
S T R O N G K E Y
Tellaro KeyAppliance (KA)

Demo Client Guide
Version 4.0

Copyrights and Notices
Copyright 2001‒2019 StrongAuth, Inc. (d/b/a StrongKey), 20045 Stevens Creek Blvd. Suite 2A, Cupertino, CA 95014, U.S.A.
All rights reserved.
StrongAuth, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more U.S. patents
or pending patent applications in the U.S. and in other countries.
U.S. Government Rights―Commercial software. Government users are subject to the StrongAuth, Inc. standard license
agreement and applicable provisions of the Federal Acquisition Regulations and its supplements.
This distribution may include materials developed by third parties.
StrongAuth, StrongKey, StrongKey Lite, StrongKey CryptoCabinet, StrongKey CryptoEngine, the StrongAuth logo, the
StrongKey logo, the StrongKey Lite logo, the StrongKey CryptoCabinet logo and the StrongKey CryptoEngine logo are
trademarks or registered trademarks of StrongAuth, Inc. or its subsidiaries in the U.S. and other countries.
Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may
be subject to the export or import laws in other countries. Nuclear, missile, chemical or biological weapons or nuclear
maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject
to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons
and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Contents

1—Preface...1
1.1—Default Paths and Filenames...1
1.2—Third-party Website References..1
1.3—StrongKey Welcomes Your Comments!..1

2—Introduction..2
2.1—Regulatory Compliance...2
2.2—Architecture..4

2.2.1—KAM Encryption Mechanics...5
2.2.2—KAM Decryption Mechanics..6
2.2.3—Notes on the Mechanics...7
2.2.4—KAM Deletion Mechanics..8
2.2.5—KAM Search Mechanics..8
2.2.6—KAM Entropy Mechanics..9
2.2.7—KAM Batch Operations..9
2.2.8—KAM Relay Mechanics..10
2.2.9—HTTPS Interface..12
2.2.10—SOAP Interface..12

3—sakaclient...13
3.1—Installing the Demo Client Application..14
3.2—Displaying Help Options...14
3.3—Operations..16

3.3.1—Encryption..16
3.3.2—Decryption...17
3.3.3—Encryption and Decryption...18
3.3.4—Failed Encryption and Decryption...19
3.3.5—Encryption and Failed Decryption..19
3.3.6—Deletion...20
3.3.7—Re-encryption after Deletion..21
3.3.8—Search...21
3.3.9—Encryption 2...22
3.3.10—Encryption and Decryption of a String...22
3.3.11—Random Numbers from TRNG...23
3.3.12—Encrypt and Decrypt with a Stored Key...24

StrongKey Tellaro KeyAppliance (KA) ii v4.0 Demo Client Guide

4—sakagclient...26
4.1—Installing the Demo Client Application.......................................26
4.2—Displaying Help Options..26
4.3—Encryption (CBC Mode)..28
4.4—Decryption (CBC Mode)...30
4.5—Encryption (GCM Mode)...31
4.6—Decryption (GCM Mode)..32

5—KMS Client...33
5.1—Installing the Demo Client Application.......................................34
5.2—Displaying Help Options..34
5.3—List Manufacturer...37
5.4—Load Key Component...39
5.5—Load BDK..39
5.6—Generate Initial Key...40
5.7—Store ANSI Key (BDK or LTMK)...40
5.9—Replace ANSI Key (TMK or TPK)...41
5.10—Update ANSI Key..41
5.11—Delete ANSI Key...42
5.12—Generate Asymmetric Key..42

6—CCS Client..43
6.1—Installing the Demo Client Application.......................................44
6.2—Prerequisites..44
6.3—Displaying Help Options..44
6.4—List Manufacturer..46
6.5—Generate Swipe Data..46
6.6—Get Card Capture Data...47
6.7—DUKPT Encrypt...48
6.8—DUKPT Decrypt...48

7—SEDOS..49
7.1—The SEDOS Client Software Distribution......................................51
7.2—Installing the SEDMDB Schema...51
7.3—Installing the SEDOS Software Distribution.............................53
7.4—Using the SEDOS Shell Script Manually.....................................55

StrongKey Tellaro KeyAppliance (KA) iii v4.0 Demo Client Guide

8—skceclient..58
8.1—Parameters...59

8.1.1—svcinfo..59
8.1.2—fileinfo...59
8.1.3—Encinfo...59
8.1.4—Authzinfo...59
8.1.5—storageinfo...60

8.2—Encrypt...60
8.2.1—Decrypt...61
8.2.2—Encrypt to Cloud...61
8.2.3—Decrypt from Cloud...62
8.2.4—Ping..63

StrongKey Tellaro KeyAppliance (KA) iv v4.0 Demo Client Guide

1—Preface
This document provides information about the Tellaro KeyApplianceTM (KA) 4.0
Demo Client.

1.1—Default Paths and Filenames
The following table describes the default paths and filenames used in this book.

Placeholder Description

GLASSFISH_HOME
The directory where the Payara Application Server is installed. Default
location is STRONGAUTH_HOME

JAVA_HOME
The directory where the Java Development Kit is installed. Default
location is STRONGAUTH_HOME

MYSQL_HOME
The directory where the MariaDB Relational Database is installed.
Default location is STRONGAUTH_HOME

SAKA_HOME
The directory where Tellaro KeyApplianceTM related files are installed.
Default location is STRONGAUTH_HOME/saka

STRONGAUTH_HOME
The directory where Tellaro KeyApplianceTM components are
installed. Default location is /usr/local/strongauth

STRONGKEYLITE_HOME
The directory where Tellaro KeyApplianceTM related files are installed.
Default location is STRONGAUTH_HOME/strongkeylite

1.2—Third-party Website References
Third-party URLs are referenced herein and provide additional, related information.

 NOTE: StrongKey is not responsible for third-party websites mentioned in this document.
StrongKey does not endorse and is not responsible or liable for any content, advertising, products, or
other materials available on or through such sites or resources. StrongKey will not be responsible or
liable for any actual or alleged damage or loss caused or alleged to be caused by or in connection
with use of or reliance on any such content, goods, or services available on or through such resources.

1.3—StrongKey Welcomes Your Comments!
StrongKey is interested in improving its documentation and welcomes your comments
and suggestions. To share your comments, please email info@strong key .com referencing
the title of this document in your email with your comments.

StrongKey Tellaro KeyAppliance (KA) 1 v4.0 Demo Client Guide

mailto:info@strongkey.com
mailto:info@strongkey.com
mailto:info@strongkey.com

2—Introduction
StrongKey’s Tellaro KeyApplianceTM (KA)—StrongKey's flagship product—has
undergone a radical change in the 4.0 release. KA 4.0 retains all the great features
of the 3.0 release, but also adds significant new capabilities, as follows:

1. It updates to the latest releases all underlying components, such as the Java Virtual
Machine (JVM), the relational database, the application server, and the cryptographic
libraries. While this not only fixes many bugs, it also enables regulatory compliance by
addressing residual vulnerabilities from previous releases.

2. It replaces the standard BouncyCastle library with the latest BouncyCastle FIPS library.
BC-FIPS is a Federal Information Processing Standards (FIPS) 140-2 level 1 certified
module used to perform all cryptography. To mange this, all cryptographic code has
been collapsed into a single crypto-module in the code.

3. All public key cryptography has moved from RSA to Elliptic Curve cryptography.
4. Updates support from Trusted Platform Module (TPM) 1.2 to TPM 2.0. TPM 2.0 is a FIPS

140-2 Level 2 certified cryptographic module.

Customers of existing KA (formerly SAKA and SKLES)—1.0, 2.0, or 3.0—with current Support
contracts are entitled to free upgrades to the 4.0 release. Please contact us at
support@strongkey.com to learn how to upgrade an existing SAKA (or SKLES).

2.1—Regulatory Compliance
The Payment Card Industry Data Security Standard1 (PCI DSS) mandates encryption of
Personal Account Numbers (PAN) when stored on a computerized device. The encryption
keys used for cryptographic processing of the credit cards are required to be managed with
“appropriate key management” operations as defined in the PCI DSS Key Management
(KM) section of the Detailed PCI DSS Requirements and Security Assessment Procedures,
Version 3.2, dated April 2016.

The State of Massachusetts in the USA passed a law in 2008, popularly known as
Standards for the Protection of Personal Information of Residents of the Commonwealth2
(201 CMR 17.00) which mandates the encryption of Personally Identifiable Information
(PII) of the residents of the Commonwealth when stored or maintained on a computer and
when transmitted over public networks. The regulation states: Every person who owns,
licenses, stores or maintains personal information about a resident of the Commonwealth
shall be in full compliance with 201 CMR 17.00 on or before January 1, 2010.

Similarly, the State of Washington in the USA amended their breach disclosure law
through House Bill 11493, “and to permit financial institutions to recoup data breach
costs associated with the re-issuance from large businesses and card processors who are
negligent in maintaining or transmitting card data.” The amendment, however, states that
“Processors, businesses and vendors are not liable under this section if (a) the account
information was encrypted at the time of the breach, or (b) … was certified compliant
with the PCI DSS … and in force at the time of the breach.”

1 https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

2 https://www.mass.gov/regulations/201-CMR-17-standards-for-the-protection-of-personal-information-of-residents-of-the

3 http://apps.leg.wa.gov/documents/billdocs/2009-10/Pdf/Bills/Session%20Laws/House/1149-S2.SL.pdf

StrongKey Tellaro KeyAppliance (KA) 2 v4.0 Demo Client Guide

http://apps.leg.wa.gov/documents/billdocs/2009-10/Pdf/Bills/Session%20Laws/House/1149-S2.SL.pdf
https://www.mass.gov/regulations/201-CMR-17-standards-for-the-protection-of-personal-information-of-residents-of-the
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
mailto:support@strongkey.com
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards

StrongKey's KA is a collection of technology (packaged as an appliance for
convenience) to assist companies with addressing PCI DSS, 201 CMR 17.00, HB-1149 and
similar regulations requiring encryption of sensitive data. It does this in the following ways:

1. Securely generating, storing, using and controlling access to cryptographic keys within
the system using a FIPS 140-2 Level 3 certified cryptographic Hardware Security
Module (HSM) or Trusted Platform Module (TPM). These devices are designed to erase
cryptographic key material rather than give it up when they sense they are being
attacked. Keys generated on these devices never leave the device unless they are
encrypted using other cryptographic keys.

2. Using only one cryptographic algorithm—the Advanced Encryption System (AES)—with
a choice of 128-bit, 192-bit or 256-bit symmetric keys for the encryption and decryption
of PANs or PII.

3. Using only one cryptographic algorithms for generating Hashed Message
Authentication Codes (HMAC)—while providing a choice of key sizes for the HMAC: the
HmacSHA256 algorithm—with a 256-bit cryptographic key, HmacSHA224,
HmacSHA384 and HmacSHA512 for preserving the integrity of encrypted data
(ciphertext) in the system.

4. Storing ciphertext on the appliance system—never allowing it to leave KA—while
returning a pseudo-number of the PAN, generally known as a “token” as a unique
reference for the PAN/PII.

By choosing the strongest algorithm and cryptographic components recommended by
PCI DSS and the U.S. National Institute of Standards and Technology (NIST), by localizing
all cryptographic processing on KA and by storing ciphertext on the appliance, KA narrows
the scope of the application system at risk, and consequently, the scope for the PCI
DSS/201 CMR 17.00/HB-1149 audit.

 NOTE: It must be emphasized that technology alone is incapable of addressing the KM
requirements completely. To ensure compliance, companies implementing KA must
supplement the technology with appropriate policies and procedures to establish controls
over the cryptographic keys in KA. Without such policies and procedures, KA can be improperly
implemented and managed, thereby negating the security of the system.

StrongKey Tellaro KeyAppliance (KA) 3 v4.0 Demo Client Guide

2.2—Architecture
KA is a Java Enterprise Edition 7 (JEE7) application encapsulated within an appliance and
provides secure web services to perform many different cryptographic functions. It consists
of the following components:

A JEE7 Application Server that hosts multiple web service applications
A Relational Database that stores the ciphertext and accompanying metadata
A cryptographic Trusted Platform Module or Hardware Security Module that performs
cryptographic functions
A replication architecture that automatically replicates all transactions to every KA
node defined within a cluster
A Lightweight Directory Access Protocol (LDAP) Server for authenticating and
authorizing requesters of web services. In the event a site already has an LDAP directory
server – such as Active Directory—the KA application can authenticate requesters
against this directory server
A FIDO-enabled web application that enables end users to encrypt/decrypt files while
storing cryptographic keys in the KA module of the KA.

In the current release, the KA supports the following versions of underlying components:

Component Name Version

Operating System CentOS Linux (64-bit) 7.5

Java Virtual Machine Open Java Development Kit [Latest]

Relational Database MariaDB RDBMS 10.2.13

JEE7 Application Server Payara 4.1.2.174

HSM Software SafeNet Protect Toolkit C 4.3

Utimaco CryptoServer 4.20.0.4

HSM Java Software SafeNet Protect Toolkit J 4.3

Utimaco CryptoServer JCE 4.20.0.4

Replication Software JeroMQ 0.4.3

LDAP Service OpenDJ 3.0.0

Microsoft Active Directory Windows 2008

StrongKey Tellaro KeyAppliance (KA) 4 v4.0 Demo Client Guide

In the current release, KA supports the following cryptographic algorithms and sizes.
StrongKey has chosen to restrict the algorithms and key sizes to the strongest ones
available. As guidelines from PCI and/or NIST evolve, so will KA support the recommended
algorithms and key sizes.

Algorithm Purpose Size

Elliptic Curve (EC)

Key Encryption 256 bits

Key Custodian Authentication 256 bits

Domain Administrator Authentication 256 bits

Advanced Encryption
Standard Data Encryption 128, 192, and 256 bits

Hashed Message
Authentication Code Message Integrity 224, 256, 384 and

512 bits

2.2.1—KAM Encryption Mechanics
The KeyAppliance Module (KAM) web service application works by having client
applications—whether they are e-commerce, payment processing, business intelligence,
health care or other applications that deal with sensitive data—send the sensitive data to
KA via a standard Simple Object Access Protocol (SOAP)-based web service over the
Secure Hyper Text Transfer Protocol (HTTPS).

For encrypting sensitive data, the KAM web service call requires four parameters:

Parameter Explanation

did The unique Encryption Domain identifier. This is a numeric integer that logically
represents the context within which the data is encrypted and tokenized.

username The username in the encryption domain with authorization to call this web service.

password The password of the username to authenticate the credential of the requester.

plaintext The sensitive data that must be encrypted and tokenized.

When KA receives the request, it first verifies the credentials presented against its internal
database or an LDAP directory server (depending on which is configured), and then
determines their authorization to request the encryption service by determining if they
belong to an EncryptionAuthorized group. Note that if using LDAP, this group and its
members must be created in the LDAP directory as a distinct task of the KA installation
and configuration process; when using the KA internal database, this is performed
automatically.

If the requester is authorized, KA uses an encryption key to encrypt the plaintext. It also
uses a separate HMAC key to generate a unique HMAC of the plaintext. After performing
these two cryptographic operations, it stores the ciphertext, the HMAC, the key identifiers,
and metadata about the request in the RDBMS. The KA never stores plaintext in the
database or anywhere on the system—plaintext is discarded immediately after the
transaction. By default, KA also generates a numerical Token that is characteristically similar
to the plaintext (16 digits for a credit card number, 9 digits for a social security number, etc.),
and can be used as a substitute for the plaintext data in applications.

StrongKey Tellaro KeyAppliance (KA) 5 v4.0 Demo Client Guide

Upon storing the data, KA replicates the transaction object to all other KA nodes within
the same cluster and returns the Token to the requester. The requesting application may
use this Token as a unique identifier for the plaintext and store it within its own database.
The Token can be configured to be of the identical length as the plaintext data, up to a
maximum length of 64 digits.

The replication latency between nodes within a cluster depends on the network
capacity between nodes and the saturation of the network at the time of replication. The
demo appliance provided by StrongKey on the internet has 1GbE ports and the network
has light-to-moderate traffic on it; as a result, transactions have been observed to be
replicated from one node to the other in an average of 1‒2 seconds.

An illustration of the web service process is shown in the following diagram; to focus on
the application's perspective, replication details are not shown:

2.2.2—KAM Decryption Mechanics
For decrypting ciphertext, the web service call requires four parameters:

Parameter Explanation

did The unique Encryption Domain identifier.

username The username in the encryption domain with authorization to call this web service.

password The password of the username to authenticate the credential of the requester.

token
The token—by default, a 16-digit number—referencing the object; given to
applications during the original encryption call.

StrongKey Tellaro KeyAppliance (KA) 6 v4.0 Demo Client Guide

When KA receives the request, it first verifies the credentials presented against its internal
database or an optional LDAP directory server and then determines their authorization to
request the decryption service by determining if they belong to a DecryptionAuthorized
group. If using LDAP, this group and its members must be created in the LDAP directory as
a distinct task of the KA installation and configuration process; when using the internal
database on the Tellaro, this is performed automatically.

If the requester is authorized, KA searches its RDBMS for the Token, determines the
identifier of the key that was used to encrypt it originally, and uses that key to decrypt the
ciphertext. If the key was rotated at some point due to PCI DSS or other security
requirements, KA uses the rotated key to decrypt the ciphertext—applications are neither
aware nor concerned about cryptographic key management operations when requesting
encryption and/or tokenization services from KA.

After the decryption process, KA retrieves the identifier of the HMAC key originally used
by the application and with the HMAC key, recalculates a new HMAC with the just-
decrypted plaintext. It then compares the original HMAC (stored after the successful
encryption operation) with the freshly calculated HMAC; if the two HMACs are identical, KA
knows the decryption process was successful.

KA logs the decryption request (without storing or logging the sensitive plaintext),
replicates the transaction object to all other KA nodes within the same cluster, and returns
the plaintext to the requester.

2.2.3—Notes on the Mechanics
1. Two separate keys are used for the encryption and HMAC calculation.
2. The default size of the AES encryption key is 256 bits. However, this can be customized

to use either a 128-bit or 192-bit AES key by modifying the KA properties (see the KA
Configuration chapter in the KA Reference Manual for details).

