Solutionbank M1

Heinemann Modular Maths for Edexcel AS and A-level

2 Kinematics in one dimension Exercise B, Question 7

Question:

A train signal is placed so that a train can decelerate uniformly from a speed of 96 km h^{-1} to come to rest at the end of a platform. For passenger comfort the deceleration must be no greater than 0.4 m s^{-2} . Assume that the train travels along a straight line. Calculate:

(a) the shortest distance the signal can be from the end of the platform

(b) the shortest time for the train to decelerate.

Solution:

96 km h⁻¹ = $\frac{96 \times 1000}{3600}$ m s⁻¹ = 26 $\frac{2}{3}$ m s⁻¹

(a) $v^2 = u^2 + 2as$ with maximum deceleration

$$0^{2} = (26\frac{2}{3})^{2} + 2(-0.4)(s_{1})$$

$$\therefore 0.8s_{1} = (26\frac{2}{3})^{2}$$

$$\therefore s_{1} = \frac{(26\frac{2}{3})^{2}}{0.8} = 888.88... m$$

i.e. $s_{1} = 889 m (3 s.f.)$

$26\frac{2}{3}$	$\stackrel{r \leqslant 0.4}{\longleftarrow}$	$\xrightarrow{0}$
s=0 t=0		$s = s_1$ $t = t_1$

v =
$$u + at$$

0 = $26 \frac{2}{3} + (-0.4) \times t_1$

(b) $\therefore 0.4t_1 = 26 \frac{2}{3}$ $t_1 = \frac{26 \frac{2}{3}}{\frac{2}{0.4}} = 66.666... = 66.7 \text{ s (3 s.f.)}$

© Harcourt Education Ltd 2005