

Sequences and Series - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q6

Question Number	Scheme	Marks
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(a) $ar = 7.2, ar^3 = 5.832 \Rightarrow r^2 = \frac{5.832}{7.2} (= 0.81)$ r = 0.9	M1 A1 (2)
	(b) $a = \frac{7.2}{(a)}, = \frac{8}{=}$	M1, A1 (2)
	(c) $s_{50} = \frac{8(1 - (0.9)^{50})}{1 - 0.9}$	M1
	$= \underline{79.588} (3dp)$	A1 c.a.o (2)
	(d) $s_{\infty} = \frac{8}{1 - 0.9} (= 80)$ $s_{\infty} - s_{50} = 80 - (c) = 0.412$ (Awrt 3 dp)	M1 A1 √ (2) (8)
	(a) M1 for full method $\rightarrow r^2$ or r N.B. $ar^2 = 7.2$, $ar^4 = 5.832 \rightarrow r = 0.9$ scores M1A1 in part (a) but probably M0A0 in (b).	
	(c) M1 $\sqrt{\text{their } a'', "r'' \text{ in } s_{50} \text{ formula}}$ (d) M1 $\sqrt{\text{their } a'', "r'' \text{ in } s_{\infty}}$ A1 $\sqrt{\text{for } 80 - \text{their } (c) \text{ i.e.} \sqrt{\text{their } (c) \text{ only}}}$	

Question 2: Jan 06 Q4

Question number	Scheme		Marks	
	(a) $\frac{a}{1-r} = 480$		M1	
	$\frac{120}{1-r} = 480 \Rightarrow 120 = 480(1-r)$		M1	
	$1 - r = \frac{1}{4} \Longrightarrow \qquad r = \frac{3}{4} \qquad *$		A1cso	(3)
	(b) $u_5 = 120 \times \left(\frac{3}{4}\right)^4 [= 37.96875]$ $u_6 = 120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$	either	M1	
		llow ±)	A1	(2)
	(c) $S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$		M1	
	= 415.9277 (AWRT) 416		A1	(2)
	(d) $\frac{120(1-(0.75)^n)}{1-0.75} > 300$		M1	
	$1 - (0.75)^n > \frac{300}{480}$ (or better	ter)	A1	
	$n > \frac{\log(0.375)}{\log(0.75)} \tag{=3.409}$	9)	M1	
	$\underline{n=4}$		A1cso	(4)
				11
	(a) 1^{st} M1 for use of S_{∞}		For Inform	ation
	2^{nd} M1 substituting for a and moving $(1-r)$ to form linear equation	in r.	$u_1 = 120$	
			$u_2 = 90$	
	(b) M1 for some correct use of $ar^{n-1} \cdot [120(\frac{3}{4})^5 - 120(\frac{3}{4})^0]$ is M0]		$u_3 = 67.5$	
			$u_4 = 50.625$	5
	(c) M1 for a correct expression (need use of a and r)		~ ~.	
	(1) 15t 3.51		$S_2 = 210$	
	(d) 1 st M1 for attempting $S_n > 300$ [or = 300] (need use of a and some $s_n > 300$ [or = 300] (need use of a and s	I	_	
	2^{nd} M1 for valid attempt to solve $r^n = p(r, p < 1)$, must give linear of	eqn in n.		
T-:-1	Any correct log form will do. 1^{st} M1 for attempting at least 2 values of S_n , one $n < 4$ and one $n > 3$	_	$S_5 = 366.09$	J
Trial	, , , , , , , , , , , , , , , , , , , ,	<u>~</u> 4.		
& Imn	2^{nd} M1 for attempting S_3 and S_4 . 1^{st} A1 for both values correct to 2 s.f. or better.			
Imp.	2^{nd} A1 for $n = 4$.			