3. The default size of the HMAC key is 256 bits. However, this can be customized to use
either a 224-bit, 384-bit or 512-bit key by modifying the KA properties file (see the KA
Configuration chapter in the KA Reference Manual for details).

4. The default duration for the usage of the encryption key is one (1) month, while that of
the HMAC key is one (1) year. At the start of a new month – starting with the first
encryption request past midnight—KA starts using a new encryption key that it
generates automatically based on configured policies; a new HMAC key is generated on
the first day of a new calendar year. These durations can be customized to use keys on
either a daily, weekly, monthly, or an annual basis in the KA properties file (see the KA
Configuration chapter in the KA Reference Manual for details).

StrongKey Tellaro KeyAppliance (KA) 7 v4.0 Demo Client Guide

2.2.4—KAM Deletion Mechanics
KA can delete encrypted records on demand from its internal database. For deleting
ciphertext, the web service call requires four parameters:

Parameter Explanation

did The unique Encryption Domain identifier.

username The username in the encryption domain with authorization to call this web service.

password The password of the username to authenticate the credential of the requester.

token
The token referencing the object (given to applications during the original
encryption call).

When KA receives the request, it first verifies the credentials presented against its internal
database or an optional LDAP directory server and then determines their authorization to
request the deletion service by determining if they belong to a DeletionAuthorized group.
If using LDAP, this group and its members must be created in the LDAP directory as a
distinct task of the KA installation and configuration process; when using the internal
database on the Tellaro, this is performed automatically.

If the requester is authorized, KA searches its RDBMS for the Token; if found, the record
is deleted and the deletion logged. The deletion is replicated to other nodes of the cluster
before a response is returned to the calling application indicating success or failure.

Once deleted, the original plaintext cannot be returned to any calling application.
While the key that encrypted the original plaintext might still be present in the KA—
potentially, to decrypt other records encrypted by the same key—a successful call to the
deletion web service permanently removes the record from the database. This does not
imply that sites using KA may not have other copies of the encrypted record on backup
tapes. It remains the site’s responsibility to ensure compliance to its data retention policy.

2.2.5—KAM Search Mechanics
Certain applications may have a need to search the KA internal database to determine if a
specific piece of sensitive data exists. KA provides a web service method for performing this
task. The method requires four parameters:

Parameter Explanation

did
The unique Encryption Domain identifier. This is a numeric integer that logically
represents the context within which the data is encrypted and tokenized.

username The username in the encryption domain with authorization to call this web service.

password The password of the username to authenticate the credential of the requester.

plaintext The sensitive data for which to search.

When KA receives the request, it verifies the credentials presented against its internal
database or an optional LDAP directory server and then determines their authorization to
request the search service by determining if they are a member of a SearchAuthorized
group. Note that if using LDAP, this group and its members must be created in the LDAP
directory as a distinct task of the installation process of the KA; when using the internal
database on the Tellaro, this group is created automatically.

StrongKey Tellaro KeyAppliance (KA) 8 v4.0 Demo Client Guide

If the requester is authorized, KA converts the plaintext to an HMAC and searches its
RDBMS for the HMAC; if found, the Token is returned to the caller and the search is logged
and replicated to other nodes. A non-NULL return value to the calling application indicates
the search was successful.

2.2.6—KAM Entropy Mechanics
Certain applications may have a need for true random numbers generated from a certified
hardware-based random number generator (RNG). Since the KA includes such a hardware
RNG, it provides a web service for requesting and receiving true random numbers from its
underlying RNG. The method requires four parameters:

Parameter Explanation

did The unique Encryption Domain identifier. This is a numeric integer that logically
represents the context within which the data is encrypted and tokenized.

username The username in the encryption domain with authorization to call this web service.

password The password of the username to authenticate the credential of the requester.

bytes The number of bytes of entropy requested, returned as Base64-encoded text.

When KA receives the request, it verifies the credentials presented against its internal
database or an optional LDAP directory server. It then determines their authorization to
request the entropy service by determining if they belong to an EncryptionAuthorized
group. If using LDAP, this group and its members must be created in the LDAP directory as
a distinct task of the KA installation process; when using the internal database on the
Tellaro, this group is created automatically.

If the requester is authorized, KA gathers the requested number of bytes of entropy
from its cryptographic hardware module, Base64-encodes them, then returns the encoded
bytes to the calling application. While most applications are likely to Base64-decode the
encoded bytes—perhaps to seed a Pseudo Random Number Generator (PRNG) in their
application/system—some may choose to use the Base64-encoded text as-is—perhaps as
truly random passwords or session identifiers for web sessions, etc.

2.2.7—KAM Batch Operations
Some business operations require cryptographic operations on millions of records
periodically. While the standard web services are capable of receiving said millions of
requests individually, the operations can be made significantly more efficient by submitting
the input data in an eXtensible Markup Language (XML) file and performing the operation
on the appliance without authenticating and authorizing each request (except for the first),
and by eliminating the network round trips for each web service call.

The Tellaro provides four (4) web service methods for encrypting, decrypting, deleting
and searching for sensitive data using XML-based files in batch mode.

The XML input file conforms to the SKLESBatchInput element, defined in the KA XML
Schema Definition (XSD) file supplied with the appliance. Any number of records may be
processed through batch files more efficiently; the only limitation to the number of records
in such a batch file would be the appliance's operating system limit on the file size.

StrongKey Tellaro KeyAppliance (KA) 9 v4.0 Demo Client Guide

 NOTE: An XML input file with one million 16-digit credit card numbers (and conforming to
the KA XSD) uses a little less than 40 MB of space, or approximately 25,000 records per MB of space.
Based on this, a 1 GB file can store 25 million input records. An input file with a maximum file size
limitation of 8 Terabytes can accommodate 200 billion credit card numbers.

The appliance processes the input file in batch mode: it performs just a single authentication
and authorization check, a single verification of the Encryption Domain's status, and proceeds
to execute the requested cryptographic operation for each record in the input file. It writes the
result to a different XML file corresponding to the SKLESBatchOutput element in the KA XSD.
The input and output files may be transferred to and from the appliance using the Secure File
Transfer Protocol (SFTP), secure NFS or SAMBA over TLS.

2.2.8—KAM Relay Mechanics
To minimize decryption of sensitive PAN data within the application network, KA supports
a “Relay” web service method permitting applications to relay a transaction to a payment
gateway (PG). This is accomplished through an HTTPS POST method, or a SOAP action
within an HTTPS POST method.

The business benefit of using the Relay web service is that the application dealing with
the PG does not need to decrypt credit card numbers before sending transaction to the
gateway—the KA performs this service (functioning like a proxy) on behalf of the application
and, thus, reduces or eliminates the need for decrypting credit card numbers. However, to
relay transactions, KA must have direct network connectivity to the PG's web server, either
over the internet or through a virtual private network (VPN).

Here is a sample representation of how an infrastructure might look when configured
to use the Relay web service to multiple payment gateways:

In this configuration, the site has:

A web tier in the demilitarized zone (DMZ) receiving customer transactions from the internet
An application tier with servers and databases representing the business logic and data
A PCI zone containing the Tellaros
Three payment gateways: PG1, which offers both an HTTPS and SOAP interface to their
transaction gateway; PG2, which only offers an HTTPS interface; and PG3, which only
offers a SOAP interface.

StrongKey Tellaro KeyAppliance (KA) 10 v4.0 Demo Client Guide

One may connect any number of payment gateways to the Tellaro, as long as the gateways
offer standard HTTPS or SOAP interfaces to their services.

When KA receives the request, it verifies the credentials presented against its internal
database or an optional LDAP directory server, then determines their authorization to
request the relay service by determining if they are a member of two groups—
RelayAuthorized group and DecryptionAuthorized. This is the only service requiring
authorized requesters to be part of two groups; this is because the security of the appliance
requires that tokens are decrypted and substituted for actual sensitive information and
relayed to the payment gateway.

To use the relay web service, applications that normally communicate with the PG
must be modified to communicate with the KA which requires seven (7) parameters to
perform its task. The seven parameters are listed here:

Parameter Explanation

did

The unique Encryption Domain identifier. This is a numeric integer that logically
represents the context in which your data is encrypted and tokenized. You must
specify the DID to ensure the relay service can not only authenticate the request
correctly, but also decrypt any tokens before relaying the transaction.

username
The username within the encryption domain that has authorization to call the
web service. At most sites, this is a service credential used by the application
communicating with KA.

password
The password of the username within the encryption domain to authenticate the
credential of the requester.

relayurl

The URL of the payment gateway that receives transactions. The appliance checks
to see if the supplied URL matches—completely or partially—URLs configured and
authorized for use by the appliance for relaying transactions. For example, if
https://test.authorize.net is configured as an authorized URL for this appliance,
supplying the URL https://test.authorize.net/gateway/transact.dll in this parameter
will allow the transaction to be relayed to the gateway (assuming all other checks
pass). However, https://test.authorize.com/gateway/transact.dll will not.

relayprotocol
The web service only accepts HTTP or SOAP based relay requests; as such, this
parameter must specify either HTTP or SOAP (uppercase) depending on the
interface the PG offers.

relayencoding
While future versions of the web service will support additional encoding
schemes, the appliance currently accepts only UTF-8 in this parameter.

relaycontent

This parameter carries XML content that conforms to the schema defined in
SKLESRelaySchema.xsd. This schema definition—supplied with the software that
implements this service—defines the syntax of the transaction that is translated
by the KA and relayed to the payment gateway.

Depending on the type of protocol specified in the relayprotocol parameter, the appliance
builds a standard HTTPS POST message—or one encapsulating a SOAP request—and posts
it to the specified URL. As part of relaying the transaction, the appliance can decrypt any
tokens specified in the relaycontent parameter and substitute decrypted content for the
tokens before posting it to the payment gateway's web site

The appliance waits for a response from the gateway and transmits the response back
to the calling application without interpreting the response. All relay transactions are
logged in the application server's logs (however, sensitive data is never logged).

StrongKey Tellaro KeyAppliance (KA) 11 v4.0 Demo Client Guide

Since the Relay web service works on standard SOAP over HTTPS, any programming
environment that supports these two protocols can consume the service. StrongKey
supplies two sample Java clients that show how to consume the service using the HTTPS
and the SOAP protocols.

2.2.9—HTTPS Interface
A few notes about the HTTPS interface for the Relay web service:

1. The Relay service only performs HTTP POSTs; GETs are not supported at this time.
2. The service allows for specifying any number of HTTP headers, HTTP parameters, and

KA tokens that need decrypting and substituting in the relay request to the gateway.
3. All headers, parameters, and tokens are specified in XML elements that must conform

to the supplied SKLESRelaySchema.xsd. If in doubt about your XML, test your sample
XML with xmllint (on the Linux platform) against the XSD file. Fix any errors before
sending the XML to the appliance.

4. The appliance will not print any sensitive decrypted/detokenized information in the
server log.

2.2.10—SOAP Interface
A few notes about the SOAP interface for the Relay web service:

1. The SOAP message sent to the Tellaro for the relay request embeds another SOAP
envelope containing the message to be relayed to the payment gateway. This might be
confusing initially, but is acceptable to the appliance. Just make sure that samples of
XML created for testing pass validation tests using xmllint against the XSD defined in
SKLESRelaySchema.xsd.

2. The Relay service only performs HTTP POSTs; GETs are not supported at this time.
3. The service allows for specifying any number of HTTP headers; HTTP parameters are

not supported in this interface.
4. The appliance will not print any sensitive decrypted/detokenized information in the

server log.

StrongKey Tellaro KeyAppliance (KA) 12 v4.0 Demo Client Guide

3—sakaclient
To test the KA web services, the appliance comes with a Java-based client
application to test the web service operations of the KA Module. The Java client—
called sakaclient.jar—can be used to call web service operations on a DEMO appliance on
the internet—demo4.strongkey.com—or on your own Tellaro cluster within your network.

The demo KA uses software identical to that of the appliances delivered to customers.
This allows application development teams to verify code without having to wait for an
internal KA implementation. Once verified against the KA Demo Client, the identical code
will work against your internal KA implementation without changing a single line of code.
The only difference will be the URL of the host and the parameters passing at runtime. We
recommend parameterizing the URL of the appliances being called; this will make it easier
to point applications to the KA during deployment to production.

The client application is a simple Java application that calls the KA web service to
perform one of many operations; it simulates what applications must do to call the
EncryptionService on the Tellaro. While your client application will certainly be different
based on the business functions it implements, the programming language, and the
application model it uses, ultimately it must perform the same web service functions as
the test client application bundled with KA. Because the client application focuses only on
testing the implementation of the KA service, it is ideal for ensuring the correctness of the
implementation.

The currently supported operations of the Demo Client are:

1. Encrypt simulated credit card numbers.
2. Decrypt the ciphertext for previously encrypted credit card numbers.
3. Encrypt and decrypt a credit card number within a single transaction.
4. Delete a credit card number from the cluster.
5. Search for a credit card number on the cluster.
6. Return bytes of entropy generated on a True Random Number Generator (TRNG).
7. Submit a job to encrypt credit card numbers in batch mode.
8. Submit a job to decrypt credit card numbers in batch mode.
9. Submit a job to delete credit card numbers in batch mode.

10. Submit a job to search for credit card numbers in batch mode.
11. Relay a payment transaction to authorize.net using HTTPS POST (you will need your

own account and access keys to authorize.net to perform this test).
12. Encrypt a plaintext using a stored symmetric key.
13. Decrypt a ciphertext using a stored symmetric key.

The client application distinguishes between these operations to allow sites to test different
levels of authorization for the web services:

1. Users who are authorized to only encrypt.
2. Users who are authorized to only decrypt.
3. Users who are authorized to encrypt and decrypt.
4. Users who are authorized to only delete.

StrongKey Tellaro KeyAppliance (KA) 13 v4.0 Demo Client Guide

5. Users who are authorized to only search.
6. Users who are authorized to only relay transactions to a payment gateway.
7. Users who are authorized to perform all operations.
8. Users who are NOT authorized to perform any operation.

3.1—Installing the Demo Client Application
StrongKey distributes the demo application as a .ZIP file. After unzipping the democlients
distribution, the sakaclient executable and source will be in a folder called sakaclient.

The sakaclient.jar file contains pre-built executable code. The sakaclient-
src.zip file contains the source for this executable as a project folder. Build the executable
.JAR file from scratch or modify the client to integrate into a custom application.

Change directory to the sakaclient directory in the location where the democlients are
installed. Once in that directory, the .JAR file may be run without specifying its location. For
the rest of this document, we will assume that sakaclient.jar is in your current directory.

3.2—Displaying Help Options
Type the following command to verify the client application is executable; also to show a
list of operations it can perform and the parameters it expects for each operation:

java -jar sakaclient.jar

You will see the following output:

The explanation of the parameters to the demo client application is as follows:

Parameter Explanation

https://<host:port> https://demo4.strongkey.com

<did>
The unique Encryption Domain identifier. This was provided to you
separately by StrongKey as your unique domain for testing.

<username>
The username in the encryption domain with authorization to call the web
service. Usernames were provided separately by StrongKey for testing.

<password> The password of the username above. These passwords were provided
separately by StrongKey for testing.

StrongKey Tellaro KeyAppliance (KA) 14 v4.0 Demo Client Guide

https://demo.strongauth.com:8181/

Parameter Explanation

E Encryption
Encryption of 16-digit PANs where you only need to specify the last 8 digits
of the PAN on the command line; the first 8 digits are programmed into
the client application as a convenience for quick testing.

EE Encryption
Encryption of 16-digit PANs where you specify all 16 digits of the PAN on
the command line.

ES Encryption Encryption of a string of indefinite length.

D Decryption Decryption of a token.

B
Both Encryption
and Decryption

Encryption and decryption of 16-digit PANs where you specify the last 8
digits of the PAN on the command line; the first 8 digits are programmed
into the client application as a convenience for quick testing.

BB
Both Encryption
and Decryption

Encryption and decryption of 16-digit PANs where you specify all 16 digits
of the PAN on the command line.

L Deletion Deletion of an object based on the specified token.

S Search Search for a 16-digit PAN where you specify all 16 digits.

R Entropy
Gather a certain number of bytes of entropy from the KA's True Random
Number Generator (TRNG).

BE
Batch

Encryption

Encryption of PANs defined in an XML file conforming to the SKLES.xsd
schema; results are placed in an XML file containing the original PAN and
the token associated with it.

BD
Batch

Decryption
Decryption of tokens defined in an XML file conforming to the SKLES.xsd
schema; results are in an XML file with the original token and resulting PAN.

BL Batch Deletion
Deletion of PANs based on tokens defined in an XML file conforming to the
SKLES.xsd schema; results are placed in an XML file containing the token
and a result value of True or False.

BS Batch Search
Searches for PANs defined in an XML file conforming to the SKLES.xsd
schema; results are placed in an XML file containing the original PAN and
the token associated with it if it exists or NULL if it does not.

GE GPK Encrypt
Encrypts a plaintext using the key specified by the Group Public Key (GPK)
token.

GD GPK Decrypt Decrypts a ciphertext using the key specified by the GPK token.

<last-8-digits-of-PAN>
The demo client is programmed with the first 8 digits of a sample credit
card number—11112222; only the last 8 digits are required for the test.
However, these last 8 digits must be between 10000000 and 99999999.

<16-digits-of-PAN>
With this option you specify 16 digits (or any other number of your choice);
KA does not modify the supplied value, processing the value as is.

<hmac/psn>
For decryption and deletion operations, the client expects the full HMAC or
Pseudo Number (a.k.a. Token).

<# of iterations>
The Demo Client can perform multiple operations in each run of the client
by incrementing the last-8-digits-of-PAN value and calling the web service
again; specify the number of iterations between 1 and 99999999.

<input-filename>
The name of the XML input file containing the information to be
transformed by the batch functions.

