importance sampling

Since importance sampling is a simulation method, the dictionary of the results is similar to

the one of Monte Carlo simulation. The results are listed in Table 18.

Table 18: myAnalysis['Results']

Pf Float Estimator of the failure probability, Pf,IS.

Beta Float Associated reliability index, βIS = −Φ−1(Pf,IS).

CoV Float Coefficient of variation.

ModelEvaluations Integer Total number of model evaluations performed
during the analysis.

PfCI 1× 2 List with
Float entries

Confidence interval of the failure probability.

BetaCI 1× 2 List with
Float entries

Confidence interval of the associated reliability
index.

FORM See Table 15 Results of the FORM analysis used to find the
design point.
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History See Table 14 If importance sampling is carried out using
batches of points, History[i-1] contains
results obtained after the i-th batch.

3.2.4 Subset simulation

Since subset simulation is a simulation method, the dictionary of the results is similar to the

one of Monte Carlo simulation. The results are listed in Table 19 and Table 20.

Table 19: myAnalysis['Results']

Pf Float Estimator of the failure probability, Pf,SS.

Beta Float Associated reliability index, βSS = −Φ−1(Pf,SS).

CoV Float Coefficient of variation.

ModelEvaluations Integer Number of model evaluations during the
analysis.

PfCI 1× 2 List with
Float entries

Confidence interval of the failure probability.

BetaCI 1× 2 List with
Float entries

Confidence interval of the associated reliability
index.

NumberSubsets Integer Number of auxiliary subsets during the
analysis.

History See Table 20 Data related to each subset.

The key History of the results contains more detailed information extracted from the algo-

rithm steps.

Table 20: myAnalysis['Results']['History']

delta2 Float δ2j for estimating the coefficient of variation
(see Eq. (1.55)).

q Float Intermediate limit-state thresholds.

X List Samples in the input space of each subset.

U List Samples in the standard normal space of each
subset.
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G List Values of the limit-state function of each
sample in each subset corrected by the
threshold T (see also Table 4):
(g(x)− T ) for Criterion = '<=',
(T − g(x)) for Criterion = '>='.

Pfcond Float Conditional failure probability estimates
P (Di+1|Di).

gamma Float γj for computing the coefficient of variation
(see Eq. (1.56)).

3.2.5 AK-MCS

Since AK-MCS relies upon Monte Carlo simulation, the dictionary of the results is similar to

the one of Monte Carlo simulation. The results are listed in Table 21 and Table 22.

Table 21: myAnalysis['Results']

Pf Float Estimator of the failure probability, Pf,AK-MCS.

Beta Float Associated reliability index,
βAK-MCS = −Φ−1(Pf,AK-MCS).

CoV Float Coefficient of variation.

ModelEvaluations Integer Total number of model evaluations performed
during the analysis.

PfCI 1× 2 List with
Float entries

Confidence interval of the failure probability.

BetaCI 1× 2 List with
Float entries

Confidence interval of the associated reliability
index.

Kriging String Name of the final Kriging metamodel.

PCK String Name of the final PC-Kriging metamodel.

History See Table 22 Contains intermediate results along the
AK-MCS iterations.
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Table 22: myAnalysis['Results']['History']

Pf Float History of the estimate failure probability.

PfLower Float History of the estimated lower bound of the
failure probability P−

f .

PfUpper Float History of the estimated upper bound of the
failure probability P+

f .

NSamples Integer Number of samples added to the experimental
design at each iteration.

NInit Integer Number of samples in the initial experimental
design.

X List Samples in the input space of each subset.

G List Values of the limit-state function of each
sample in each subset corrected by the
threshold T (see also Table 4):
(g(x)− T ) for Criterion = '<=',
(T − g(x)) for Criterion = '>='.
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