Question 3: June 06 Q9

Question number	Scheme	Marks	
	(a) $ar = 4$, $\frac{a}{1-r} = 25$ (These can be seen elsewhere)	B1, B1	
	a = 25(1-r) $25r(1-r) = 4$ M: Eliminate a	М1	
	$25r^2 - 25r + 4 = 0 \tag{*}$	A1cso	(4)
	(b) $(5r-1)(5r-4) = 0$ $r =$, $\frac{1}{5}$ or $\frac{4}{5}$	M1, A1	(2)
	(c) $r = \dots \Rightarrow a = \dots$, 20 or 5	M1, A1	(2)
	(d) $S_n = \frac{a(1-r^n)}{1-r}$, but $\frac{a}{1-r} = 25$, so $S_n = 25(1-r^n)$ (*)	В1	(1)
	(e) $25(1-0.8^n) > 24$ and proceed to $n =$ (or $>$, or $<$) with no unsound algebra.	M1	
	$\left(n > \frac{\log 0.04}{\log 0.8} (=14.425)\right) \qquad n = 15$	A1	(2)
			11
	 (a) The M mark is not dependent, but both expressions must contain both a and r. (b) Special case: One correct r value given, with no method (or perhaps trial and error): B1 B0. (c) M1: Substitute one r value back to find a value of a. (d) Sufficient here to verify with just one pair of values of a and r. (e) Accept "=" rather than inequalities throughout, and also allow the wrong inequality to be used at any stage. M1 requires use of their larger value of r. A correct answer with no working scores both marks. For "trial and error" methods, to score M1, a value of n between 12 and 18 (inclusive) must be tried. 		

Question 4: Jan 07 Q10

Question Number	Scheme	Marks
(a)	$\{S_n = \} a + ar + \dots + ar^{n-1}$ $\{rS_n = \} ar + ar^2 + \dots + ar^n$	B1
(4)	$\{rS_n = \} ar + ar^2 + \dots + ar^n$	M1
	$(1-r)S_n = a(1-r^n)$	dM1
	$S_n = \frac{a(1-r^n)}{1-r} (\clubsuit)$	A1cso (4)
(b)	$a = 200, r = 2, n = 10, S_{10} = \frac{200(1 - 2^{10})}{1 - 2}$	M1, A1
	= 204,600	A1 (3)
(c)	$a = \frac{5}{6}, r = \frac{1}{3}$ $S_{\infty} = \frac{a}{1-r}, \qquad S_{\infty} = \frac{\frac{5}{6}}{1-\frac{1}{3}}$	B1
		M1
	$=\frac{5}{4}$ o.e.	A1
	4	(3)
(d)	$-1 \le r \le 1$ (or $ r \le 1$)	B1 (1) (11)

Notes

10(a)	
S_n not required. The following must be seen: at least one + sign, a , ar^{n-1} and one other intermediate term. No extra terms (usually ar^n).	B1
Multiply by r ; rS_n not required. At least 2 of their terms on RHS correctly multiplied by r .	M1
Subtract both sides: LHS must be $\pm (1-r)S_n$, RHS must be in the form $\pm a(1-r^{pn+q})$.	dM1
Only award this mark if the line for $S_n =$ or the line for $rS_n =$ contains a term of the form ar^{cn+d}	
Method mark, so may contain a slip but not awarded if last term of their S_n = last term of their rS_n .	
Completion c.s.o. N.B. Answer given in question	A1 cso

10(a)	
S_n not required. The following must be seen: at least one + sign, a , ar^{n-1} and one other	B1
intermediate term. No extra terms (usually ar ⁿ).	
On RHS, multiply by $\frac{1-r}{1-r}$	M1
Or Multiply LHS and RHS by (1 - r)	

Question 5: Jan 08 Q2

Question Number	Scheme	Marks
(a)	Complete method, using terms of form ar^k , to find r [e.g. Dividing $ar^6 = 80$ by $ar^3 = 10$ to find r; $r^8 - r^3 = 8$ is M0] $r = 2$	M1 A1 (2)
(b)	Complete method for finding a [e.g. Substituting value for r into equation of form $ar^k = 10$ or 80 and finding a value for a .] $(8a = 10) \qquad a = \frac{5}{4} = 1\frac{1}{4} \qquad \text{(equivalent single fraction or 1.25)}$	M1 (2)
(c)	Substituting their values of a and r into correct formula for sum. $S = \frac{a(r^n - 1)}{r - 1} = \frac{5}{4}(2^{20} - 1) (= 1310718.75) \qquad 1 \ 310 \ 719 (\text{only this})$	M1 A1 (2) [6]
Notes:	 (a) M1: Condone errors in powers, e.g. ar⁴ = 10 and/or ar⁷ = 80, A1: For r = 2, allow even if ar⁴ = 10 and ar⁷ = 80 used (just these) (M mark can be implied from numerical work, if used correctly) (b) M1: Allow for numerical approach: e.g. 10/r_c → 10/r_c ← 10/r_c ← 10/r_c ← 10/r_c In (a) and (b) correct answer, with no working, allow both marks. (c) Attempt 20 terms of series and add is M1 (correct last term 655360) If formula not quoted, errors in applying their a and/or r is M0 Allow full marks for correct answer with no working seen. 	