StrongKey Tellaro KeyAppliance (KA) 15 v4.0 Demo Client Guide

3.3—Operations
3.3.1—Encryption
To encrypt a test PAN, type the following command. In this example the URL parameter is
https://demo 4 .strong key .com , the domainID is the numeral 1, the username is encryptonly
and the password is Abcd1234!. Since this example uses the E option, specify only the last 8
digits of the test PAN—the first 8 are specified by the sakaclient.jar program. The last
parameter indicates to only execute one iteration of this transaction. Had we chosen to
specify more than one transaction, the Java program would have incremented the
specified 8-digit value in each transaction for the required number of transactions:

java -jar sakaclient.jar https://demo4.strongkey.com 1 encryptonly
Abcd1234! E 12345678 1

The following image shows the successful return of a token (1000000000101192) when the
operation returns. The actual token returned by your demo encryption domain may be
different, but in principle, they resemble the value returned.

If you see an error message that resembles the following, it implies the JDK needs
updating. You must use JDK 8 Update 112 or higher to make a web service connection to
StrongKey's Demo Client when using Java.

Exception in thread "main" javax.xml.ws.WebServiceException: Failed to access the WSDL at:
https://demo4.strongkey.com/strongkeyliteWAR/EncryptionService?wsdl. It failed with:
 sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested
target.
 at com.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser.tryWithMex(RuntimeWSDLParser.java:151)
 at com.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser.parse(RuntimeWSDLParser.java:133)
 at com.sun.xml.internal.ws.client.WSServiceDelegate.parseWSDL(WSServiceDelegate.java:254)
 at com.sun.xml.internal.ws.client.WSServiceDelegate.<init>(WSServiceDelegate.java:217)
 at com.sun.xml.internal.ws.client.WSServiceDelegate.<init>(WSServiceDelegate.java:165)
 at com.sun.xml.internal.ws.spi.ProviderImpl.createServiceDelegate(ProviderImpl.java:93)
 at javax.xml.ws.Service.<init>(Service.java:56)
 at com.strongauth.strongkeylite.web.EncryptionService.<init>(EncryptionService.java:79)
 at strongkyeliteClient.Main.main(Main.java:109)

StrongKey Tellaro KeyAppliance (KA) 16 v4.0 Demo Client Guide

https://demo4.strongkey.com/
https://demo4.strongkey.com/
https://demo4.strongkey.com/
https://demo4.strongkey.com/
https://demo4.strongkey.com/

3.3.2—Decryption
To test decryption, call KA with the D option and use the token from your encryption test as
the parameter. You will also be using a different username—decryptonly—to demonstrate
the use of a different service privilege, as shown below.

java -jar sakaclient.jar https://demo4.strongkey.com 1 decryptonly
Abcd1234! D 1000000000101293

The following image shows the successful return of the original PAN (1111222212345678)
when the operation returns. The operation may take a little while because cryptographic
keys may need to be loaded from the internal database and decrypted before the actual
encrypted object can be decrypted. However, once the keys are decrypted, they are cached
for a short duration (~5 minutes); if you repeat the same decryption operation immediately,
you'll notice an immediate response.

 NOTE: The first web service request for encryption or decryption within a user's session
will see a long delay because of the following factors:

The latency of the Internet
The verification of the user's authorization (which causes the decryption of a hierarchy of
keys in the hardware module to verify the user's password)
The decryption of the symmetric key before it is available for use
Finally, the actual encryption/decryption of the PAN data

A key-caching feature on the KA (5 minutes by default) enables subsequent operations to see
significant improvements in performance. However, at the end of the default caching period,
the keys are flushed from memory and the first cryptographic operation after the flush will see
a similar delay as keys are decrypted and loaded into cache memory. The caching window can
be configured for your business needs.

From a performance point of view, the current generation of KA, using a TPM, delivers
approximately 200‒220 web service operations per second (WSOPS) when multi-threaded
client applications make requests. In a clustered environment where all nodes in the cluster
may service client applications, the overall WSOPS will be higher than for an individual KA, but
will be difficult to predict in advance without understanding the nature of the network and
applications in question.

StrongKey Tellaro KeyAppliance (KA) 17 v4.0 Demo Client Guide

StrongKey has provided nine (9) credentials—usernames and passwords—for your test
encryption domain on the DEMO appliance. These credentials can be used by the Demo
sakaclient.jar application to test the authentication and authorization capabilities of
the appliance. The privileges of these credentials for cryptographic web services are as
follows:

Username Encryption
Authorized

Decryption
Authorized

Deletion
Authorized

Relay
Authorized

Search
Authorized

encryptonly Yes No No No No

decryptonly No Yes No No No

encryptdecrypt Yes Yes No No No

deleteonly No No Yes No No

relay No Yes No Yes No

searchonly No No No No Yes

all Yes Yes Yes Yes Yes

none No No No No No

pinguser No Yes No No No

3.3.3—Encryption and Decryption
To test how encryptdecrypt can encrypt and decrypt—execute the following command in a
Command Prompt (or Shell) window:

java -jar sakaclient.jar https://demo4.strongkey.com 1 encryptdecrypt
Abcd1234! B 33331001 5

You are essentially asking the KA hosted on demo4.strongkey.com to perform five (5)
encryption web service transactions of PANs, starting with 1111222233331001 through
1111222233331005 and, upon receiving the Token, to decrypt them immediately by calling
the decryption web service. The output of the command, when successful, is shown below:

StrongKey Tellaro KeyAppliance (KA) 18 v4.0 Demo Client Guide

3.3.4—Failed Encryption and Decryption
To test how the user none can neither encrypt nor decrypt—execute the following
command, where you are asking KA to perform five (5) encryption web service transactions
of PANs, starting with 1111222233331006 through 1111222233331010 and, upon receiving the
Token, to decrypt them immediately by calling the decryption web service.

However, because the user none has no authorization to perform any operation, the
operation will fail with a response of “Invalid user”. The decryption operation also fails, but
shows a different error message: “NULL argument: token.”

When the encryption operation failed due to lack of authorization, instead of a token
being returned, the sakaclient.jar program received an error message. However, the
client program was designed to re-send the response as a parameter to the decryption
operation. Since the sanity checks on the KA determined this was not a normal token, it
fails with the appropriate message.

java -jar sakaclient.jar https://demo4.strongkey.com 1 none Abcd1234! B
33331006 5

3.3.5—Encryption and Failed Decryption
The following example shows how encryptonly can encrypt but not decrypt:

java -jar sakaclient.jar https://demo4.strongkey.com 1 encryptonly
Abcd1234! B 33331006 1

StrongKey Tellaro KeyAppliance (KA) 19 v4.0 Demo Client Guide

However, if you copy and paste the returned token into the next example using the
decryptonly credential for the operation, you'll see the decryption succeed:

3.3.6—Deletion
To delete an object from KA, send the request as follows using a token returned by an
earlier encryption operation. After a successful deletion, try decrypting the same token to
verify the deletion was successful—you will see an error message returned. You can also
attempt deleting the same token again; this should also return an error.

java -jar sakaclient.jar https://demo4.strongkey.com 1 deleteonly
Abcd1234! L 1000000000101293

java -jar sakaclient.jar https://demo4.strongkey.com 1 decryptonly
Abcd1234! D 1000000000101293

java -jar sakaclient.jar https://demo4.strongkey.com 1 deleteonly
Abcd1234! L 1000000000101293

StrongKey Tellaro KeyAppliance (KA) 20 v4.0 Demo Client Guide

3.3.7—Re-encryption after Deletion
The following example shows how a PAN (encrypted in Section 3.3.1 and deleted in Section
3.3.6), when re-encrypted, gets a completely new token number—1000000000000124.
This is because, once a token number is assigned to a sensitive data object, it cannot be re-
used again. However, if the sensitive data has not been deleted from the encrypted records
in the appliance, the same sensitive data will result in the same token number:

java -jar sakaclient.jar https://demo4.strongkey.com 1 encryptonly
Abcd1234! E 12345678 1

3.3.8—Search
To test the search web services, encrypt a test PAN on the appliance first; it should return a
token. Search for the PAN using the same plaintext data; it will return the same token as
from the encryption step. Finally, search for a PAN which is not encrypted; it should return
a response indicating the PAN does not exist. The commands and output are shown here:

java -jar sakaclient.jar https://demo4.strongkey.com 1 searchonly
Abcd1234! S 1111222212345678

java -jar sakaclient.jar https://demo4.strongkey.com 1 searchonly
Abcd1234! S 1111222212345679

StrongKey Tellaro KeyAppliance (KA) 21 v4.0 Demo Client Guide

3.3.9—Encryption 2
While the E (encrypt) option allows you to test quickly by specifying only the last 8 digits on
the command line, the EE option allows testing encryption with numbers between 1 and
19 digits long. The following two examples show successful encryptions of a 16-digit and an
8-digit number:

java -jar sakaclient.jar https://demo4.strongkey.com 1 encryptdecrypt
Abcd1234! EE 1212121212345678 1

java -jar sakaclient.jar https://demo4.strongkey.com 1 encryptdecrypt
Abcd1234! EE 12121212 1

3.3.10—Encryption and Decryption of a String
So far, the sakaclient has encrypted numeric values that might represent Primary Account
Numbers (PANs) for credit card holders. The next example shows how to encrypt a string of
arbitrary length. The KA Module (KAM) can encrypt strings of up to 10,000 characters; as
such, the entire string—“You must be the change you want to see in the world. M. K.
Gandhi” is encrypted and stored on KA exactly like the PANs in previous examples. The
resulting token can be used to decrypt the entire string as is shown in the same figure:

java -jar sakaclient.jar https://demo4.strongkey.com 1 encryptonly
Abcd1234! ES “You must be the change you want to see in the world. M. K.
Gandhi”

StrongKey Tellaro KeyAppliance (KA) 22 v4.0 Demo Client Guide

java -jar sakaclient.jar https://demo4.strongkey.com 1 decryptonly
Abcd1234! D 1000000000101290

Since the KAM can encrypt anything up to 10,000 characters, applications can store a wide
variety of information: JSON, XML, Base64-encoded check images, and/or QR codes (as
long as they are fewer than 10,000 characters in length).

3.3.11—Random Numbers from TRNG
While the KAM can protect many different kinds of information, you may occasionally have
a need for entropy (random numbers/bytes) generated on a certified TRNG. All Tellaros are
outfitted with a certified TRNG as a standard component. A new web service—entropy—
allows requests for varying lengths of entropy—up to a maximum of 1024 bytes per web
service request—from KA, as the following two examples show. The result may be Base64-
decoded and used to seed local Pseudo-Random Number Generators (PRNGs), used as
extremely complex passwords for password resets, or any other purpose where applications
need random data.

java -jar sakaclient.jar https://demo4.strongkey.com 1 all Abcd1234! R 32

java -jar sakaclient.jar https://demo4.strongkey.com 1 all Abcd1234! R 64

StrongKey Tellaro KeyAppliance (KA) 23 v4.0 Demo Client Guide

3.3.12—Encrypt and Decrypt with a Stored Key
1. As a prerequisite to these commands, a General Public Key (GPK) must be stored

using the kmsclient.
2. Using a stored GPK, the appliance can perform many types of encryption and

decryption using keys previously tokenized on the appliance. The web service supports
AES keys in ECB, CBC, OFB, CFB, and GCM modes. In ECB and CBC mode, the web
service supports ZeroBytePadding, PKCS7Padding, TBCPadding, X9.23Padding,
ISO7816-4Padding, ISO10126-2Padding, and NoPadding (when the plaintext input is
the correct block size). In GCM mode, optional Additional Authenticated Data (AAD)
can be provided which will be included in the MAC generated over the ciphertext. This
can be used to cryptographically bind an unencrypted message to a ciphertext. The
following examples use the GPK token 1000000000113726 which has previously been
stored.

java -jar sakaclient.jar https://demo4.strongkey.com 1 all Abcd1234! GE
1000000000113726 MyPlaintext AES/CBC/PKCS7Padding Hex
00000000000000000000000000000001

java -jar sakaclient.jar https://demo4.strongkey.com 1 all Abcd1234! GE
1000000000113726 MyPlaintext AES/GCM/NoPadding Hex
00000000000000000000000000000002

java -jar sakaclient.jar https://demo4.strongkey.com 1 all Abcd1234! GE
1000000000113726 MyPlaintext AES/GCM/NoPadding Hex
00000000000000000000000000000003 “With AAD”

StrongKey Tellaro KeyAppliance (KA) 24 v4.0 Demo Client Guide

3. The following example shows how to decrypt one of the ciphertexts generated with a
GPK key.

java -jar sakaclient.jar https://demo4.strongkey.com 1 all Abcd1234! GD
1000000000113726 4ea0ab35bc3cafb11cd6a9c92f0b0f1cb937871ba4f7244baf4e17
AES/GCM/NoPadding Hex 00000000000000000000000000000003 “With AAD”

In this manner, the sakaclient can be used to test various KAM web services.

StrongKey Tellaro KeyAppliance (KA) 25 v4.0 Demo Client Guide

4—sakagclient
While the sakaclient demonstrates most of the common web services of the
KeyAppliance Module (KAM), the sakagclient primarily demonstrates how to
encrypt arbitrary length strings and text content using the newer Galois Counter Mode
(GCM) algorithm. GCM itself is not a unique feature of KA, but the cryptographic key, once
generated and escrowed on the KAM by the client application, can encrypt using various
algorithms.

The sakagclient depends on the same web services the sakaclient does; applications
consuming the KAM's web services require similar privileges on the KA as sakagclient. The
currently supported operations of the sakagclient are:

Encrypt a string provided on the command line
Decrypt the ciphertext for previously encrypted strings
Encrypt and decrypt a string within a single transaction

4.1—Installing the Demo Client Application
StrongKey distributes the demo application as a .ZIP file. After unzipping the democlients
distribution, the sakagclient executable and source will be contained within a folder called
sakagclient.

The sakagclient.jar file contains pre-built executable code. The sakagclient-
src.zip file contains the source for this executable as a project folder. You can build the
executable .JAR file from scratch if you wish, or you can modify the client to integrate into
your own application.

Change directory to the sakagclient directory in the location where the democlients
are installed. Once you've changed to that directory, you may execute the JAR file without
specifying its location. For the rest of this document, we will assume that
sakagclient.jar is in your current directory.

4.2—Displaying Help Options
Type the following commands to verify that the client application is executable. It also
shows a helpful prompt of the operations it can perform and the parameters it expects for
each operation.

The second command—containing GCM Main—reflects a second executable program
within the .JAR file that implements the GCM mode for encryption. Since the default
executable program uses the CBC mode of operation, the GCM version must be called
slightly differently (as shown below). The options for both programs are identical.

java -jar sakagclient.jar

java -cp sakagclient.jar GCMMain

StrongKey Tellaro KeyAppliance (KA) 26 v4.0 Demo Client Guide

You will see the following output:

An explanation of the sakagclient.jar Demo Client parameters follows:

Parameter Explanation

https://<host:port> Use https://demo4.strongkey.com/ for your testing.

<did>
The unique Encryption Domain identifier. This was provided separately by
StrongKey as a unique domain for testing.

<username>
The username in the encryption domain with authorization to call the
web service. These usernames were provided separately by StrongKey for
testing.

<password>
The password of the username within the encryption domain with
authorization to call the web service. These passwords were provided
separately by StrongKey for testing.

The demo client supports the following operations:

E Encryption
Encryption of 16-digit PANs where only the last 8 digits of the PAN are
required on the command line; the first 8 digits are programmed into the
client application as a convenience for quick testing.

D Decryption Decryption of a token.

B
Both Encryption
and Decryption

Encryption and decryption of 16-digit PANs where you specify the last 8
digits of the PAN on the command line; the first 8 digits are programmed
into the client application as a convenience for quick testing.

<string-to-encrypt>

A UTF-8 string of arbitrary length. If the string has blank spaces or special
punctuation marks, please enclose the string in double quotes and place
a backslash in front of the special punctuation mark to escape it from
being processed by the Linux shell (if using Linux to test this tool).

<token>
For decryption, the client expects the Token that was returned by the KAM
when encrypting the string.

StrongKey Tellaro KeyAppliance (KA) 27 v4.0 Demo Client Guide

https://demo.strongauth.com/

4.3—Encryption (CBC Mode)
To encrypt a test string, type the following commands—separately. In this example the URL
parameter is https://demo4.strongkey.com, the domainID is the numeral 1, the username is
all and the password is Abcd1234!. The string being encrypted is enclosed within double
quotes:

java -jar sakagclient.jar https://demo4.strongkey.com 1 all Abcd1234! E
“You must be the change you want to see in the world. M. K. Gandhi”

java -jar sakagclient.jar https://demo4.strongkey.com 1 all Abcd1234! B
“You must be the change you want to see in the world. M. K. Gandhi”

The top half of the image below shows the sequence of activities performed by
sakagclient: a new AES encryption key was generated by the client (shown as a Base64-
encoded string on the first line) and escrowed on the KAM, which returned the token
1000000000101315. Using the token as the initialization vector (IV) for the CBC mode of
operation, sakagclient encrypts the string within double quotes and displays the Base64-
encoded ciphertext on the last line of the output.

The bottom half of the results in 3.4—Decryption (CBC Mode) shows a variation of the
same command, but this time the command has specified the B option, which encrypts
the supplied string, then immediately decrypts the ciphertext in the same operation and
compares the decrypted plaintext with the original to determine if they are the same.

The second command also generates a new AES key, escrows it—resulting in a new
token: 1000000000101316—recovers the escrowed key from the KAM, and then decrypts
the ciphertext to compare with the original. As the output shows, the original and
decrypted plaintext are identical.

The KAM has the ability to escrow cryptographic keys in this manner—TDES, AES, RSA,
ECDSA. Almost any cryptographic (or binary) object that can be Base64-encoded to a UTF-
8 string of length less than 10,000 characters can be encrypted and stored on KA as a
secure vault. KA have been successfully used to store more than 50 million objects in
Production use at customer sites.

StrongKey Tellaro KeyAppliance (KA) 28 v4.0 Demo Client Guide

https://demo.strongauth.com/

If you see an error message similar to the following, it implies an outdated version of JDK.
You must use JDK 8 Update 112 or higher to make a web service connection to StrongKey's
Demo Client when using Java.

