Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor		
1a	The sample mean	B1	1.2	4th		
	is (approximately) normally distributed with mean μ and variance $\frac{\sigma^2}{n}$	B1	1.2	Be able to quote the central limit theorem		
		(2)				
1b	The sample must be random	B1	1.2	5th Know the conditions for the use of the central limit theorem		
		(1)				
				(3 marks)		
	Notes					
1a B1	1a B1 must state <i>sample</i> mean (accept \overline{X})					
B1	B1 parameters must be given. Accept standard deviation rather than variance					
1b B1	for sample is random					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor
2a	$\overline{X} \sim N\left(12, \frac{9}{10}\right)$	M1	3.1a	7th
				Apply the central limit theorem to a
	$P(\overline{X} > 13) = P\left(Z > \frac{13 - 12}{\frac{3}{\sqrt{10}}}\right)$	M1	1.1b	range of probability distributions
	= 0.1469	A1	1.1b	
		(3)		
2b	No: The population is normally distributed so the sample mean is also normally distributed.	B1	2.4	5th Know the conditions for the use of the central limit theorem
		(1)		
				(4 marks)
	Notes			
2a M	1 for attempt to find distribution of \overline{X} using given parameters, must	t divide by	y 10	
M	11 for attempt to find $P(\overline{X} > 13)$			
A	1 awrt 0.147			
2b B	1 for 'No' with correct reason			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor		
3a	$\overline{X} \sim N\left(21, \frac{1.1^2}{50}\right)$	M1	3.1a	7th		
	(50)			Apply the central limit theorem to a		
	$P(\bar{X} < 20.7) = P\left(Z < \frac{20.7 - 21}{\frac{1.1}{\sqrt{50}}}\right)$	M1	1.1b	range of probability distributions		
	= 0.0268	A1	1.1b			
		(3)				
3b	(20.7-21)	M1	3.1a	8th		
	Require $P\left(Z < \frac{20.7 - 21}{\frac{1.1}{\sqrt{n}}}\right) < 0.01$			Recognise and apply the central limit theorem in		
	Z = (-)2.3263	B1	1.1a	contextualised		
	$\frac{-0.3}{\frac{1.1}{\sqrt{n}}} < -2.3263 \Longrightarrow \frac{0.3\sqrt{n}}{1.1} > 2.3263$	M1	1.1b	situations		
	$\sqrt{n} > 8.5297 \Longrightarrow n > 72.7$	M1	1.1b			
	<i>n</i> = 73	A1	3.2a			
		(5)				
				(8 marks)		
	Notes					
3 a	M1 for attempt to find distribution of \overline{X} using given parameters, m	ust divide by	y 50			
	M1 for attempt to find $P(\overline{X} < 20.7)$					
	A1 awrt 0.027					
3b	M1 for probability statement in terms of <i>Z</i> and using $\frac{1.1}{\sqrt{n}}$					
	B1 for correct Z value (from tables); accept + or – here					
	M1 for attempt to solve resulting equation using <i>their</i> Z (must now	r be –)				
	M1 for value for \sqrt{n} leading to value for <i>n</i>					
	Alft their Z value if all M marks awarded (answer must be an inte	ger)				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor
4a	0.1 + k + 2k + 0.3 + 0.24 = 1	M1	1.1b	1st
	Hence $k = 0.12$	A1	1.1b	Understand how to find unknowns from a probability mass function
		(2)		
4bi	$E(X) = 1 \times 0.1 + 2 \times 0.12 + 4 \times 0.24 + 5 \times 0.3 + 6 \times 0.24$	M1	1.1b	2nd
	= 4.24	A1	1.1b	Calculate the mean of a discrete random variable
		(2)		
4bii	$Var(X) = 1^2 \times 0.1 + \dots + 6^2 \times 0.24 - 4.24^2$	M1	1.1b	3rd
	= 2.5824	A1	1.1b	Calculate the variance of a discrete random variable
		(2)		
4c	CLT states that the sample mean is approximately normally distributed.	B1	1.2	6th Recognise when the central limit theorem is required
		(1)		
4d	$\overline{X} \approx \sim N\left(4.24, \frac{2.5824}{80}\right)$	M1	3.1a	7th Apply the central limit theorem to a
	$P(\overline{X} < 4.5) = P\left(Z < \frac{4.5 - 4.24}{\sqrt{\frac{2.5824}{80}}}\right) (= P(Z < 1.447))$	M1	1.1b	range of probability distributions
	= 0.9265	A1	1.1b	
		(3)		

4e	Estimate is fairly accurate since <i>n</i> is large.	B1	2.4	5th Know the conditions for the use of the central		
		(1)		limit theorem		
			1	(11 marks)		
	Notes					
4 a	M1 for attempt to add probabilities and equate to 1					
	A1 cao					
4bi	M1A1ft from <i>their k</i>					
4bii	4bii M1A1ft from <i>their k</i>					