Question 6: June 08 Q6

Question Number	Scheme	Marks
(a)	$T_{20} = 5 \times \left(\frac{4}{5}\right)^{19} = 0.072$	M1 A1 (2)
(b)	$S_{\infty} = \frac{5}{1 - 0.8} = 25$	M1 A1 (2)
(c)	$\frac{5(1-0.8^k)}{1-0.8} > 24.95$	M1
	$1-0.8^k > 0.998$ or equivalent	A1
	$k \log 0.8 < \log 0.002$ or $k > \log_{0.8} 0.002$	M1
	$k > \frac{\log 0.002}{\log 0.8}$	A1 cso (4)
(d)	k = 28	B1
		(9 marks)

Question 7: Jan 09 Q9

Question Number	Scheme	Mar	ks
(a)	Initial step: Two of: $a = k + 4$, $ar = k$, $ar^2 = 2k - 15$	M1	
	Or one of: $r = \frac{k}{k+4}$, $r = \frac{2k-15}{k}$, $r^2 = \frac{2k-15}{k+4}$, Or $k = \sqrt{(k+4)(2k-15)}$ or even $k^3 = (k+4)k(2k-15)$	Mi	
	$k^2 = (k+4)(2k-15)$, so $k^2 = 2k^2 + 8k - 15k - 60$	M1, A1	
	Proceed to $k^2 - 7k - 60 = 0$ (*)	A1	(4)
(b)	(k-12)(k+5) = 0 $k=12$ (*)	M1 A1	(2)
	(k-12)(k+5) = 0 $k=12$ (*)	mi Ai	(2)
(c)	Common ratio: $\frac{k}{k+4}$ or $\frac{2k-15}{k} = \frac{12}{16} \left(= \frac{3}{4} \text{ or } 0.75 \right)$	M1 A1	(2)
(d)	$\frac{a}{1-r} = \frac{16}{\left(\frac{1}{4}\right)} = 64$	M1 A1	(2 [10
(a)	 M1: The 'initial step', scoring the first M mark, may be implied by next? M1: Eliminates a and r to give valid equation in k only. Can be awarded involving fractions. A1: need some correct expansion and working and answer equivalent to quadratic but with uncollected terms. Equations involving fractions do not (No fractions, no brackets – could be a cubic equation) A1: as answer is printed this mark is for cso (Needs = 0) All four marks must be scored in part (a) 	for equation required	ı
(b)	M1: Attempt to solve quadratic A1: This is for correct factorisation or solution and $k = 12$. Ignore the ext -5 or even $k = 5$), if seen. Substitute and verify is M1 A0 Marks must be scored in part (b)	ra solution ((k =
(c)	M1: Complete method to find r Could have answer in terms of k A1: 0.75 or any correct equivalent		
(d)	Both Marks must be scored in (c) M1: Tries to use $\frac{a}{1-r}$, (even with $r>1$). Could have an answer still in ter	ms of k.	