Exception in thread "main" javax.xml.ws.web serviceException: Failed to
access the WSDL at:
https://demo4.strongkey.com/strongkeyliteWAR/EncryptionService?wsdl. It
failed with:
 sun.security.validator.ValidatorException: PKIX path building failed
sun.security.provider.certpath.SunCertPathBuilderException: unable to find
valid certification path to requested target.
 at
com.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser.tryWithMex(RuntimeWSDLP
arser.java:151)
 at
com.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser.parse(RuntimeWSDLParser
.java:133)
 at
com.sun.xml.internal.ws.client.WSServiceDelegate.parseWSDL(WSServiceDelegate.
java:254)
 at
com.sun.xml.internal.ws.client.WSServiceDelegate.<init>(WSServiceDelegate.jav
a:217)
 at
com.sun.xml.internal.ws.client.WSServiceDelegate.<init>(WSServiceDelegate.jav
a:165)
 at
com.sun.xml.internal.ws.spi.ProviderImpl.createServiceDelegate(ProviderImpl.j
ava:93)
 at javax.xml.ws.Service.<init>(Service.java:56)
 at
com.strongauth.strongkeylite.web.EncryptionService.<init>(EncryptionService.j
ava:79)
 at strongkyeliteClient.Main.main(Main.java:109)

If you see a different error that resembles the following, it implies that a .JAR library—
bcprov-jdk15on-1.54.jar—is not in the lib subdirectory where sakagclient exists.

Make sure there is a subdirectory called lib in the same folder where the
sakagclient.jar file exists, and that the BouncyCastle JCE Provider 1.54 exists in the lib
subdirectory. Then, attempt the command again.

Exception in thread "main" ava.lang.NoClassDefFoundError:
org/bouncycastle/util/encoders/Base64
at GCMMain.decryptText(GCMMain.java:324)
at GCMMain.main(GCMMain.java:237)

Caused by: java.lang.ClassNotFoundException:
org.bouncycastle.util.encoders.Base64
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
... 2 more

StrongKey Tellaro KeyAppliance (KA) 29 v4.0 Demo Client Guide

4.4—Decryption (CBC Mode)
To test decryption, call sakagclient with the D option and use the ciphertext from your
encryption transaction (from the transaction similar to the top half of the results in 3.4—
Decryption (CBC Mode) on your computer—it is sure to be different from the ciphertext
shown in this document) as well as the token from your encryption test as parameters. Make
sure you copy the ciphertext exactly as it shows in the output of the encryption command:

java -jar sakagclient.jar https://demo4.strongkey.com 1 all Abcd1234! D
HdYm1/+R5FA32AvqJ/WsnwirsW0UHiZF/7Qpc6ySXbVDIQsjjGtDBeObdvvQU5FKu5grm58v5
DXtqNk1jl39cNBpR0Ht3DX/xUz2vZPC0uo= 1000000000101315

1.5—Encryption (GCM Mode) shows the successful return of the original string (“You must be
the change you want to see in the world. M. K. Gandhi”). The operation may take a little
while because cryptographic keys may need to be loaded from the internal database and
decrypted before the actual encrypted object can be decrypted. However, once the keys
are decrypted, they are cached for a short duration (15 minutes); if you repeat the same
decryption operation immediately, you'll notice an immediate response.

 NOTE: The first web service request for encryption or decryption within a
user's session will see a long delay because of the following factors:

The latency of the Internet
The verification of the user's authorization (which causes the decryption of a
hierarchy of keys in the hardware module to verify the user's password)
The decryption of the symmetric key before it is available for use
Finally, the actual encryption/decryption of the PAN data

A key-caching feature on KA (5 minutes by default) enables subsequent operations to
see significant improvements in performance. However, at the end of the default
caching period, the keys are flushed from memory and the first cryptographic
operation after the flush will see a similar delay as keys are decrypted and loaded into
cache memory. The caching window can be configured for your business needs.

From a performance point of view, the current generation of KA, using a TPM,
delivers approximately 200‒220 web service operations per second (WSOPS) when
multi-threaded client applications make requests. In a clustered environment
where all nodes in the cluster may service client applications, the overall WSOPS
will be higher than for an individual KA, but will be difficult to predict in advance
without understanding the nature of the network and applications in question.

StrongKey Tellaro KeyAppliance (KA) 30 v4.0 Demo Client Guide

4.5—Encryption (GCM Mode)
To test the GCM of authenticated encryption, type the following command:

java -cp sakagclient.jar GCMMain https://demo4.strongkey.com 1 all
Abcd1234! E “You must be the change you want to see in the world. M. K.
Gandhi”

java -cp sakagclient.jar GCMMain https://demo4.strongkey.com 1 all
Abcd1234! E “You must be the change you want to see in the world. M. K.
Gandhi”

This calls sakagclient to encrypt the string specified on the command line using the GCM
mode of operation. The result of this execution is shown in the top half of the image in 1.6—
Decryption (GCM Mode).

In this execution, sakagclient first calls the KAM to retrieve some entropy from the KA
TRNG (shown in the Retrieved seed line). It then generates a new AES key, escrows it on the
KAM, and gets a token (1000000000101319). Using the last 96 bits of the token for the
Additional Authenticated Data (AAD), sakagclient then encrypts the supplied string in the
GCM mode of operation to display the resulting ciphertext.

In the bottom half of 1.6—Decryption (GCM Mode), the same string is encrypted and
decrypted by specifying the B (both) option. As one can see, it performs the same
operations as for the encrypt operation, but goes on to recover the original cryptographic
key by recovering it from the KAM, decrypting the ciphertext, and comparing the original
plaintext with the decrypted value.

StrongKey Tellaro KeyAppliance (KA) 31 v4.0 Demo Client Guide

4.6—Decryption (GCM Mode)
To test decryption, call sakagclient with the D option and use the ciphertext from your
encryption transaction (from the transaction similar to the Encryption (CBC Mode) on your
computer—it is sure to be different from the ciphertext shown in this document) as well as
the token from your encryption test as parameters. Make sure you copy the ciphertext
exactly at it shows in the output of the encryption command.

java -cp sakagclient.jar GCMMain https://demo4.strongkey.com 1 all
Abcd1234! D
vQm9+o6Ofjv4kNuHH7KfJsExIcH0z3BvI1YJO6PpFIlc9nxNgESBJjJLg3MlCBgLGU8Wlq/pr
CKROeYa0oWRm1tZS56ObUYMEE/XdR2ia4WsNQ== 1000000000101319

You should see a result similar to the following:

In this manner, the sakagclient can be used to test various KAM web services.

StrongKey Tellaro KeyAppliance (KA) 32 v4.0 Demo Client Guide

5—KMS Client
To test KA web services, the appliance comes with a Java-based client application to
test the web service operations of the KeyManagementService (KMS)—a module that
provides the ability to store and manage ANSI X9.24-1:2009 Symmetric Keys. The Java client—
kmsclient.jar—can be used to call web service operations on StrongKey's Demo Client on
the internet—demo4.strongkey.com—or on a private Tellaro cluster in your network.

The KA Demo Client uses software identical to that of appliances delivered to customers.
This allows your application development teams to verify code without having to wait for a KA
implementation internally. Once verified against the KA Demo Client, the code will work
against an internal KA implementation without changing a single line of code. The only
change would be the URL of the host called and the parameters passed to the application at
runtime. We recommend parameterizing the URL of the appliances to be called; this will
make it easier to point applications to KA in your production environment.

The kmsclient.jar application is a Java application that calls KA web services; it
simulates what applications must do to call the KMS on the Tellaro. While your client
application will certainly be different based on the business functions it implements, the
programming language it uses, and the application model it uses, ultimately it must
perform the same web service functions as the test client application bundled with KA.
Because the client application focuses only on testing the implementation of the KA web
service, it is ideal for ensuring the correctness of your implementation.

The currently supported operations of the kmsclient are:

1. Generate a Base Derivation Key (BDK) and produce its key components.
2. Generate an RSA asymmetric key pair, encrypt and token the private key, and return

the public key and token.
3. Generate an Initial Key (sometimes also referred to as Initial PIN Entry Key or IPEK)

from a BDK for a card reader device.
4. Load a BDK's key components into the Card Cryptographic Service (CCS) module.
5. Load a BDK into the CCS Module from its previously submitted key components.
6. Store an ANSI Key in the appliance's secure storage.
7. Replace a currently stored ANSI Key in the appliance with new ANSI Key.
8. Delete a currently stored ANSI Key from the appliance.
9. Update the status of a currently stored ANSI Key in the appliance.

10. List supported card reader device manufacturers by ID.

The client application distinguishes between these operations to allow sites to test different
levels of authorization for the web services:

1. Key Management Operator (KMO) users who are authorized to load key components.
2. Key Managemnent Custodian (KMC) users who are authorized to generate and load

BDKS and IPEKs.
3. Key Management Administrators (KMA) who are authorized to store, replace, delete,

and update ANSI Keys.

StrongKey Tellaro KeyAppliance (KA) 33 v4.0 Demo Client Guide

http://demo4.strongkey.com/

5.1—Installing the Demo Client Application
StrongKey distributes the Demo Client as a .ZIP file. After unzipping the democlients
distribution, the kmsclient executable and source will be in a folder called kmsclient.

The kmsclient.jar file contains executable code. The kmsclient-src.zip file
contains the source for this executable as a project folder. You can build the executable
.JAR file from scratch if you wish, or you can modify the client to integrate into your own
application.

To use the kmsclient.jar program, open a shell or command prompt window and
navigate to the directory location where kmsclient.jar is installed. Once you've changed
to that directory, you may execute the .JAR file without specifying its location. For the rest
of this document, we will assume that kmsclient.jar is in your current directory.

5.2—Displaying Help Options
Type the following command to verify that the client application is executable. It also
shows a helpful prompt of the operations it can perform and the parameters it expects for
each operation.

java -jar kmsclient.jar

You will see the following output.

Usage: java -jar kmsclient.jar https://<host:encport> <did> <username>
<password> DLK [bankid] <keytoken>

 java -jar kmsclient.jar https://<host:encport> <did> <username> <password>
GAK <key-name> <BDK|LTMK|MAC|TMK|TPK|GPK|Other> <RSA> <1024|2048|4096|8192>
<bankid> [terminalid] [terminaltype] [notes] <Hex|Base64>

 java -jar kmsclient.jar https://<host:encport> <did> <username> <password>
GBK <manufacturer>

 java -jar kmsclient.jar https://<host:encport> <did> <username> <password>
GIK <manufacturer> <device-serial-number> <return-type> [public-key-token]

 java -jar kmsclient.jar https://<host:encport> <did> <username> <password>
LBK <key-name> <hex-key-check-value> <manufacturer>

 java -jar kmsclient.jar https://<host:encport> <did> <username> <password>
LKC <AES|TDES> <128|192|256> <hex-key component> [kcv] <K-Value> <N-Value>
<key-name>

 java -jar kmsclient.jar https://<host:encport> <did> <username> <password>
RDK <retiringtoken> [parent-token] <key-name> <BDK|LTMK|MAC|TMK|TPK|Other>
<AES|TDES> <128|192|256> <bankid> [terminalid] [terminaltype] [hex-symkey]
<kcv> [notes]

 java -jar kmsclient.jar https://<host:encport> <did> <username> <password>
SDK [parent-token] <key-name> <BDK|LTMK|MAC|TMK|TPK|Other> <AES|TDES> <128|
192|256> <bankid> [terminalid] [terminaltype] [hex-symkey] <kcv> [notes]

 java -jar kmsclient.jar https://<host:encport> <did> <username> <password>
UPK [bankid] <keytoken> [newstatus] [newnotes]

 java -jar kmsclient.jar MFR

StrongKey Tellaro KeyAppliance (KA) 34 v4.0 Demo Client Guide

An explanation of the parameters to the Demo Client application is as follows:

Parameter Explanation

https://<host:port>
The URL of the KA where the CCS web service operations will be
submitted. For testing this client program on StrongAuth's DEMO
machine, the URL is https://demo4.strongkey.com.

<did>
The unique Encryption Domain identifier. This was provided separately
by Strongkey as a unique domain for testing.

<username>
The username within the encryption domain with authorization to call
the web services. These usernames were provided separately by
StrongKey for testing.

<password>
The password of the username within the encryption domain
authorized to call the web service. These passwords were provided
separately by StrongKey for testing.

The client supports the following operations

DLK Delete ANSI Key Delete an ANSI Key from KA secure storage.

GAK
Generate

Asymmetric Key
Generate an RSA asymmetric key pair, encrypt and token the private
key, and return the public key and token.

GBK Generate BDK
Generate a BDK in KA and export it as three key components with
their corresponding Key Check Values (KCV).

GIK
Generate Initial

Key

Generate an Initial Key on the KA derived from a BDK and a Device
Serial Number (DSN) of the card reader device and export it as three
key components with their corresponding KCVs.

LKC
Load Key

Component
Load a BDK's key component with its KCV into the CCS Module (to be
later assembled into the BDK by the LBK option).

LBK Load BDK
Assemble a BDK from previously loaded key components, verify its
KCV with the supplied KCV from the command line, and load the
verified BDK into the CCS Module.

RDK
Replace ANSI

Key
Replace a currently stored ANSI Key in the KA with a new ANSI Key.

SDK
Store ANSI

Key
Store a BDK or LTMK in the KA from Key Components, or store a TMK
or TPK encrypted by a key stored in KA.

UDK
Update ANSI

Key
Update the status of an ANSI Key currently stored in the KA.

MFR
List

Manufacturer
List supported card reader manufacturers by ID.

<128|192|256> Available key sizes accepted by the appliance.

<AES|TDES> Either the AES or Triple DES algorithm.

<BDK|LTMK|MAC|TMK|
TPK|GPK|Other>

The type of key to be stored in the KA.

<bankid> A numeric identifier with which bank this key is associated.

<ciphertext> The ciphertext value to be decrypted through DUKPT.

<device-serial-number>
The DSN for the device. This must be either an 11- or 15-byte string of
hex-encoded data.

StrongKey Tellaro KeyAppliance (KA) 35 v4.0 Demo Client Guide

https://demo.strongauth.com:8181/

Parameter Explanation

<hex-symkey>
The encrypted key which is to be loaded in KA. Can be null if the word
“null” is specified.

<hex-key component> A key component value submitted as a hex-encoded string.

<hex-key-check-value> A KCV as a hex-encoded string.

<K-Value>
The numerical identifier for a key component in a set of key
components.

<key-name>

A string identifying multiple key components as belonging to the
same set. The value can be any 64-character long string (without
spaces and special characters). It is merely used to identify the key
components during a “Load BDK” operation.

<keytoken> A token that references an ANSI key to operate on.

<ksn>
The Key Serial Number for this DUKPT transaction. Must be supplied as
20 hex-encoded bytes (10 bytes when decoded from Hex).

<manufacturer>
The Manufacturer ID for the product that will be creating encrypted
swipes.

<N-Value> The total number of key components in a set of key components.

<newnotes> The new notes associated with an ANSI key.

<newstatus>
The new status for an ANSI key. Valid values for newstatus are Active,
Inactive, Suspended, and Retired

<notes>
Any extra information to be sent when storing a key. Can be NULL if
the word “null” is specified.

<parent-token>
The token in which the key encrypting key is stored. Can be NULL if the
word “null” is specified

<plaintext> The plaintext value to be encrypted through DUKPT.

<public-key-token>
Specifies a token in KA that holds a previously escrowed public key
which can be used to encrypt keys for export from the appliance. This
parameter is optional.

<return-type>

Determines the manner in which an Initial Key is returned to the
calling application. The only currently supported value is to return the
Initial Key as KeyComponents. Future implementations will also
support returning the Initial Key, encrypted under a previously
escrowed public key on KA/

<terminalid>
An optional numerical identifier for which terminal this ANSI key is
associated with.

<terminaltype>
An optional string identifier for the type of terminal this ANSI key
belongs to.

StrongKey Tellaro KeyAppliance (KA) 36 v4.0 Demo Client Guide

5.3—List Manufacturer
Some web service operations in the KMS servlet utilize a ManufactuerID to associate with
an ANSI Key. If you plan on storing a BDK using the load BDK web service, you must
identify the ManufacturerID to be used while making web service calls to that web service.
This can be done with the List Manufacturer function. The IDs displayed are internal values
used by the CCS to uniquely distinguish different card readers supported by KA:

java -jar kmsclient.jar MFR

Manufacturer ManufacturerID:

------------ --------------

IDTech 0

UIC 1

MagTek 2

Infinite 3

Dejavoo 4

PAX 5

To generate a new BDK, type in the following command. In this example the URL
parameter is https://demo4.strongkey.com, the encryption domain ID is the numeral 1, the
username is kmcuser and the password is Abcd1234!. .The last parameter indicates the
card reader manufacturer this BDK will support (in this case, Dejavoo):

java -jar kmsclient.jar https://demo4.strongkey.com 1 kmcuser Abcd1234! GBK 4

Calling KeyManagementService at https://demo4.strongkey.com...

KeyComponent 1 of 3 [KCV1]

EE0F44EEE62E95DB4EE5A7D4A588F7ED [870B01]

KeyComponent 2 of 3 [KCV2]

FA886DDB069533F0BBF3D738EA23A25E [9F318A]

KeyComponent 3 of 3 [KCV3]

C9B8AC6A205A920D6829A3EC3A57CD3E [5C6A48]

BDK Key Check Value [0DD5F2]

The return value is an array of key components with their corresponding Key Check Values
(KCVs). The generated BDK is split into three parts—KeyComponent 1 of 3, KeyComponent 2
of 3, and KeyComponent 3 of 3. Each component has a corresponding KCV; the BDK itself
has its own KCV.

StrongKey Tellaro KeyAppliance (KA) 37 v4.0 Demo Client Guide

https://demo4.strongkey.com/

If you see an error message that resembles the following, it implies an outdated version
of the JDK. JDK 8 Update 112 or later is required to make a web service connection to
StrongKey's Demo Client when using Java.