4c	B1 for completely correct reason					
4d	M1 for attempt to find distribution of \overline{X} using calculated parameters, n	nust divi	de by 80			
	M1 for attempt to find $P(\overline{X} < 4.5)$					
	A1ft awrt 0.927 (ft <i>their</i> 4bi and 4bii)					
4 e	4e B1 for correct statement including <i>n</i> is large					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor		
5	$\overline{V} \cap N\left(26, \frac{2.6}{2}\right)$	M1	3.1a	7th		
	$\overline{X} \square \operatorname{N}\left(2.6, \frac{2.6}{50}\right)$	A1	1.1b	Apply the central		
	$P(\overline{X} > 2.7) = P\left(Z > \frac{2.7 - 2.6}{\sqrt{\frac{2.6}{50}}}\right) (= P(Z > 0.4385))$	M1	1.1b	limit theorem to a range of probability distributions		
	= 0.3300	A1	1.1b			
				(4 marks)		
	Notes					
1st M1	for use of CLT with given Poisson parameters					
1st A1 f	1st A1 for completely correct normal distribution					
2nd M1	2nd M1 for attempt to find $P(\overline{X} > 2.7)$ using <i>their</i> normal distribution					
2nd A1	awrt 0.33					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor	
68	Mean: $\frac{1}{0.2} = 5$	B1	1.1b	6th	
	0.2			6th Calculate the mean/variance of a geometric distribution 7th	
	Variance: $\frac{1-0.2}{0.2^2} = 20$	B1	1.1b	a geometric	
		(2)			
61	$\overline{X} \square N\left(5, \frac{20}{20}\right)$	M1	3.1a	7th	
	$X \sqcup \mathbb{N}\left(3, \frac{1}{20}\right)$	A1	1.1b	Apply the central	
	$P(\overline{X} > 6) = P\left(Z > \frac{6-5}{\sqrt{\frac{20}{20}}}\right) (= P(Z > 1))$	M1	1.1b	range of probability	
	= 0.1587	A1	1.1b		
		(4)			
				(6 marks)	
	Notes				
6a	B1 for correct mean				
	B1 for correct variance				
6b	6b 1st M1 for use of CLT with <i>their</i> Geo parameters				
	1st A1 for completely correct normal distribution				
	2nd M1 for attempt to find $P(\overline{X} > 6)$ using <i>their</i> normal d	istribution			
	2nd A1 awrt 0.159				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor		
7	Model is Negative B(8, 0.3)	B 1	3.3	8th		
	Expectation $=\frac{8}{0.3}=\frac{80}{3}$	B1	1.1b	Recognise and apply the central llimit theorem in		
	Variance = $\frac{8(1-0.3)}{0.3^2} = \frac{560}{9}$	B1	1.1b	contextualised situations		
	$=$ $(80 \frac{560}{2})$	M1	3.1a			
	$\overline{X} \square \operatorname{N}\left(\frac{80}{3}, \frac{\frac{560}{9}}{25}\right)$	A1	1.1b			
	$P(\overline{X} < 25) = P\left(Z < \frac{25 - \frac{80}{3}}{\sqrt{\frac{560}{9}}}\right) (= P(Z < -1.0564))$	M1	1.1b			
	= 0.145	A1	2.1			
				(7 marks)		
	Notes					
B1 for c	orrect model					
B1 for c	orrect expectation					
B1 for c	B1 for correct variance					
1st M1	1st M1 for use of CLT with <i>their</i> Negative B parameters					
1st A1 f	1st A1 for completely correct normal distribution					
2nd M1	for attempt to find $P(\overline{X} < 25)$ using <i>their</i> normal distribution					
2nd A1	cao					

Q)	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor
8:	a	$p(\bar{z}, \bar{z}) = p(z, 72-75)$	M1	3.1b	7th
		$P(\overline{X} < 72) = P\left(Z < \frac{72 - 75}{\frac{6}{\sqrt{24}}}\right) (= P(Z < -2.449))$			Apply the central limit theorem to a
		= 0.007	A1	1.1b	range of probability distributions
			(2)		
81	b	The population is normally distributed.	B1	2.4	5th
					Know the conditions for the use of the central limit theorem
			(1)		
8	c	Model is B(24, 0.2)	B1	3.1b	8th
		Mean: $24 \times 0.2 = 4.8$	B1	1.1b	Recognise and apply the central
		Variance: $4.8 \times 0.8 = 3.84$			llimit theorem in contextualised
		$P(\overline{X} < 4) = P\left(Z < \frac{4 - 4.8}{\sqrt{\frac{3.84}{15}}}\right) (= P(Z < -1.581))$	M1	1.1b	situations
		= 0.057	A1	2.1	-
			(4)		
				•	(7 marks)
		Notes			
8 a	M	1 for attempt to find $P(\overline{X} < 72)$			
		l awrt 0.007			
8b		must state normally distributed			
8c		correct model			
		mean and variance both correct			
		1 for attempt to find $P(\overline{X} < 4)$ using <i>their</i> model and mean/v	ariance		
	A1	l cao			