Question 8: June 09 Q5

Question Number	Scheme	Marks
(a)	$324r^3 = 96$ or $r^3 = \frac{96}{324}$ or $r^3 = \frac{8}{27}$	M1
(b)	$r = \frac{2}{3} \tag{*}$	A1cso (2
	$a\left(\frac{2}{3}\right)^2 = 324$ or $a\left(\frac{2}{3}\right)^5 = 96$ $a = \dots$, 729	M1, A1 (2)
(c)	$S_{15} = \frac{729\left(1 - \left[\frac{2}{3}\right]^{15}\right)}{1 - \frac{2}{3}}, = 2182.00 $ (AWRT 2180)	M1A1ft, (3)
(d)	$S_{\infty} = \frac{729}{1 - \frac{2}{3}}, = 2187$	M1, A1 (2)
(a)	M1 for forming an equation for r^3 based on 96 and 324 (e.g. $96r^3 = 324$ scores M. The equation must involve multiplication/division rather than addition/subtract A1 Do not penalise solutions with working in decimals, providing these are correct rounded or truncated to at least 2dp and the final answer 2/3 is seen. Alternative: (verification) M1 Using $r^3 = \frac{8}{27}$ and multiplying 324 by this (or multiplying by $r = \frac{2}{3}$ three times A1 Obtaining 96 (cso). (A conclusion is not required). $324 \times \left(\frac{2}{3}\right)^3 = 96$ (no real evidence of calculation) is not quite enough and scores M1	tion. etly
(b)	M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by from 324 (or 5 times from 96). Exceptionally, allow M1 also for using $ar^3 = 324$ or $ar^6 = 96$ instead of $ar^2 = 324$ or for dividing by r three times from 324 (or 6 times from 96) but no other exceptions	or $ar^5 = 96$, or
(c)	 M1 for use of sum to 15 terms formula with values of a and r. If the wrong power e.g. 14, the M mark is scored only if the correct sum formula is stated. 1st A1ft for a correct expression or correct ft their a with r = 2/3. 2nd A1 for awrt 2180, even following 'minor inaccuracies'. Condone missing brackets round the 2/3 for the marks in part (c). Alternative: M1 for adding 15 terms and 1st A1ft for adding the 15 terms that ft from their a and 	
(d)	M1 for use of correct sum to infinity formula with their a. For this mark, if a value different from the given value is being used, M1 can still be allowed providing	of r

Question 9: Jan 11 Q3

Question Number	Scheme	Marks
(a)	$ar = 750$ and $ar^4 = -6$ (could be implied from later working in either (a) or (b)).	B1
		M1
	$r^3 = \frac{-6}{750}$	IVII
	Correct answer from no working, except for special case below gains all three	Λ1
	$r = -\frac{2}{5}$ for special case below gains all three marks.	A1 (3
(b)	a(-0.2) = 750	M1
	$a\left\{=\frac{750}{-0.2}\right\} = -3750$	A1 ft
(6)	Applies $\frac{a}{}$ correctly using both their a and their $ x < 1$. Fig. $\frac{-3750}{}$	(2
(c)	Applies $\frac{a}{1-r}$ correctly using both their a and their $ r < 1$. Eg. $\frac{-3750}{10.2}$ So, $S_{\infty} = -3125$	M1
	So, $S_{\infty} = -3125$	A1
		(2
6	<u>Notes</u>	
(a)	B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either	(a) or
(a)	(b)).	
	M1: for eliminating a by either dividing $ar^4 = -6$ by $ar = 750$ or dividing	
	$ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is	M0.
	Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \left\{ = -125 \right\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \left\{ = -125 \right\}$	1 <mark>2</mark> 5} are
	fine for the award of M1.	
	SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{ = -125 \}$	
	or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \left\{ = -125 \right\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award	d of M1.
	SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1.	
(b)	M1 for inserting their r into either of their original correct equations of either $ar = 7$	50 or
	$\{a=\}\frac{750}{r}$ or $ar^4=-6$ or $\{a=\}\frac{-6}{r^4}$ in both a and r. No slips allowed here for M1	l.
	A1 for either $a = -3750$ or a equal to the correct follow through result expressed eigenvalues.	ther as
	an exact integer, or a fraction in the form $\frac{c}{d}$ where both c and d are integers, or corre	ect to
	awrt 1 dp.	
(c)	M1 for applying $\frac{a}{1-r}$ correctly (only a slip in substituting r is allowed) using both the	heir a
	and their $ r < 1$. Eg. $\frac{-3750}{10.2}$. A1 for -3125	
	In parts (a) or (b) or (c), the correct answer with no working scores full marks.	