Exception in thread "main" javax.xml.ws.web serviceException: Failed to
access the WSDL at:
https://demo4.strongkey.com/kmsADM/KeyManagementService?wsdl. It failed
with:

 sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to
find valid certification path to requested target.

 at
com.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser.tryWithMex(RuntimeW
SDLParser.java:151)

 at
com.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser.parse(RuntimeWSDLPa
rser.java:133)

 at
com.sun.xml.internal.ws.client.WSServiceDelegate.parseWSDL(WSServiceDeleg
ate.java:254)

 at
com.sun.xml.internal.ws.client.WSServiceDelegate.<init>(WSServiceDelegate
.java:217)

 at

com.sun.xml.internal.ws.client.WSServiceDelegate.<init>(WSServiceDelegate
.java:165)

 at
com.sun.xml.internal.ws.spi.ProviderImpl.createServiceDelegate(ProviderIm
pl.java:93)

 at javax.xml.ws.Service.<init>(Service.java:56)

 at
com.strongauth.strongkeylite.web.EncryptionService.<init>(EncryptionServi
ce.java:79)

 at strongkyeliteClient.Main.main(Main.java:109)

StrongKey Tellaro KeyAppliance (KA) 38 v4.0 Demo Client Guide

5.4—Load Key Component
Before any Initial Keys are derived, a BDK's three key components must be loaded into the
KMS Module so the BDK may be assembled internally from the components. Using the
values generated by the GBK option in the previous step, the first key component will be
EE0F44EEE62E95DB4EE5A7D4A588F7ED with a Key Check Value of 870B01. This is Key
Component 1 of 3. To identify this set of key components as belonging to the same BDK, we
assign the value of dejavooBDK to identify this set. It could have been any string such as
“MySecureBDK,” or “DarkSideOfTheMoonBDK,” etc. This time we use the kmouser to make
the call.

java -jar kmsclient.jar https://demo4.strongkey.com 1 kmouser
Abcd1234! LKC AES 128 EE0F44EEE62E95DB4EE5A7D4A588F7ED 870B01 1 3
dejavooBDK

Calling KeyManagementService at https://demo4.strongkey.com...

{"did":"1","K":1,"N":3,"KCV":"870B01"}

The return value is a JSON object affirming the successfully loaded key component. This
process is repeated for the remaining key components of the BDK, as shown below. Please
note that the identification string (dejavooBDK) for the key components must be identical
for all key components.

java -jar kmsclient.jar https://demo4.strongkey.com 1 kmouser Abcd1234!
LKC AES 128 FA886DDB069533F0BBF3D738EA23A25E 9F318A 2 3 dejavooBDK

Calling KeyManagementService at https://demo4.strongkey.com...

{"did":"1","K":2,"N":3,"KCV":"9F318A"}

java -jar kmsclient.jar https://demo4.strongkey.com 1 kmouser Abcd1234!
LKC AES 128 C9B8AC6A205A920D6829A3EC3A57CD3E 5C6A48 3 3 dejavooBDK

Calling KeyManagementService at https://demo4.strongkey.com...

{"did":"1","K":3,"N":3,"KCV":"5C6A48"}

5.5—Load BDK
To finish loading the BDK into KMS, we have to call the Load BDK web service. We need to
specify the key component Identifier used when loading the key components—in this
example's case it is dejavooBDK. Additionally, the KCV for the BDK itself must be provided
to verify it is imported correctly from its components:

java -jar kmsclient.jar https://demo4.strongkey.com 1 kmcuser Abcd1234!
LBK dejavooBDK 0DD5F2 4

Calling KeyManagementService at https://demo4.strongkey.com...

{"did":"1","KCV":"0DD5F2"}

The return value is a JSON object affirming that BDK was successfully loaded.

StrongKey Tellaro KeyAppliance (KA) 39 v4.0 Demo Client Guide

5.6—Generate Initial Key
Now that the BDK is loaded into the KMS Module, an Initial Key can be derived from the
BDK for injecting into a card reader device. You must specify the same ManufacturerID
used when loading the BDK, and the DSN for the card reader device. The DSN must be
either an 11- or 15-byte hex-encoded string. The 21 bits for the device counter must not be
included in the DSN. If 11 bytes are sent, the DSN will be left padded with 1s (FFFF) internally
by the CCS. A return type of KeyComponents is specified to indicate that the Initial Key
should be returned as key components:

java -jar kmsclient.jar https://demo4.strongkey.com 1 kmcuser Abcd1234!
GIK 4 987654321FE KeyComponents

Calling KeyManagementService at https://demo4.strongkey.com...

KeyComponent 1 of 3 [KCV1]

3FA355C21252A639D4840CA814D19E48 [F5F3D9]

KeyComponent 2 of 3 [KCV2]

FCC12D7D7C0472708378F3AEFAA87E94 [A32F1B]

KeyComponent 2 of 3 [KCV2]

D6C6E7AE0EF00283E9D3E1BEB94D39D8 [A47A5D]

InitialKey Key Check Value [A9A783]

The return value is an array of key components with their corresponding KCVs. These
components can now be used to inject into the card reader with the specified serial
number. It is assumed that the card reader manufacturer has firmware built in to assemble
the three key components into the device's Initial Key and verify the KCVs of each
component and the assembled Initial Key using the standard algorithms specified in the
ANSI specification.

5.7—Store ANSI Key (BDK or LTMK)
The storeAnsiX9241Key (SDK) operation is used for persistent, secure storage of ANSI X-
924.1 keys in the KA. Keys must be stored in this manner before many of the
CardCryptoService web services can be called. Before we can load a LTMK or a BDK, we
must load all the Key Components of the key into the KA:

java -jar kmsclient.jar https://demo4.strongkey.com:8181 1 kmouser
Abcd1234! LKC TDES 128 E08B7275A339EA1A73B2B79155296767 658485 1 3 MyLTMK

{"did":"64","K":1,"N":3,"KCV":"658485"}

java -jar kmsclient.jar https://demo4.strongkey.com:8181 1 kmouser
Abcd1234! LKC TDES 128 42DC94AD5298B8F3AFAED04655F3B8E0 43FA8F 2 3 MyLTMK

{"did":"64","K":2,"N":3,"KCV":"43FA8F"}

java -jar kmsclient.jar https://demo4.strongkey.com:8181 1 kmouser
Abcd1234! LKC TDES 128 A1F0F8BFB75F588C466E7462E28537BD 6767FD 3 3 MyLTMK

{"did":"64","K":3,"N":3,"KCV":"6767FD"}

StrongKey Tellaro KeyAppliance (KA) 40 v4.0 Demo Client Guide

Now that the Key Components are loaded, call the Store ANSI Key web service. For this call,
use kmauser:

java -jar kmsclient.jar https://demo4.strongkey.com:8181 1 kmauser
Abcd1234! SDK null MyLTMK LTMK TDES 128 1 123 null DC9119 "Loading LTMK"

Token received: {"did":"1","token":"1000000000000002"}

The web service returns a token for the stored key. This token must be recorded so it can be
provided to future Store ANSI Key web service calls as a parent token.

5.8—Store ANSI Key (TMK or TPK)
Using the same Store ANSI Key web service as before, store keys that have been encrypted
with keys already stored on the KA. This time, specify a <parent-token> that identifies the
key-encrypting key and the <hex-symkey> which is the encrypted hex bytes of the key:

java -jar kmsclient.jar https://demo4.strongkey.com:8181 1 kmauser
Abcd1234! SDK 1000000000000002 MyTMK TMK TDES 128 1 123
9AE3E3407AE0C3DFA72D07CC71B8BC57 DC9119 "Loading TMK"

Token received: {"did":"1","token":"1000000000000003"}

As before, the web service returns the token which identifies this key in KA. Using this
token, store a TPK under the TMK:

java -jar kmsclient.jar https://demo4.strongkey.com:8181 1 kmauser
Abcd1234! SDK 1000000000000003 MyTPK TPK TDES 128 1 123
982D868704702DF9070922F1DFB260A8 6776FF "Loading TPK"

Token received: {"did":"1","token":"1000000000000004"}

5.9—Replace ANSI Key (TMK or TPK)
The Replace ANSI Key web service looks very similar to the Store ANSI Key web service. Use
it to store keys encrypted with keys that are stored on KA, while additionally retiring a key
that already on the appliance. In this fashion, KA replaces one TPK for another TPK:

java -jar kmsclient.jar https://demo4.strongkey.com:8181 1 kmauser
Abcd1234! RDK 1000000000000004 1000000000000003 MyTMK TMK TDES 128 1 123
C65D9B58A575245A4B3EF06C4410BBCA2E24EEB85AEF49AE 079FC5 "Loading TMK"

Token received: {"did":"1","token":"1000000000000005"}

As before, the web service returns the token which identifies this key in KA.

5.10—Update ANSI Key
The Update ANSI Key web service updates the status or notes of a key stored on the appliance.

java -jar kmsclient.jar https://demo4.strongkey.com:8181 1 kmauser
Abcd1234! UPK 1 1000000000000005 Retired “Key Retired on May 25th 2017”

Success: {"DID":"1", ”BankID”:”1”, "KeyToken":"1000000000000005",
”NewStatus”:”Retired”, “NewNotes”:”Key Retired on May 25th 2017”}

StrongKey Tellaro KeyAppliance (KA) 41 v4.0 Demo Client Guide

5.11—Delete ANSI Key
The Delete ANSI Key web service can be used to delete a key stored on the appliance.

java -jar kmsclient.jar https://demo4.strongkey.com:8181 1 kmauser
Abcd1234! DLK 1 1000000000000005

Success: {"DID":"1", ”BankID”:”1”, "KeyToken":"1000000000000005"}

5.12—Generate Asymmetric Key
To generate a new RSA asymmetric key, type the following command:

java -jar kmsclient.jar https://demo4.strongkey.com 1 kmcuser Abcd1234!
GAK myRSAKey LTMK RSA 4096 1 123 null myNotes Hex

Calling KeyManagementService at https://demo4.strongkey.com...

{"DID":1,"SRID":1528827528553,"KeyType":"RSA","KeyFormat":"RSAPublicKey",
"KeySize":"2048","PublicKey":"30820122300d06092a864886f70d010101050003820
10f003082010a0282010100a62ad0e81f57ca1c32390f442b3505b351f1a1a76346159a84
17846ce76e426573aad4b27094843898987b19241b29eba348b4db5c843a81e4d6ef72240
d815ca9a907f81d0211c66dd307bad804c556c15be86804c7c084f760ae132691158527d2
671769f1b0fc8ef76d0d0fef0becd98e1a63751e96b694b044fd89907f6c7007d56edd7d4
9bca67cf44540a919ebb9de7119515ec70eb12b688adbbb1fee8e216860c7bd7d99cd7a3d
b6edae21e7ffa3d77bb4c10726bc7c851fce12b864b4ab7b10e75d225b8de3cba44aaf262
97392f56f96c43ade09e4a3f578b57947c9d6ef56fe5df244383e112d98a35001f91e9bd1
6094f6e8e9a942c4a073cd110203010001","PublicKeyEncoding":"Hex","Nonce":"Vz
7GMoNPNNTtpZ3pKOfZ/j+7P4U46WAtkqowwLHjxlQ=","SignedNonce":"212f9db4322ee1
e90d0b0d311ccf080cc4d69a3861a2d13255ebe64af2309ac7b6fe9f3263956ec90c9333d
8288a3a92ce90fee9bb886b1c6de89e29870794c98ccdde07ec94715e99b9340c828a9fc0
f2e748b3504c6aa5f6670c148c2b81e20a45f2cc1439c821d328645c562a43370e17c0e35
895c4886599bcb1cef2a97f8d87a29beaec2e4048177eb49e369d841297a8bab4ee9cc9ff
1c91a2bec197672d68d027fb51e4c546cce06dbb59a2ca869f765f161ca50fa53e0744121
486b3463481f4099e5cf3154300e2947873c3c34250e0a3d5e0d7a8a62a1ec2c7d9bba15a
8ea740fba753f90c7782cc98d8b86932c5b6f6aed1314e9e7743f35b4dea","SignedNonc
eEncoding":"Hex","SignatureDigest":"SHA256","Token":"1000000000002557"}

By storing the private key on the appliance and returning the public key, this provides
another method to store American National Standards Institute (ANSI) keys by encrypting
the ANSI key with the public key and supplying the corresponding private key token as the
parent token.

StrongKey Tellaro KeyAppliance (KA) 42 v4.0 Demo Client Guide

6—CCS Client
To test KA web services, the appliance comes with a Java-based client application
that can be used to test the web service operations of the Card Crypto Service
(CCS)—a module that processes encrypted credit card transactions using the Derived
Unique Key Per Transaction (DUKPT) algorithm specified in the ANSI X9.24-1:2009
Symmetric Key Management standard. The Java client—ccsclient.jar—can be used to
call web service operations on StrongKey's Demo Client on the internet—
demo4.strongkey.com—or on your own Tellaro cluster within your network.

The KA Demo Client uses software identical to that of the appliances delivered to
customers. This allows application development teams to verify code without having to
wait for a KA implementation internally. Once verified against the KA Demo Client, the
code will work against an internal KA implementation without changing a single line of
code. The only change would be the host URL to be called and the parameters to be
passed to the application at runtime. We recommend parameterizing the URL of the
appliances to be called; this will make it easier to point applications to KA in a production
environment.

The ccsclient.jar application is a simple Java application that calls web services on KA;
it simulates what applications must do to call the CCS on the Tellaro. While your client
application will certainly be different based on the business functions it implements, the
programming language it uses, and the application model it uses, ultimately it must perform
the same web service functions as the test client application bundled in KA. Because the
client application focuses only on testing the implementation of the KA web service, it is ideal
for ensuring the correctness of your implementation.

The currently supported operations of the Demo Client are as follows:

1. Generate a Base Derivation Key (BDK) and produce its key components.
2. Generate an Initial Key (sometimes also referred to as Initial PIN Entry Key or IPEK)

from a BDK for a card reader device.
3. Load a BDK's keycomponents into the CCS Module.
4. Load a BDK into the CCS Module from its previously submitted key components.
5. Process an encrypted card swipe by decrypting it using the DUKPT algorithm, re-

encrypting the plaintext cardholder data using a data encryption key in KA and
tokenizing it.

6. Generate a test encrypted card swipe using a specific Initial Key so the encrypted card
swipe can be submitted to KA for processing.

7. List supported card reader device manufacturers by ID.

The client application distinguishes between these operations to allow sites to test different
levels of authorization for the web services:

1. Users who are authorized to only encrypt.
2. Users who are authorized to only decrypt.
3. Users who are authorized to encrypt and decrypt.
4. Users who are authorized to perform all operations.
5. Users who are NOT authorized to perform any operation.

StrongKey Tellaro KeyAppliance (KA) 43 v4.0 Demo Client Guide

http://demo4.strongkey.com/

6.1—Installing the Demo Client Application
StrongKey distributes the demo application as a .ZIP file. After unzipping the democlients
distribution, the ccsclient executable and source will be contained within a folder called
ccsclient.

The ccsclient.jar file contains executable code. The ccsclient-src.zip file
contains the source for this executable as a project folder. You can build the executable
.JAR file from scratch if you wish, or you can modify the client to integrate into your own
application.

To use the ccsclient.jar program, open a shell or command prompt window and
navigate to the directory location where ccsclient.jar is installed. Once you've changed
to that directory, you may execute the .JAR file without specifying its location. For the rest
of this document, we will assume that ccsclient.jar is in your current directory.

6.2—Prerequisites
The steps in this chapter rely on ANSI keys being loaded on KA prior to executing ccsclient
commands. See Chapter 4—KMS Client if you do not have ANSI keys loaded yet.

6.3—Displaying Help Options
Type the following command to verify the client application is executable. It also shows a
helpful prompt of the operations it can perform and the parameters for each.

The explanation of the parameters to the Demo Client application is as follows:

Parameter Explanation

https://<host:port>
The URL of the Tellaro where the CCS web service operations will be
submitted. For testing this client program on StrongKey’s Demo Client,
the URL is: https://demo4.strongkey.com/.

<did>
The unique Encryption Domain identifier. This was provided separately
by StrongKey as a unique domain for testing.

<username>
The username in the encryption domain with authorization to call the
web services. These usernames were provided separately by StrongKey
for testing.

<password>
The password of the username within the encryption domain with
authorization to call the web service. These passwords were provided
separately by StrongKey for testing.

The client supports the following operations:

GCD
Get Card

Capture Data

Process an encrypted card swipe by decrypting it using the DUKPT
algorithm, re-encrypting the plaintext cardholder data, tokenizing it,
and returning plaintext card swipe data with the token in place of the
encrypted cardholder data.

SWP
Generate

Swipe Data
Simulate an encrypted card swipe by creating it with supplied key
components of an Initial Key and test cardholder data.

StrongKey Tellaro KeyAppliance (KA) 44 v4.0 Demo Client Guide

https://demo4.strongkey.com/

Parameter Explanation

RPB
Re-encrypt Pin

Block

Decrypt a PIN Block sent to the appliance using a BDK stored on the
appliance, and re-encrypt that PIN Block using a TPK stored on the
appliance.

DENC DUKPT Encrypt Encrypt a plaintext with a key stored in KA using the DUKPT algorithm.

DDEC DUKPT Decrypt
Decrypt a ciphertext with a key stored in KA using the DUKPT
algorithm.

DMAC DUKPT MAC
Create a MAC of a plaintext value using a key derived from a BDK
stored on the appliance.

MFR
List

Manufacturer
List supported card reader manufacturers by ID.

<mfr>
The ManufacturerID for the product that will be creating encrypted
swipes. Can be NULL if the word “null” is specified.

<AES|TDES> Either the AES or Triple DES algorithm.

<bdktoken>
The token in which the BDK is stored. Can be NULL if the word “null” is
specified.

<ccdata>
A “raw” card swipe as it would come out of a DUKPT-enabled card
reader. The format printed on the screen is the format expected by the
CCS for the “Get Card Capture Data” web service option.

