FP2 Functions

1. June 2010 qu. 6

(i) Show that
$$\frac{d}{dx}(\sinh^{-1} x) = \frac{1}{\sqrt{x^2 + 1}}$$
. [2]

(ii) Given that $y = \cosh(a \sinh^{-1} x)$, where a is a constant, show that

$$(x^{2}+1)\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - a^{2}y = 0.$$
 [5]

2. June 2010 qu. 8

(i) Using the definition of $\cosh x$ in terms of e^x and e^{-x} , show that

$$4\cosh^3 x - 3\cosh x \equiv \cosh 3x.$$
 [4]

(ii) Use the substitution $u = \cosh x$ to find, in terms of $5^{\frac{1}{3}}$, the real root of the equation

$$20u^3 - 15u - 13 = 0. ag{6}$$

3. Jan 2010 qu.5

(i) Using the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} , show that

$$\cosh^2 x - \sinh^2 x \equiv 1.$$

Deduce that
$$1 - \tanh^2 x \equiv \operatorname{sech}^2 x$$
. [4]

(ii) Solve the equation $2 \tanh^2 x - \operatorname{sech} x = 1$, giving your answer(s) in logarithmic form. [4]

4. <u>Jan 2010 qu.9</u>

(i) Given that
$$y = \tanh^{-1} x$$
, for $-1 < x < 1$, prove that $y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$. [3]

- (ii) It is given that $f(x) = a \cosh x b \sinh x$, where a and b are positive constants.
 - (a) Given that $b \ge a$, show that the curve with equation y = f(x) has no stationary points.
 - (b) In the case where a > 1 and b = 1, show that f(x) has a minimum value of $\sqrt{a^2 1}$. [6]

June 2009 qu. 6

Given that
$$\int_0^1 \frac{1}{\sqrt{16 + 9x^2}} dx + \int_0^2 \frac{1}{\sqrt{9 + 4x^2}} dx = \ln a, \quad \text{find the exact value of } a.$$
 [6]

6. June 2009 qu. 7

- (i) Sketch the graph of $y = \coth x$, and give the equations of any asymptotes. [3]
- (ii) It is given that $f(x) = x \tanh x 2$. Use the Newton-Raphson method, with a first approximation $x_1 = 2$, to find the next three approximations x_2 , x_3 and x_4 to a root of f(x) = 0. Give the answers correct to 4 decimal places. [4]
- (iii) If f(x) = 0, show that $\coth x = \frac{1}{2}x$. Hence write down the roots of f(x) = 0, correct to 4 decimal places.

7. June 2009 qu. 8

(i) Using the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} , show that

(a)
$$\cosh(\ln a) \equiv \frac{a^2 + 1}{2a}$$
, where $a > 0$, [3]

(b)
$$\cosh x \cosh y - \sinh x \sinh y \equiv \cosh(x - y)$$
. [3]

- (ii) Use part (i)(b) to show that $\cosh^2 x \sinh^2 x \equiv 1$. [1]
- iii) Given that R > 0 and a > 1, find R and a such that

$$13\cosh x - 5\sinh x \equiv R\cosh(x - \ln a).$$
 [5]

(iv) Hence write down the coordinates of the minimum point on the curve with equation $y = 13 \cosh x - 5 \sinh x$. [2]

8. <u>Jan 2009 qu.6</u>

(i) Using the definitions of $\cosh x$ and $\sinh x$ in terms of e^x and e^{-x} , show that

$$1 + 2\sinh^2 x \equiv \cosh 2x.$$
 [3]

(ii) Solve the equation $\cosh 2x - 5 \sinh x = 4$, giving your answers in logarithmic form. [5]

9. June 2008 qu. 4

- (i) Sketch, on the same diagram, the curves with equations $y = \operatorname{sech} x$ and $y = x^2$. [3]
- (ii) By using the definition of sech x in terms of e^x and e^{-x} , show that the x-coordinates of the points at which these curves meet are solutions of the equation $x^2 = \frac{2e^x}{e^{2x} + 1}.$ [3]

(iii) The iteration
$$x_{n+1} = \sqrt{\frac{2e^{x_n}}{e^{2x_n} + 1}}$$

can be used to find the positive root of the equation in part (ii). With initial value $x_1 = 1$, the approximations $x_2 = 0.8050$, $x_3 = 0.8633$, $x_4 = 0.8463$ and $x_5 = 0.8513$ are obtained, correct to 4 decimal places. State with a reason whether, in this case, the iteration produces a 'staircase' or a 'cobweb' diagram.

10. June 2008 qu. 7

It is given that $f(x) = \tanh^{-1}\left(\frac{1-x}{2+x}\right)$, for $x > -\frac{1}{2}$.

(i) Show that
$$f'(x) = \frac{1}{1+2x}$$
, and find $f''(x)$. [6]

(ii) Show that the first three terms of the Maclaurin series for f (x) can be written as $\ln a + bx + cx^2$, for constants a, b and c to be found. [4]

11. June 2008 qu. 8

(i) By using the definition of $\sinh x$ in terms of e^x and e^{-x} , show that

$$\sinh^{3} x = \frac{1}{4} \sinh 3x - \frac{3}{4} \sinh x.$$
 [4]

(ii) Find the range of values of the constant k for which the equation

$$\sinh 3x = k \sinh x$$
 has real solutions other than $x = 0$. [3]

(iii) Given that k = 4, solve the equation in part (ii), giving the non-zero answers in logarithmic form. [3]

12. June 2007 qu. 7

(i) Using the definitions of hyperbolic functions in terms of exponentials, prove that

$$\cosh x \cosh y - \sinh x \sinh y = \cosh(x - y).$$
 [4]

- (ii) Given that $\cosh x \cosh y = 9$ and $\sinh x \sinh y = 8$, show that x = y. [2]
- (iii) Hence find the values of x and y which satisfy the equations given in part (ii), giving the answers in logarithmic form. [4]

13. Jan 2007 qu.4

- (i) On separate diagrams, sketch the graphs of $y = \sinh x$ and $y = \operatorname{cosech} x$. [3]
- (ii) Show that cosech $x = \frac{2e^x}{e^{2x} 1}$, and hence, using the substitution $u = e^x$, find $\int \operatorname{cosech} x \, dx$. [6]

14. Jan 2007 qu.8

- (i) Define $\tanh y$ in terms of e^y and e^{-y} . [1]
- (ii) Given that $y = \tanh^{-1} x$, where -1 < x < 1, prove that $y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$. [3]
- (iii) Find the exact solution of the equation $3 \cosh x = 4 \sinh x$, giving the answer in terms of a logarithm. [2]
- (iv) Solve the equation $\tanh^{-1} x + \ln(1 x) = \ln\left(\frac{4}{5}\right)$. [3]

15. <u>June 2006 qu. 4</u>

- (i) Using the definition of $\cosh x$ in terms of e^x and e^{-x} , prove that $\cosh 2x = 2 \cosh^2 x 1$ [3]
- (ii) Hence solve the equation $\cosh 2x 7 \cosh x = 3$, giving your answer in logarithmic form. [4]

16. Jan 2006 qu.9

(i) Using the definitions of $\cosh x$ and $\sinh x$ in terms of e^x and e^{-x} , prove that

$$\sinh 2x = 2\sinh x \cosh x.$$
 [4]

(ii) Show that the curve with equation $y = \cosh 2x - 6\sinh x$

has just one stationary point, and find its x-coordinate in logarithmic form.

Determine the nature of the stationary point. [8]