Question 10: June 11 Q6

Question Number	Scheme	Marks
(a)	$\{ar=192 \text{ and } ar^2=144\}$ $r=\frac{144}{192}$ Attempt to eliminate a . (See notes.) $r=\frac{3}{4} \text{ or } 0.75$ $\frac{3}{4} \text{ or } 0.75$	M1 A1
(p)	$a(0.75) = 192$ $a\left\{ = \frac{192}{0.75} \right\} = 256$ 256	M1 A1 [2]
(c)	$S_{\infty} = \frac{256}{1 - 0.75}$ Applies $\frac{a}{1 - r}$ correctly using both their a and their $ r < 1$. So, $\{S_{\infty} = \}$ 1024	M1 A1 cao
(d)	$\frac{256(1-(0.75)^n)}{1-0.75} > 1000$ Applies S _n with their a and r and "uses" 1000 at any point in their working. (Allow with = or <). $(0.75)^n < 1 - \frac{1000(0.25)}{256} \left\{ = \frac{6}{256} \right\}$ Attempt to isolate +(r)" from S _n formula. (Allow with = or >). $n\log(0.75) < \log\left(\frac{6}{256}\right)$ Uses the power law of logarithms correctly. (Allow with = or >). (See notes.) $n > \frac{\log\left(\frac{6}{256}\right)}{\log(0.75)} = 13.0471042 \Rightarrow n = 14$ See notes and $n = 14$	M1 M1 M1 A1 cso
		[4

Sequences and Series

Question Number	Scheme	Marks
(c)	M1: for applying $\frac{a}{1-r}$ correctly (no slips allowed!) using both their a and their r , where $ r < 1$.	
	A1: for 1024, cao.	
	In parts (a) or (b) or (c), the correct answer with no working scores full marks.	
(d)	1 st M1: For applying S_n with their a and either "the letter r " or their r and "uses" 1000.	
	2^{nd} M1: For isolating $+(r)^n$ and not $(ar)^n$, (eg. $(192)^n$) as the subject of an equation or	inequality.
	$+(r)^n$ must be derived from the S_n formula.	
	3^{rd} M1: For applying the power law to $\lambda^k = \mu$ to give $k \log \lambda = \log \mu$ oe. where $\lambda, \mu > 1$	0.
	or 3 rd M1: For solving $\lambda^k = \mu$ to give $k = \log_{\lambda} \mu$, where $\lambda, \mu > 0$.	
	A1: cso If a candidate uses inequalities, a fully correct method with inequalities is requir	ed here.
	So, an incorrect inequality statement at any stage in a candidate's working for this part lo	ses this
	mark.	. final line
	Note: Some candidates do not realise that the direction of the inequality is reversed in the of their solution.	e mai me
	Or A1: cso Note a candidate can achieve full marks here if they do not use inequalities.	
	So, if a candidate uses equations rather than inequalities in their working then they need t	o state in th
	final line of their working that $n = 13.04$ (truncated) or $n = \text{awrt } 13.05 \Rightarrow n = 14$ for A1.	
	n = 14 from no working gets SC: M0M0M1A1.	
	A method of $T_n > 1000 \Rightarrow 256(0.75)^{n-1} > 1000$ can score M0M0M1A0 for a correct app	lication of
	the power law of logarithms.	
	Trial & Improvement Method:	
	For $a = 256$ and $r = 0.75$, apply the following scheme:	
	$S_{13} = \frac{256(1 - (0.75)^{13})}{1 - 0.75} = 999.6725616$ Attempt to find either S_{13} or S_{14} . EITHER (1) S_{13} = awrt 999.7 or truncated	MI
	$1 - 0.75$ EITHER (1) $S_{13} = \text{awrt 999.7}$ or truncated	10
	999 OR (2) S ₁₄ = awrt 1005.8 or	M1
	truncated 1005.	
	$S_{14} = \frac{256(1 - (0.75)^{14})}{1 - 0.75} = 1005.754421$ Attempt to find both S_{13} and S_{14} .	M1
	BOTH (1) S_{13} = awrt 999.7 or truncated	
	999 AND (2) S ₁₄ = awrt 1005.8 or	A1
	So, $n = 14$. truncated 1005 AND $n = 14$.	