<ciphertext> The ciphertext value to be decrypted through DUKPT.

<DEK|PIN|MAC> or
<MAC_REQUEST|

MAC_RESPONSE>
The type of key to use in this DUKPT operation.

<device-serial-number>
 or <dsn>

The Device Serial Number (DSN) for the device. This must be either an
11- or 15-byte string of hex-encoded data.

<hex-encrypted-PIN-
block>

The encrypted key which is to be loaded in KA. Can be NULL if the
word “null” is specified.

<hex-KSN>
The Key Serial Number (KSN) for this DUKPT transaction. Must be
supplied as 20 hex-encoded bytes (10 bytes when decoded from hex).

<plaintext> The plaintext value to be encrypted or MAC'd through DUKPT.

<test-card-number>
A 16-digit number to simulate a credit card; it can be any value and
does not need to be real cardholder data.

The token in which the ANSI Key is stored. Can be NULL if the word
“null” is specified.

<tpktoken> The token in which the TPK is stored.

You will see the following output.

Usage: java -jar ccsclient.jar https://<host:encport> <did> <username>
<password> DENC [token] [mfr] <ksn> <plaintext> <AES|TDES> <DEK|PIN|MAC>

 java -jar ccsclient.jar https://<host:encport> <did> <username>
<password> DDEC [token] [mfr] <ksn> <ciphertext> <AES|TDES> <DEK|PIN|MAC>

 java -jar ccsclient.jar https://<host:encport> <did> <username>
<password> DMAC [token] [mfr] <ksn> <ciphertext> <MAC_REQUEST|
MAC_RESPONSE>

StrongKey Tellaro KeyAppliance (KA) 45 v4.0 Demo Client Guide

 java -jar ccsclient.jar https://<host:encport> <did> <username>
<password> GCD <ccdata> <dsn> [manufacturer]

 java -jar ccsclient.jar https://<host:encport> <did> <username>
<password> RPB <bdktoken> <tpktoken> <hex-KSN> <hex-encrypted-PIN-block>
<AES|TDES>

 java -jar ccsclient.jar MFR

 java -jar ccsclient.jar SWP <manufacturer> <device-serial-number> <key-
component1> <key-component2> <key-component3> <test-card-number>

6.4—List Manufacturer
Before the ccsclient.jar can be used to make web service calls, you must identify the
ManufacturerID to be used while making web service calls to KA. This can be done with
the List Manufacturer function. The IDs displayed are internal values used by the CCS to
uniquely distinguish different card readers supported by KA:

java -jar ccsclient.jar MFR

Manufacturer ManufacturerID:

------------ --------------

IDTech 0

UIC 1

MagTek 2

Infinite 3

Dejavoo 4

PAX 5

6.5—Generate Swipe Data
While the Initial Key's components can be injected into a device reader from the previous
steps, ccsclient.jar also has the ability to quickly test if the BDK and Initial Keys generated
are working correctly. To enable this, the tool offers an option to generate a test card swipe.
This command does not make a web service call to KA, and therefore does not need the web
service URL or credentials. It does, however, need the ManufacturerID of the card reader
device for which the BDK and Initial Key were generated, the DSN of the card reader device
for which the Initial Key was generated, the three key components of the Initial Key, and a test
16-digit number to simulate a credit card number (we use 1111222233334444 in this example):

java -jar ccsclient.jar SWP 4 987654321FE
3FA355C21252A639D4840CA814D19E48 FCC12D7D7C0472708378F3AEFAA87E94
D6C6E7AE0EF00283E9D3E1BEB94D39D8 1111222233334444

Generated Swipe Data:

%B1111000000004444^TESTSWIPE/STRONGAUTH
^08043210000000725000000?|;1111000000004444=080432100000007250?|
987654321FE|
66ACA81502DCF1978DBA4A824C0350D4AA3C1DC428B5107C3179505A460A13225576DF0EE
452C67E2A83647D1173ED16AF1BF1099EF0BE018F139BA0317AA22E7E5CDFFD27ECFEC705

StrongKey Tellaro KeyAppliance (KA) 46 v4.0 Demo Client Guide

0A294C7B4CBE59|
99EDF0FB7249400803F3CC79B28ACB5DD63C25985777315F1EEC44D08ACD4163A321B24D9
390F7C1A45A27CF8E55FC9C||FFFF987654321FE00001||

The client generates the transaction's derived key from the Initial Key, creates simulated
Track1 and Track2 data, encrypts it, and formats the output as a real card reader device
from the manufacturer might. The output presented on the screen is the precise output
required for the last step of this test.

ccsclient,jar currently supports only the Dejavoo and PAX card reader swipe formats.

6.6—Get Card Capture Data
With the simulated card swipe data, the Get Card Capture Data web service can be called
to process the DUKPT transaction. The web service requires the entire swipe blob as input.
It is critical to wrap the swipe data in single quotes (') to prevent any special characters from
being interpreted by the Linux or Windows shell. The DSN and the Manufacturer ID of the
card reader are also necessary parameters for the web service.

java -jar ccsclient.jar https://demo4.strongkey.com 1 all Abcd1234! GCD
'%B1111000000004444^TESTSWIPE/STRONGAUTH
^08043210000000725000000?|;1111000000004444=080432100000007250?|
987654321FE|
66ACA81502DCF1978DBA4A824C0350D4AA3C1DC428B5107C3179505A460A13225576DF0EE
452C67E2A83647D1173ED16AF1BF1099EF0BE018F139BA0317AA22E7E5CDFFD27ECFEC705
0A294C7B4CBE59|
99EDF0FB7249400803F3CC79B28ACB5DD63C25985777315F1EEC44D08ACD4163A321B24D9
390F7C1A45A27CF8E55FC9C||FFFF987654321FE00001||' 987654321FE 4

Calling CardCryptoService at https://demo4.strongkey.com...
{"DID":"1","SRID":"1481245973096","Token":"2000000000000336","ExpiryDate"
:"0804","ExpiryMonth":"04","ExpiryYear":"08","MaskedPAN":"111100000000444
4","Digest":null,"Valid":true,"Exists":true,"AssociationID":"1","IssuerID
":"111122","CardholderName":"STRONGAUTH
TESTSWIPE","Firstname":"STRONGAUTH","Lastname":"TESTSWIPE","Notes":null}

Upon successfully processing the transaction, the KA returns a JSON with parsed values
from the card swipe. By default, the appliance does not return the decrypted card number
with the JSON. Instead, the KA re-encrypts and tokenizes the credit card number and
returns a Token—2000000000000336, in this example. To view the actual credit card
number, sakaclient.jar is necessary to decrypt this token (see the chapter on sakaclient
on how to use it for testing).

StrongKey Tellaro KeyAppliance (KA) 47 v4.0 Demo Client Guide

6.7—DUKPT Encrypt
KA can be used to encrypt text using the DUKPT algorithm to derive a key. This web service
requires that the encrypting key must have already been stored in KA and can be
referenced using either a token or a manufacturerID. Additionally, a KSN of 10 bytes (20
while hex-encoded), encryption algorithm, and derived key type must be provided for this
transaction. The plaintext to be encrypted must be passed to the web service in a hex-
encoded format:

java -jar ccsclient.jar https://demo4.strongkey.com:8181 1 all Abcd1234!
DENC null 4 62994900410005c00014
3B353432343138303432363330373235393D303231323130313331373031303635383F33
TDES DEK

SUCCESS:
{"DID":"1","SRID":"1493672135917","BDKToken":null,"MFR":"0","KSN":"629949
00410005c00014","Ciphertext":"B1EDF7B94A5F345FDDC35EBED2FFE7A111520A6C82C
CFB0E747D2E38D7D7DCAF55890C9FD899B0A32898F8D4679B1444"}

6.8—DUKPT Decrypt
Just as KA can be used for DUKPT encryption, it can also decrypt using DUKPT. The same
parameters are required as with DUKPT Encrypt, but instead of passing a plaintext, hex-
encoded ciphertext is sent to be decrypted:

java -jar ccsclient.jar https://demo4.strongkey.com:8181 1 all Abcd1234!
DDEC null 4 62994900410005c00014
B1EDF7B94A5F345FDDC35EBED2FFE7A111520A6C82CCFB0E747D2E38D7D7DCAF55890C9FD
899B0A32898F8D4679B1444 TDES DEK

SUCCESS:
{"DID":"1","SRID":"1493671673791","BDKToken":null,"MFR":"0","KSN":"629949
00410005c00014","Plaintext":"3B353432343138303432363330373235393D30323132
3130313331373031303635383F33"}

KA can be used to generate a MAC over a plaintext using DUKPT-derived MAC keys. The
plaintext must be hex-encoded for transport through the web service:

java -jar ccsclient.jar https://demo4.strongkey.com:8181 1 all Abcd1234!
DMAC null 4 FFFF9876543210E00001 3430313233343536373839303944393837
MAC_REQUEST

SUCCESS:
{"DID":"1","SRID":"1493665559600","BDKToken":"1000000000000003","MFR":nul
l,"KSN":"FFFF9876543210E00001","MAC":"9CCC78173FC4FB64"}

StrongKey Tellaro KeyAppliance (KA) 48 v4.0 Demo Client Guide

7—SEDOS
While KA is capable of encrypting/decrypting structured data elements—such as
credit card numbers, social security and bank account numbers, or JavaScript
Object Notation (JSON) data structures, there are use cases when a company might have
massive amounts of data that must be protected at rest; the data might be structured or
unstructured, but the quantity of data is far too voluminous to justify encrypting it within
an application.

Examples might include the following:

Centralized log files of hundreds or thousands of servers that must be encrypted at
rest, but decrypted when used by security incident event management (SIEM) tools
Vast quantities of medical/health data used in research, which must be protected in
accordance with the Health Information Portability and Accountability Act (HIPAA)
security and privacy rules
Archived databases with transaction data at e-commerce/gaming/streaming media
sites that might must be protected for the privacy of their customers
Other use cases too numerous to mention

In these situations, a business unit might use Self-Encrypting Drives (SED) to store such
massive quantities of data, using the high-speed encryption capabilities in the firmware of
the SED to protect data.

However, SEDs conforming to the Trusted Computing Group's (TCG) OPAL standard,
use a secret authentication key to protect access to the media encryption key (MEK). The
authentication key must be protected, as it enables the SED to decrypt all data blocks of
the drive. While managing and protecting a single—or a few—SEDs is manually feasible, the
management of large numbers of SEDs across an enterprise presents complex
administrative problems.

To address this administrative problem of securing the authentication keys of a large
number of SEDs within a computing environment, StrongKey has created the Self-
Encrypting Drive Orchestrator Script (SEDOS)—a client tool of the KA. SEDOS orchestrates
the use of multiple tools and resources to protect the authentication keys of SEDs. These
tools consist of the following:

sedutil-cli, an open-source command line interface tool responsible for interacting with
the SED. It is responsible for functions such as: i) initializing the SED; ii) Injecting the
authentication key into the SED so it can use the MEK to encrypt/decrypt data blocks
sakasedclient.jar, an open-source command line Java client responsible for
communicating with the SED Metadata Database (SEDMDB) and KA
SEDMDB, a MariaDB database which holds information about every SED registered
and known to SEDOS
KA, the secure vault where authentication keys—generated for the SEDs (by SEDOS)—
are escrowed for safekeeping so they may be recovered by system tools during a server
boot process (to learn more about KA, please review 1—Introduction)
sedosd, sedostab and /root/pass, configuration files necessary for this capability
SEDOS.sh (also depicted as SEDOS in this document), the shell script responsible for
orchestrating all of the above

StrongKey Tellaro KeyAppliance (KA) 49 v4.0 Demo Client Guide

A high-level picture of the architecture of SEDOS is shown here:

SEDOS is responsible for the following operations:

Initializing a new SED by calling on sakasedclient.jar generating a new authentication
key, escrowing it on the KA, adding information about the SED to SEDMDB, and calling
the sedutil-cli to “inject” the authentication key into the SED to initialize it
Modifying information about an SED in the SEDMDB, such as its current status,
configuration, etc.
Changing the authentication key of an SED by calling on sakasedclient.jar and
sedutil-cli to coordinate changing the authentication key and updating the SAK and
SEDMDB in the process
Removing an authentication key from the SEDMDB and KA, thus ensuring that
encrypted data can never be decrypted again
Displaying information about SEDs on a given system

sedosd is a shell script used during the boot process by the rc system on Linux. It also calls
on sakasedclient.jar and sedutil-cli to automatically retrieve the SED's
authentication key from the KA and “inject” it into the SED to authorize it for decryption.
sedosd, subsequently, uses sedostab to determine the mount point for the decrypted
SED, then mounts the drive/file systems.

Both sakasedclient.jar and sedosd use /root/pass to authenticate themselves
against KA to retrieve an SED's authentication key. The /root/pass file's contents must be
maintained with high levels of security, given that it provides access to decrypted
authentication keys from KA. If a site can use other tools/mechanisms to make the KA
credential and its passwords to SEDOS or sedosd without storing it in /root/pass, sites
should do so.

StrongKey Tellaro KeyAppliance (KA) 50 v4.0 Demo Client Guide

7.1—The SEDOS Client Software Distribution
StrongKey distributes the demo application as a .ZIP file. After unzipping the democlients
distribution, the sakasedclient executable and source will be contained within a folder
called sakasedclient.

The sakasedclient.jar file contains pre-built executable code. The sakasedclient-
src.zip file contains the source for this executable as a project folder.

Similarly, the sedutil-cli is an ELF 64-bit LSB executable, x86-64, version 1
(GNU/Linux), dynamically linked (uses shared libs) for GNU/Linux 2.6.32; the sedutil-
src.zip is the source tree snapshot downloaded from GitHub and checked into
StrongKey's SubVersion repository for configuration control.

You can choose to build the executable files from scratch if you wish. Both source trees
are configured for use with NetBeans IDE 8.x.

7.2—Installing the SEDMDB Schema
Before using SEDOS, a MariaDB relational database with the SEDMDB schema must be
available so sakasedclient.jar can communicate with it. The client software distribution
requires the database to have the following:

1. The host running the database must be called sakadb.dc. To test/use this distribution,
add an entry to /etc/hosts and add sakadb.dc as an alias to localhost.

2. MariaDB must be listening on Port 3306—this is the default port.
3. The MariaDB instance must have a database called sakased.
4. The sakased database must be readable and writable by a database credential with

the name of strongauth with a password of AbracaDabra.
5. The sakased database must have a table with the name of SED_METADATA. This table

is created by a structured query language (SQL) file in the distribution with the name
of sed_metadata.sql. A text file—create.txt—may be “sourced” when connected to
MariaDB's MySQL client as the strongauth user; it will automatically create the required
table. As reference, the table is shown below.

create table SED_METADATA (

 sedid int unsigned not null auto_increment,

 sedmfr varchar(32) not null,

 sedsno varchar(32) not null,

 model varchar(32),

 capacity int unsigned,

 fqdn varchar(256),

 sakadid smallint unsigned,

 sakatoken varchar(64),

 oldsakatoken varchar(64),

 status enum('Active', 'Inactive', 'Other')

StrongKey Tellaro KeyAppliance (KA) 51 v4.0 Demo Client Guide

 not null,

 enroll_date datetime,

 rotate_date datetime,

 notes varchar(512),

 primary key (sedid),

 unique index (sedmfr, sedsno),

 unique index (sakadid, sakatoken),

 index (model),

 index (fqdn)

)

 engine=innodb;

6. Once the database is configured, confirm you can connect to MariaDB via the MySQL
tool with the strongauth username and AbracaDabra password while connecting to
the sakadb.dc host and sakased database. If you connect and see the following
schema when you execute desc sed_metadata, you know everything is setup correctly.

+--------------+-----------------------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------------+-----------------------------------+------+-----+---------+----------------+

| sedid | int(10) unsigned | NO | PRI | NULL | auto_increment |

| sedmfr | varchar(32) | NO | MUL | NULL | |

| sedsno | varchar(32) | NO | | NULL | |

| model | varchar(32) | YES | MUL | NULL | |

| capacity | int(10) unsigned | YES | | NULL | |

| fqdn | varchar(256) | YES | MUL | NULL | |

| sakadid | smallint(5) unsigned | YES | MUL | NULL | |

| sakatoken | varchar(64) | YES | | NULL | |

| oldsakatoken | varchar(64) | YES | | NULL | |

| status | enum('Active','Inactive','Other') | NO | | NULL | |

| enroll_date | datetime | YES | | NULL | |

| rotate_date | datetime | YES | | NULL | |

| notes | varchar(512) | YES | | NULL | |

+--------------+-----------------------------------+------+-----+---------+----------------+

StrongKey Tellaro KeyAppliance (KA) 52 v4.0 Demo Client Guide

7.3—Installing the SEDOS Software Distribution
The install-sedos.sh script in the distribution installs the SEDOS software on a system
with Samsung SEDs, and configures them for use. Specifically, the script peforms these
operations:

Installs scripts, libraries, and configuration files that make up the SEDOS distribution on
the Linux-based system
Discovers SEDs on the system and registers them in the SEDMDB, generates unique
authentication keys for each SED, escrows the authentication keys within the KA, and
initializes the SEDs
Creates an initialization script—sedosd—to enable the recovery of authentication keys
from the KA as part of the standard Linux boot process
Creates a sedostab text file to enable sedosd to determine where to mount each
unlocked SED so the decrypted SED is accessible to applications

The sequence of steps to install the SEDOS distribution manually are as follows. If you plan
on installing the distribution through an automated software distribution/installation
scheme, the steps can be scripted:

1. Login as root to the Linux system with the SEDs.
2. Create /usr/local/software if it does not exist. Unzip the SEDOS distribution into

that director; it should extract the distribution into /usr/local/software/sedos. Type
the following commands:

shell> mkdir /usr/local/software

shell> tar xvzf <sedos-distribution-file> -C /usr/local/software

3. Change directory to /usr/local/software/sakasedos.

shell> cd /usr/local/software/sakasedos

4. Using a text editor, modify the sakaconfig file. This file contains key value pairs
specifying information about KA. If using StrongKey's Demo Client, this is supplied; if
using a private KA, use the appropriate parameters.

The sakaconfig file has four (4) parameters. Modify the values to reflect your testing
or production environment and save the file. Make sure the file is owned by root and
has Read and Write privileges only for the root user. In a production environment, this
file contains sensitive data that can decrypt authentication keys from KA.

StrongKey Tellaro KeyAppliance (KA) 53 v4.0 Demo Client Guide

The sakaconfig parameters are shown in the table here:

SAKA_FQDN

The fully qualified domain name (FQDN) of the KA where encrypted
authentication keys will be escrowed. If using StrongKey's Demo Client, this
is usually one or more of the following:

https://demo4.strongkey.com
https://demo2.strongauth.com
https://demo3.strongauth.com

If using a private KA, this must be that Tellaro’s FQDN.

SAKA_DID
The unique Encryption Domain identifier on the KA.

If using a private KA, this is the identifier of an encryption configured
on your own appliances to store the encrypted authentication keys.

SAKA_USERNAME
Encryption domain username with authorization to call the web service.

If you are using your own KA, this is the credential's username created
on the private appliances with authorization to call KA web services.

SAKA_PASSWORD
The password of the username with authorization to call the web services.

If you are using a private KA, this is the password for the credential with
authorization to call web services on the private KA.

5. The install-sedos.sh script within this directory is responsible for the installation
and requires the following parameters:

saka-config

The location where the install script moves the sakaconfig file modified
in Step 4, above. Specify just the directory name of the destination; make
sure to use a directory with access restricted only to the root user. The root
user's home directory (/root) is a good location.

path-to-java
The JDK location on the target system. Only the Oracle JRE is currently
supported. Using a different JDK may result in unpredictable behavior.

-m
Specifies if the drives should be mounted after they have been initialized
and formatted. Without this option the drives must be manually mounted
after the install script completes.

Mount point [...]

The location each SED is mounted after it is unlocked. If there are
multiple drives on the system, multiple mount points can be provided—
one per SED.

The number of mount points provided must match the number of
SEDs on the system, and must be specified in ascending device order.

For example, if a server has two SEDs—/dev/sda and /dev/sdb—the
two mount points could be /adisk and /bdisk. In this case, /dev/sda
will be mounted on /adisk and /dev/sdb on /bdisk. Alternatively, if you
chose to provide the mount points as /database/001 and
/database/002, /dev/sda will be mounted on /database/001 and
/dev/sdb on /database/002.

An example follows of the install-sedos.sh command to move the sakaconfig file
to /root, initialize two SEDs, and mount them on /adisk and /bdisk:

shell> ./install-sedos.sh /root /usr/local/strongauth/jdk8/bin/java -m
/adisk /bdisk

StrongKey Tellaro KeyAppliance (KA) 54 v4.0 Demo Client Guide

https://demo3.strongauth.com/
https://demo2.strongauth.com/
https://demo.strongauth.com/

6. During the installation process the install script copies the sakasedclient-
configuration.properties file to /usr/local/strongauth/sakased/etc. This file is
used to specify a syslog server where the sakasedclient.jar file will write logs to. This
file can be modified with any text editor.

shell> vi /usr/local/strongauth/sakased/etc/sakasedclient-
configuration.properties

Modify the property below with the FQDN of the syslog server:

sakasedclient.cfg.property.syslog.host=<syslog-server-fqdn>

This file can also be left as is, but must exist in /usr/local/strongauth/sakased/etc
for the sakasedclient.jar file to run correctly.

7. To verify everything is working, the target system with the SEDs must be powered
down and subsequently powered up. The SEDs should be automatically unlocked by
the init script and mounted on /adisk and /bdisk.

7.4—Using the SEDOS Shell Script Manually
While the SEDOS can handle most of the work of initializing and mounting decrypted
SEDs automatically, occasionally there is a need to use the tools to perform SED-related
tasks manually. The SEDOS.sh script in the distribution makes this possible. Specifically, the
menu-driven script:

Allows you to enroll an individual SED into the SEDMDB, generate its authentication
key and escrow it on the KA
Unlocks a specific SED by recovering its authentication key from the KA and “injecting”
it into the SED
Changes an SED's authentication key and updates the SEDMDB and KA automatically
Deletes an SED from the SEDMDB and its authentication key from the KA, ensuring it
cannot be decrypted again; the SED must be reinitialized for the SED to be re-usable
Displays information about a specific or all SEDs on the system

Before running SEDOS.sh you must copy sakasedclient-configuration.properties
from the distribution to /usr/local/strongauth/sakased/etc. This file contains the
configuration for the sakasedclient.jar to write out messages to a syslog server. For
more information on configuring this file, please refer to 1.3—Installing the SEDOS Software
Distribution, Step 6.

The SEDOS.sh script depends on the sakaconfig file created during the installation of
the SEDOS distribution (as described in the previous section). If the file does not exist, it
must be created manually and placed in a secure location on the file system—the /root
directory is recommended since it is accessible only to the root user on a Linux system.

The key value pairs of the sakaconfig file are described in the previous section of this
chapter; a sample file is available in the SEDOS distribution—it can be modified to reflect
the parameters of the KA to be accessed, then placed in its final location.

The SEDOS.sh script assumes the sakaconfig file is located in /root by default; if this
is not the case, edit the SEDOS.sh script to modify its location. SEDOS.sh additionally
depends on the /etc/sedostab file—normally created if the SEDOS distribution was

StrongKey Tellaro KeyAppliance (KA) 55 v4.0 Demo Client Guide

installed using the install-sedos.sh script from the distribution. If this does not exist,
create it manually. The mount point can be any location on the Linux system. The format of
this file is as follows, where the serial number of the SED is separated from its mount point
by spaces or tabs:

Serial Number of the SED Mount Point for the SED

SMG1238FTZ8567W databaseprimary/01

S251NSAG437593D database/logs/01

Upon executing the SEDOS.sh script, a text-based menu displays:

The menu items present the following options:

Enroll an SED: This option uses sedutil-cli to query information about the SED,
enrolls it in the SEDMDB (if it does not already exist), generates an authentication key
for the SED, escrows the authentication key securely in KA, and initializes the SED
using sedutil-cli. Once the disk is initialized, it will be in an unlocked state and a
file system may be created on it.
Unlock an SED: This option uses the SEDMDB to look up information about the
requested drive. If the SED is in the SEDMDB, its authentication key is recovered from
KA and “injected” into the SED using sedutil-cli. If the SED is already mounted,
choosing this option will generate errors.
Update properties for an SED: This option changes metadata attributes about a
specific SED in the SEDMDB. Attributes that are modifiable are: manufacturer, serial
number, model, capacity, FQDN, status, and notes.
Change an SED's authentication key: This option generates a new authentication key
for the chosen SED, and updates the SEDMDB and KA to reflect this information.
Delete an SED's authentication key: This option deletes the SED from the SEDMDB and
its corresponding authentication key from KA.

 NOTE: Deleting an SED from the SEDMDB or an authentication key from
KA will render affected the SED inoperable, as it will not be able to decrypt
anything on the SED anymore. The SED will have to be reset to factory settings
and reinitialized with a new authentication key to be usable once again.
 All previously encrypted data on the SED will be permanently lost.

StrongKey Tellaro KeyAppliance (KA) 56 v4.0 Demo Client Guide

Information about an SED: This option displays information about a specific SED as
reflected in the SEDMDB. This information is only as accurate as that provided to the
SEDMDB during the SED's initialization. Should this information not be updated as it
changes, it can become desynchronized with the true state of the SED.
Display information about all SEDs: This option scans the system for Trusted
Computing Group (TCG) OPAL-compliant drives and displays the following information
about them: device, manufacturer, model, capacity, model number, and serial
number. This information is provided using sedutil-cli and reflects what is visible at
the operating system layer. Use this option to learn about the manufacturer and serial
number of the drive to execute other tasks with SEDOS.sh.

StrongKey Tellaro KeyAppliance (KA) 57 v4.0 Demo Client Guide

8—skceclient
In order to test the Tellaro CryptoEngine (CE) web services, the appliance comes
with a Java-based client application to test the CE Module web service operations.
The Java client—called skceclient.jar—can be used to call web service operations on a
Demo Client on the internet—demo 4 .strong key .com —or on a private KA cluster within your
network.

The KA Demo Client uses software identical to that of appliances delivered to
customers. This allows application development teams to verify code without having to
wait for an internal KA implementation. Once verified against the KA Demo Client, the
identical code will work against a private KA implementation without changing a single
line of code. The only difference would be the URL of the host being called and the
parameters passed at runtime. (StrongKey recommends parameterizing the URL of the
appliances being called; this will make it easier to point applications to KA during
deployment to production).

Apart from the demo Java client, client URL (cURL) can also be used to test REST web
services exposed by the appliance. This document focuses on the StrongKey Encryption
Engine (EE) REST services.

1. Encrypt files of any type or size.
2. Decrypt previously encrypted files.
3. Encrypt files of any type or size and store them in the cloud (AWS, AZURE, or

EUCALYPTUS).
4. Download a previously encrypted file from the cloud and decrypt it.
5. Ping the CE module.

All the web services accept the following parameters:

svcinfo Contains parameters required to connect and authenticate the request

fileinfo Contains metadata about the file

encinfo Contains metadata about the encryption mechanism

authzinfo Contains information related to the authorization for a file

storageinfo Contains information about cloud storage

filedata Inputstream containing the file to be encrypted/decrypted

StrongKey Tellaro KeyAppliance (KA) 58 v4.0 Demo Client Guide

http://demo4.strongkey.com/
http://demo4.strongkey.com/
http://demo4.strongkey.com/
http://demo4.strongkey.com/
http://demo4.strongkey.com/

8.1—Parameters
The next sections describe the parameters in more detail. Not all parameters are
mandatory for all web services; Look at individual web service sections for detailed
information.

8.1.1—svcinfo
Parameter Type Description

did String The domainID to which the client is connecting

svcusername String Username for the service credential

svcpassword String Password for the service credential username

8.1.2—fileinfo
Parameter Type Description

filename String Name of the file to encrypt/decrypt

8.1.3—Encinfo
Parameter Type Description

algorithm String Algorithm used to encrypt the file

keysize Int Size of the key to encrypt the file

uniquekey Boolean
Indicates whether to use a new key per transaction or to use the
EE configured key policy

8.1.4—Authzinfo
Parameter Type Description

username String Username of the account trying to encrypt/decrypt a file

userdn String Optional userDN

authgroups String
Hyphen-separated (-) list of groups to determine the
authorization during decryption; only users belonging to the
specified groups will be able to decrypt

requiredauthorization Int
(Optional) Indicates the number of FIDO authorizations required
to decrypt a file

StrongKey Tellaro KeyAppliance (KA) 59 v4.0 Demo Client Guide

8.1.5—storageinfo
Parameter Type Description

cloudtype String Type of cloud used: Eucalyptus, AWS, or AZURE

cloudname String Name of the cloud instance to be used

cloudcontainer String
Name of the cloud bucket where the encrypted file will be
stored

accesskey String Cloud access key

secretkey String Cloud secret key

cloudcredentialid String KA Token to retrieve the cloud credentials

To test this against the KA Demo Client, download the Certificate Authority (CA) file from
https://letsencrypt.org/certs/letsencryptauthorityx3.pem.txt and use it to call web services
using cURL. To test this against your own instance of EE, replace all the values in the demo
with values corresponding to your environment.

8.2—Encrypt
To encrypt a test file, type the following command. It makes a POST to encrypt the
abc.txt document and save it locally as abc.txt.zenc.

$ demo:~/topaz4> java -cp skceclient.jar EncryptionEngine
https://demo.strongkey.com 1 service-cc-ce Abcd1234! E
/usr/local/strongauth/skce/etc/abc.txt -lu encryptdecrypt -lg

"cn=EncryptionAuthorized,did=1,ou=groups,ou=v2,ou=SKCE, \
ou=StrongAuth,ou=Applications,dc=strongauth,dc=com"
-wp SOAP

skceclient.jar 4.1 (Build 163)

Copyright (c) 2001-2019 StrongKey. All rights reserved.

Calling Encrypt at https://demo.strongauth.com ...

SHA256 message digest received :
f39884240904a896dc9b5dcd54fa4084ddeef0ec3a172d21565aca9e4e00905b

SHA256 message digest calculated :
f39884240904a896dc9b5dcd54fa4084ddeef0ec3a172d21565aca9e4e00905b

SHA sum verified! Encryption successful

Done!

StrongKey Tellaro KeyAppliance (KA) 60 v4.0 Demo Client Guide

https://letsencrypt.org/certs/letsencryptauthorityx3.pem.txt

8.2.1—Decrypt
To decrypt the encrypted test file, type the following command. It makes a POST to
decrypt the abc.txt.zenc document and save it locally as abc.txt. The Decrypt call does
not require encnfo.

$ demo:~/topaz4> java -cp skceclient.jar EncryptionEngine
https://demo.strongkey.com 1 service-cc-ce Abcd1234! D abc.txt.zenc -lu
encryptdecrypt -wp SOAP

skceclient.jar 4.1 (Build 163)

Copyright (c) 2001-2019 StrongKey. All rights reserved.

Calling Decrypt at https://demo.strongkey.com ...

SHA256 message digest received :
883a1d4f11c8d5080df750209391c005677c53bd1821eb0c4c49ed8603dc72dd

SHA256 message digest calculated :
883a1d4f11c8d5080df750209391c005677c53bd1821eb0c4c49ed8603dc72dd

SHA sum verified! Decryption successful

Done!

8.2.2—Encrypt to Cloud
To test how encrypt to cloud can encrypt a file and save it to a bucket in the cloud, execute
the following command. It encrypts abc.txt and saves it to a bucket in the configured
cloud. The output will display the hash of the encrypted file along with the storage location:

$ demo:~/topaz4> java -cp skceclient.jar EncryptionEngine
https://demo.strongkey.com 1 service-cc-ce Abcd1234! CE
/usr/local/strongauth/skce/etc/abc.txt -lu encryptdecrypt -lg

"cn=EncryptionAuthorized,did=1,ou=groups,ou=v2,ou=SKCE, \
ou=StrongAuth,ou=Applications,dc=strongauth,dc=com"
-f cloud.properties -wp SOAP

skceclient.jar 4.1 (Build 163)

Copyright (c) 2001-2019 StrongKey. All rights reserved.

Calling Encrypt to Cloud at https://demo.strongkey.com ...

Response: Uploaded abc.txt.zenc to Eucalyptus. Instance name: mywalrus;
Bucket: testskce

SHA256 message digest :
47816b9eab91549ac29eb0f8cee49d6d4a395bc3d89321495f9f082922d120fd

Done!

StrongKey Tellaro KeyAppliance (KA) 61 v4.0 Demo Client Guide

8.2.3—Decrypt from Cloud
To test how decrypt from cloud first downloads the encrypted file and then decrypts it,
execute the following command. It downloads abc.txt.zenc from the cloud and decrypts
it. Filedata is not specified, as the file is downloaded from the cloud and the response will
be saved as abc.txt.

$ demo:~/topaz4> java -cp skceclient.jar EncryptionEngine
https://demo.strongkey.com 1 service-cc-ce Abcd1234!

CD abc.txt.zenc -lu encryptdecrypt - cloud.properties -wp SOAP

skceclient.jar 4.1 (Build 163)

Copyright (c) 2001-2019 StrongKey. All rights reserved.

Calling Decrypt from Cloud at https://demo.strongkey.com ...

SHA256 message digest received :
883a1d4f11c8d5080df750209391c005677c53bd1821eb0c4c49ed8603dc72dd

SHA256 message digest calculated :
883a1d4f11c8d5080df750209391c005677c53bd1821eb0c4c49ed8603dc72dd

SHA sum verified!

Done!

StrongKey Tellaro KeyAppliance (KA) 62 v4.0 Demo Client Guide

8.2.4—Ping
The following example shows how to run the ping web service which can be used as a
health check for the CE module. The output will display the status of the CE.

$ demo:~/topaz4> java -cp skceclient.jar EncryptionEngine
https://demo.strongkey.com 1 skceping Abcd1234! P -wp SOAP

skceclient.jar 4.1 (Build 163)

Copyright (c) 2001-2019 StrongKey. All rights reserved.

Calling Ping at https://demo.strongkey.com ...

Response received :

<SKCE:Component>
<SKCE:Property>

<SKCE:PropertyName>Name</SKCE:PropertyName>
<SKCE:PropertyValue>SKCE</SKCE:PropertyValue>

</SKCE:Property>
<SKCE:Property>

<SKCE:PropertyName>Version</SKCE:PropertyName>
<SKCE:PropertyValue>SKCE Version 2.0 (Build

163)</SKCE:PropertyValue>
</SKCE:Property>
<SKCE:Property>

<SKCE:PropertyName>Authentication</SKCE:PropertyName>
<SKCE:PropertyValue>Successful</SKCE:PropertyValue>

</SKCE:Property>
<SKCE:Property>

<SKCE:PropertyName>Encryption Status</SKCE:PropertyName>
<SKCE:PropertyValue>Successfully encrypted

/usr/local/strongauth/skce/etc/abc.txt </SKCE:PropertyValue>
</SKCE:Property>
<SKCE:Property>

<SKCE:PropertyName>Decryption Status</SKCE:PropertyName>
<SKCE:PropertyValue>Successfully decrypted encryption output

</SKCE:PropertyValue>
</SKCE:Property>

</SKCE:Component>

Done!

StrongKey Tellaro KeyAppliance (KA) 63 v4.0 Demo Client Guide

S T R O N G K E Y
20045 Stevens Creek Boulevard Suite 2A

Cupertino, CA 95014
USA

	1— Preface
	1.1— Default Paths and Filenames
	1.2— Third-party Website References
	1.3— StrongKey Welcomes Your Comments!

	2— Introduction
	1. It updates to the latest releases all underlying components, such as the Java Virtual Machine (JVM), the relational database, the application server, and the cryptographic libraries. While this not only fixes many bugs, it also enables regulatory compliance by addressing residual vulnerabilities from previous releases.
	2. It replaces the standard BouncyCastle library with the latest BouncyCastle FIPS library. BC-FIPS is a Federal Information Processing Standards (FIPS) 140-2 level 1 certified module used to perform all cryptography. To mange this, all cryptographic code has been collapsed into a single crypto-module in the code.
	3. All public key cryptography has moved from RSA to Elliptic Curve cryptography.
	4. Updates support from Trusted Platform Module (TPM) 1.2 to TPM 2.0. TPM 2.0 is a FIPS 140-2 Level 2 certified cryptographic module.
	2.1— Regulatory Compliance

	1. Securely generating, storing, using and controlling access to cryptographic keys within the system using a FIPS 140-2 Level 3 certified cryptographic Hardware Security Module (HSM) or Trusted Platform Module (TPM). These devices are designed to erase cryptographic key material rather than give it up when they sense they are being attacked. Keys generated on these devices never leave the device unless they are encrypted using other cryptographic keys.
	2. Using only one cryptographic algorithm—the Advanced Encryption System (AES)—with a choice of 128-bit, 192-bit or 256-bit symmetric keys for the encryption and decryption of PANs or PII.
	3. Using only one cryptographic algorithms for generating Hashed Message Authentication Codes (HMAC)—while providing a choice of key sizes for the HMAC: the HmacSHA256 algorithm—with a 256-bit cryptographic key, HmacSHA224, HmacSHA384 and HmacSHA512 for preserving the integrity of encrypted data (ciphertext) in the system.
	4. Storing ciphertext on the appliance system—never allowing it to leave KA—while returning a pseudo-number of the PAN, generally known as a “token” as a unique reference for the PAN/PII.
	2.2— Architecture

	A JEE7 Application Server that hosts multiple web service applications
	A Relational Database that stores the ciphertext and accompanying metadata
	A cryptographic Trusted Platform Module or Hardware Security Module that performs cryptographic functions
	A replication architecture that automatically replicates all transactions to every KA node defined within a cluster
	A Lightweight Directory Access Protocol (LDAP) Server for authenticating and authorizing requesters of web services. In the event a site already has an LDAP directory server – such as Active Directory—the KA application can authenticate requesters against this directory server
	A FIDO-enabled web application that enables end users to encrypt/decrypt files while storing cryptographic keys in the KA module of the KA.
	2.2.1— KAM Encryption Mechanics
	2.2.2— KAM Decryption Mechanics
	2.2.3— Notes on the Mechanics

	1. Two separate keys are used for the encryption and HMAC calculation.
	2. The default size of the AES encryption key is 256 bits. However, this can be customized to use either a 128-bit or 192-bit AES key by modifying the KA properties (see the KA Configuration chapter in the KA Reference Manual for details).
	3. The default size of the HMAC key is 256 bits. However, this can be customized to use either a 224-bit, 384-bit or 512-bit key by modifying the KA properties file (see the KA Configuration chapter in the KA Reference Manual for details).
	4. The default duration for the usage of the encryption key is one (1) month, while that of the HMAC key is one (1) year. At the start of a new month – starting with the first encryption request past midnight—KA starts using a new encryption key that it generates automatically based on configured policies; a new HMAC key is generated on the first day of a new calendar year. These durations can be customized to use keys on either a daily, weekly, monthly, or an annual basis in the KA properties file (see the KA Configuration chapter in the KA Reference Manual for details).
	2.2.4— KAM Deletion Mechanics
	2.2.5— KAM Search Mechanics
	2.2.6— KAM Entropy Mechanics
	2.2.7— KAM Batch Operations
	2.2.8— KAM Relay Mechanics

	A web tier in the demilitarized zone (DMZ) receiving customer transactions from the internet
	An application tier with servers and databases representing the business logic and data
	A PCI zone containing the Tellaros
	Three payment gateways: PG1, which offers both an HTTPS and SOAP interface to their transaction gateway; PG2, which only offers an HTTPS interface; and PG3, which only offers a SOAP interface.
	2.2.9— HTTPS Interface

	1. The Relay service only performs HTTP POSTs; GETs are not supported at this time.
	2. The service allows for specifying any number of HTTP headers, HTTP parameters, and KA tokens that need decrypting and substituting in the relay request to the gateway.
	3. All headers, parameters, and tokens are specified in XML elements that must conform to the supplied SKLESRelaySchema.xsd. If in doubt about your XML, test your sample XML with xmllint (on the Linux platform) against the XSD file. Fix any errors before sending the XML to the appliance.
	4. The appliance will not print any sensitive decrypted/detokenized information in the server log.
	2.2.10— SOAP Interface

	1. The SOAP message sent to the Tellaro for the relay request embeds another SOAP envelope containing the message to be relayed to the payment gateway. This might be confusing initially, but is acceptable to the appliance. Just make sure that samples of XML created for testing pass validation tests using xmllint against the XSD defined in SKLESRelaySchema.xsd.
	2. The Relay service only performs HTTP POSTs; GETs are not supported at this time.
	3. The service allows for specifying any number of HTTP headers; HTTP parameters are not supported in this interface.
	4. The appliance will not print any sensitive decrypted/detokenized information in the server log.
	3— sakaclient
	1. Encrypt simulated credit card numbers.
	2. Decrypt the ciphertext for previously encrypted credit card numbers.
	3. Encrypt and decrypt a credit card number within a single transaction.
	4. Delete a credit card number from the cluster.
	5. Search for a credit card number on the cluster.
	6. Return bytes of entropy generated on a True Random Number Generator (TRNG).
	7. Submit a job to encrypt credit card numbers in batch mode.
	8. Submit a job to decrypt credit card numbers in batch mode.
	9. Submit a job to delete credit card numbers in batch mode.
	10. Submit a job to search for credit card numbers in batch mode.
	11. Relay a payment transaction to authorize.net using HTTPS POST (you will need your own account and access keys to authorize.net to perform this test).
	12. Encrypt a plaintext using a stored symmetric key.
	13. Decrypt a ciphertext using a stored symmetric key.
	1. Users who are authorized to only encrypt.
	2. Users who are authorized to only decrypt.
	3. Users who are authorized to encrypt and decrypt.
	4. Users who are authorized to only delete.
	5. Users who are authorized to only search.
	6. Users who are authorized to only relay transactions to a payment gateway.
	7. Users who are authorized to perform all operations.
	8. Users who are NOT authorized to perform any operation.
	3.1— Installing the Demo Client Application
	3.2— Displaying Help Options
	3.3— Operations
	3.3.1— Encryption
	3.3.2— Decryption

	The latency of the Internet
	The verification of the user's authorization (which causes the decryption of a hierarchy of keys in the hardware module to verify the user's password)
	The decryption of the symmetric key before it is available for use
	Finally, the actual encryption/decryption of the PAN data
	3.3.3— Encryption and Decryption
	3.3.4— Failed Encryption and Decryption
	3.3.5— Encryption and Failed Decryption
	3.3.6— Deletion
	3.3.7— Re-encryption after Deletion
	3.3.8— Search
	3.3.9— Encryption 2
	3.3.10— Encryption and Decryption of a String
	3.3.11— Random Numbers from TRNG
	3.3.12— Encrypt and Decrypt with a Stored Key

	1. As a prerequisite to these commands, a General Public Key (GPK) must be stored using the kmsclient.
	2. Using a stored GPK, the appliance can perform many types of encryption and decryption using keys previously tokenized on the appliance. The web service supports AES keys in ECB, CBC, OFB, CFB, and GCM modes. In ECB and CBC mode, the web service supports ZeroBytePadding, PKCS7Padding, TBCPadding, X9.23Padding, ISO7816-4Padding, ISO10126-2Padding, and NoPadding (when the plaintext input is the correct block size). In GCM mode, optional Additional Authenticated Data (AAD) can be provided which will be included in the MAC generated over the ciphertext. This can be used to cryptographically bind an unencrypted message to a ciphertext. The following examples use the GPK token 1000000000113726 which has previously been stored.
	3. The following example shows how to decrypt one of the ciphertexts generated with a GPK key.
	4— sakagclient
	Encrypt a string provided on the command line
	Decrypt the ciphertext for previously encrypted strings
	Encrypt and decrypt a string within a single transaction
	4.1— Installing the Demo Client Application
	4.2— Displaying Help Options
	4.3— Encryption (CBC Mode)
	4.4— Decryption (CBC Mode)
	4.5— Encryption (GCM Mode)
	4.6— Decryption (GCM Mode)

	5— KMS Client
	1. Generate a Base Derivation Key (BDK) and produce its key components.
	2. Generate an RSA asymmetric key pair, encrypt and token the private key, and return the public key and token.
	3. Generate an Initial Key (sometimes also referred to as Initial PIN Entry Key or IPEK) from a BDK for a card reader device.
	4. Load a BDK's key components into the Card Cryptographic Service (CCS) module.
	5. Load a BDK into the CCS Module from its previously submitted key components.
	6. Store an ANSI Key in the appliance's secure storage.
	7. Replace a currently stored ANSI Key in the appliance with new ANSI Key.
	8. Delete a currently stored ANSI Key from the appliance.
	9. Update the status of a currently stored ANSI Key in the appliance.
	10. List supported card reader device manufacturers by ID.
	1. Key Management Operator (KMO) users who are authorized to load key components.
	2. Key Managemnent Custodian (KMC) users who are authorized to generate and load BDKS and IPEKs.
	3. Key Management Administrators (KMA) who are authorized to store, replace, delete, and update ANSI Keys.
	5.1— Installing the Demo Client Application
	5.2— Displaying Help Options
	5.3— List Manufacturer
	5.4— Load Key Component
	5.5— Load BDK
	5.6— Generate Initial Key
	5.7— Store ANSI Key (BDK or LTMK)
	5.9— Replace ANSI Key (TMK or TPK)
	5.10— Update ANSI Key
	5.11— Delete ANSI Key
	5.12— Generate Asymmetric Key

	6— CCS Client
	1. Generate a Base Derivation Key (BDK) and produce its key components.
	2. Generate an Initial Key (sometimes also referred to as Initial PIN Entry Key or IPEK) from a BDK for a card reader device.
	3. Load a BDK's keycomponents into the CCS Module.
	4. Load a BDK into the CCS Module from its previously submitted key components.
	5. Process an encrypted card swipe by decrypting it using the DUKPT algorithm, re-encrypting the plaintext cardholder data using a data encryption key in KA and tokenizing it.
	6. Generate a test encrypted card swipe using a specific Initial Key so the encrypted card swipe can be submitted to KA for processing.
	7. List supported card reader device manufacturers by ID.
	1. Users who are authorized to only encrypt.
	2. Users who are authorized to only decrypt.
	3. Users who are authorized to encrypt and decrypt.
	4. Users who are authorized to perform all operations.
	5. Users who are NOT authorized to perform any operation.
	6.1— Installing the Demo Client Application
	6.2— Prerequisites
	6.3— Displaying Help Options
	6.4— List Manufacturer
	6.5— Generate Swipe Data
	6.6— Get Card Capture Data
	6.7— DUKPT Encrypt
	6.8— DUKPT Decrypt

	7— SEDOS
	Centralized log files of hundreds or thousands of servers that must be encrypted at rest, but decrypted when used by security incident event management (SIEM) tools
	Vast quantities of medical/health data used in research, which must be protected in accordance with the Health Information Portability and Accountability Act (HIPAA) security and privacy rules
	Archived databases with transaction data at e-commerce/gaming/streaming media sites that might must be protected for the privacy of their customers
	Other use cases too numerous to mention
	sedutil-cli, an open-source command line interface tool responsible for interacting with the SED. It is responsible for functions such as: i) initializing the SED; ii) Injecting the authentication key into the SED so it can use the MEK to encrypt/decrypt data blocks
	sakasedclient.jar, an open-source command line Java client responsible for communicating with the SED Metadata Database (SEDMDB) and KA
	SEDMDB, a MariaDB database which holds information about every SED registered and known to SEDOS
	KA, the secure vault where authentication keys—generated for the SEDs (by SEDOS)—are escrowed for safekeeping so they may be recovered by system tools during a server boot process (to learn more about KA, please review 1—Introduction)
	sedosd, sedostab and /root/pass, configuration files necessary for this capability
	SEDOS.sh (also depicted as SEDOS in this document), the shell script responsible for orchestrating all of the above
	Initializing a new SED by calling on sakasedclient.jar generating a new authentication key, escrowing it on the KA, adding information about the SED to SEDMDB, and calling the sedutil-cli to “inject” the authentication key into the SED to initialize it
	Modifying information about an SED in the SEDMDB, such as its current status, configuration, etc.
	Changing the authentication key of an SED by calling on sakasedclient.jar and sedutil-cli to coordinate changing the authentication key and updating the SAK and SEDMDB in the process
	Removing an authentication key from the SEDMDB and KA, thus ensuring that encrypted data can never be decrypted again
	Displaying information about SEDs on a given system
	7.1— The SEDOS Client Software Distribution
	7.2— Installing the SEDMDB Schema

	1. The host running the database must be called sakadb.dc. To test/use this distribution, add an entry to /etc/hosts and add sakadb.dc as an alias to localhost.
	2. MariaDB must be listening on Port 3306—this is the default port.
	3. The MariaDB instance must have a database called sakased.
	4. The sakased database must be readable and writable by a database credential with the name of strongauth with a password of AbracaDabra.
	5. The sakased database must have a table with the name of SED_METADATA. This table is created by a structured query language (SQL) file in the distribution with the name of sed_metadata.sql. A text file—create.txt—may be “sourced” when connected to MariaDB's MySQL client as the strongauth user; it will automatically create the required table. As reference, the table is shown below.
	6. Once the database is configured, confirm you can connect to MariaDB via the MySQL tool with the strongauth username and AbracaDabra password while connecting to the sakadb.dc host and sakased database. If you connect and see the following schema when you execute desc sed_metadata, you know everything is setup correctly.
	7.3— Installing the SEDOS Software Distribution

	Installs scripts, libraries, and configuration files that make up the SEDOS distribution on the Linux-based system
	Discovers SEDs on the system and registers them in the SEDMDB, generates unique authentication keys for each SED, escrows the authentication keys within the KA, and initializes the SEDs
	Creates an initialization script—sedosd—to enable the recovery of authentication keys from the KA as part of the standard Linux boot process
	Creates a sedostab text file to enable sedosd to determine where to mount each unlocked SED so the decrypted SED is accessible to applications
	1. Login as root to the Linux system with the SEDs.
	2. Create /usr/local/software if it does not exist. Unzip the SEDOS distribution into that director; it should extract the distribution into /usr/local/software/sedos. Type the following commands:
	3. Change directory to /usr/local/software/sakasedos.
	4. Using a text editor, modify the sakaconfig file. This file contains key value pairs specifying information about KA. If using StrongKey's Demo Client, this is supplied; if using a private KA, use the appropriate parameters.
	https://demo4.strongkey.com
	https://demo2.strongauth.com
	https://demo3.strongauth.com
	5. The install-sedos.sh script within this directory is responsible for the installation and requires the following parameters:
	6. During the installation process the install script copies the sakasedclient-configuration.properties file to /usr/local/strongauth/sakased/etc. This file is used to specify a syslog server where the sakasedclient.jar file will write logs to. This file can be modified with any text editor.
	7. To verify everything is working, the target system with the SEDs must be powered down and subsequently powered up. The SEDs should be automatically unlocked by the init script and mounted on /adisk and /bdisk.
	7.4— Using the SEDOS Shell Script Manually

	Allows you to enroll an individual SED into the SEDMDB, generate its authentication key and escrow it on the KA
	Unlocks a specific SED by recovering its authentication key from the KA and “injecting” it into the SED
	Changes an SED's authentication key and updates the SEDMDB and KA automatically
	Deletes an SED from the SEDMDB and its authentication key from the KA, ensuring it cannot be decrypted again; the SED must be reinitialized for the SED to be re-usable
	Displays information about a specific or all SEDs on the system
	Enroll an SED: This option uses sedutil-cli to query information about the SED, enrolls it in the SEDMDB (if it does not already exist), generates an authentication key for the SED, escrows the authentication key securely in KA, and initializes the SED using sedutil-cli. Once the disk is initialized, it will be in an unlocked state and a file system may be created on it.
	Unlock an SED: This option uses the SEDMDB to look up information about the requested drive. If the SED is in the SEDMDB, its authentication key is recovered from KA and “injected” into the SED using sedutil-cli. If the SED is already mounted, choosing this option will generate errors.
	Update properties for an SED: This option changes metadata attributes about a specific SED in the SEDMDB. Attributes that are modifiable are: manufacturer, serial number, model, capacity, FQDN, status, and notes.
	Change an SED's authentication key: This option generates a new authentication key for the chosen SED, and updates the SEDMDB and KA to reflect this information.
	Delete an SED's authentication key: This option deletes the SED from the SEDMDB and its corresponding authentication key from KA.
	Information about an SED: This option displays information about a specific SED as reflected in the SEDMDB. This information is only as accurate as that provided to the SEDMDB during the SED's initialization. Should this information not be updated as it changes, it can become desynchronized with the true state of the SED.
	Display information about all SEDs: This option scans the system for Trusted Computing Group (TCG) OPAL-compliant drives and displays the following information about them: device, manufacturer, model, capacity, model number, and serial number. This information is provided using sedutil-cli and reflects what is visible at the operating system layer. Use this option to learn about the manufacturer and serial number of the drive to execute other tasks with SEDOS.sh.
	8— skceclient
	1. Encrypt files of any type or size.
	2. Decrypt previously encrypted files.
	3. Encrypt files of any type or size and store them in the cloud (AWS, AZURE, or EUCALYPTUS).
	4. Download a previously encrypted file from the cloud and decrypt it.
	5. Ping the CE module.
	8.1— Parameters
	8.1.1— svcinfo
	8.1.2— fileinfo
	8.1.3— Encinfo
	8.1.4— Authzinfo
	8.1.5— storageinfo

	8.2— Encrypt
	8.2.1— Decrypt
	8.2.2— Encrypt to Cloud
	8.2.3— Decrypt from Cloud
	8.2.4— Ping

