Edexcel Maths C4

Topic Questions from Papers

Integration

(a) Express $\frac{5x+3}{(2x-3)(x+2)}$ in partial fractions.

(3)

(b) Hence find the exact value of $\int_{2}^{6} \frac{5x+3}{(2x-3)(x+2)} dx$, giving your answer as a single logarithm

iogarianii.		
		(5)
		(5)
		()

Leave	
blank	

Use the substitution <i>x</i>	$\int_0^{\frac{1}{2}} \frac{1}{(1-x^2)^{\frac{3}{2}}} dx.$		
			(7)

5.

Figure 1 shows the graph of the curve with equation

$$y = xe^{2x}, \qquad x \geqslant 0.$$

The finite region R bounded by the lines x = 1, the x-axis and the curve is shown shaded in Figure 1.

(a) Use integration to find the exact value for the area of R.

(5)

(b) Complete the table with the values of y corresponding to x = 0.4 and 0.8.

Х	0	0.2	0.4	0.6	0.8	1
$y = xe^{2x}$	0	0.29836		1.99207		7.38906

(1)

(c) Use the trapezium rule with all the values in the table to find an approximate value for this area, giving your answer to 4 significant figures.

(4)

uestion 5 continued		

2. (a) Given that $y = \sec x$, complete the table with the values of y corresponding to $x = \frac{\pi}{16}, \frac{\pi}{8}$ and $\frac{\pi}{4}$.

x	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$
y	1			1.20269	

(2)

(b) Use the trapezium rule, with all the values for y in the completed table, to obtain an estimate for $\int_0^{\frac{\pi}{4}} \sec x \, dx$. Show all the steps of your working, and give your answer to 4 decimal places.

(3)

The exact value of $\int_0^{\frac{\pi}{4}} \sec x \, dx$ is $\ln(1+\sqrt{2})$.

(c) Calculate the % error in using the estimate you obtained in part (b).

(2)

$\int_1^5 \frac{3x}{\sqrt{(2x-1)}} \mathrm{d}x.$	
	(8)

(8)

Leave blank

4. Figure 1

Figure 1 shows the finite shaded region, R, which is bounded by the curve $y = xe^x$, the line x = 1, the line x = 3 and the x-axis.

The region *R* is rotated through 360 degrees about the *x*-axis.

Use integration by parts to find an exact value for the **volume** of the solid generated.

3. Figure 1

The curve with equation $y = 3\sin\frac{x}{2}$, $0 \le x \le 2\pi$, is shown in Figure 1. The finite region enclosed by the curve and the *x*-axis is shaded.

(a) Find, by integration, the area of the shaded region.

(3)

This region is rotated through 2π radians about the *x*-axis.

(b) Find the volume of the solid generated.

(6)

6.

Figure 3

Figure 3 shows a sketch of the curve with equation $y = (x-1) \ln x$, x > 0.

(a) Complete the table with the values of y corresponding to x = 1.5 and x = 2.5.

х	1	1.5	2	2.5	3
у	0		ln 2		2 ln 3

Given that $I = \int_{1}^{3} (x-1) \ln x \, dx$,

- (b) use the trapezium rule
 - (i) with values of y at x = 1, 2 and 3 to find an approximate value for I to 4 significant figures,
 - (ii) with values of y at x = 1, 1.5, 2, 2.5 and 3 to find another approximate value for I to 4 significant figures.

(5)

(1)

(c) Explain, with reference to Figure 3, why an increase in the number of values improves the accuracy of the approximation.

(1)

(d) Show, by integration, that the exact value of $\int_{1}^{3} (x-1) \ln x \, dx$ is $\frac{3}{2} \ln 3$.

(6)

Question 6 continued	blank

2.

The curve with equation $y = \frac{1}{3(1+2x)}$, $x > -\frac{1}{2}$, is shown in Figure 1.

The region bounded by the lines $x = -\frac{1}{4}$, $x = \frac{1}{2}$, the x-axis and the curve is shown shaded in Figure 1.

This region is rotated through 360 degrees about the *x*-axis.

(a) Use calculus to find the exact value of the volume of the solid generated.

(5)

Figure 2 shows a paperweight with axis of symmetry AB where AB = 3 cm. A is a point on the top surface of the paperweight, and B is a point on the base of the paperweight. The paperweight is geometrically similar to the solid in part (a).

(b) Find the volume of this paperweight.

(2)

estion 2 continued	

8.

$$I = \int_0^5 e^{\sqrt{(3x+1)}} dx.$$

(a) Given that $y = e^{\sqrt{(3x+1)}}$, complete the table with the values of y corresponding to x = 2, 3 and 4.

x	0	1	2	3	4	5
у	e^1	e^2				e^4

(2)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the original integral *I*, giving your answer to 4 significant figures.

(3)

(c) Use the substitution $t = \sqrt{3x + 1}$ to show that *I* may be expressed as $\int_a^b kte^t dt$, giving the values of *a*, *b* and *k*.

(5)

(d) Use integration by parts to evaluate this integral, and hence find the value of *I* correct to 4 significant figures, showing all the steps in your working.

(5)

(Total 15 marks) TOTAL FOR PAPER: 75 MARKS	tion 8 continued	blan
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS		
TOTAL FOR PAPER: 75 MARKS	(T) 4 1 1 7	Q(
I		KS
END	END	

	$\int_0^1 \frac{2^x}{(2^x + 1)^2} \mathrm{d}x .$		
		(6)	

a) Find $\int x \cos 2x dx$.	(4)
b) Hence, using the identity $\cos 2x = 2\cos^2 x - 1$, deduce $\int x \cos^2 x dx$.	(3)

4.	$2(4x^2+1)$	В	C
	$\frac{1}{(2x+1)(2x-1)} = A +$		$\overline{(2x-1)}$

(a) Find the values of the constants A, B and C.

(4)

(b) Hence show that the exact value of $\int_{1}^{2} \frac{2(4x^2+1)}{(2x+1)(2x-1)} dx$ is $2 + \ln k$, giving the value of the constant k.

(6)

7.

Figure 1

Figure 1 shows part of the curve with equation $y = \sqrt{(\tan x)}$. The finite region R, which is bounded by the curve, the x-axis and the line $x = \frac{\pi}{4}$, is shown shaded in Figure 1.

(a) Given that $y = \sqrt{(\tan x)}$, complete the table with the values of y corresponding to $x = \frac{\pi}{16}$, $\frac{\pi}{8}$ and $\frac{3\pi}{16}$, giving your answers to 5 decimal places.

y 0 1	х	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$
	у	0				1

(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of the shaded region R, giving your answer to 4 decimal places.

(4)

The region R is rotated through 2π radians around the x-axis to generate a solid of revolution.

(c) Use integration to find an exact value for the volume of the solid generated.

(4)

	tion 7 continued	

1.

Figure 1

The curve shown in Figure 1 has equation $y = e^x \sqrt{(\sin x)}$, $0 \le x \le \pi$. The finite region *R* bounded by the curve and the *x*-axis is shown shaded in Figure 1.

(a) Complete the table below with the values of y corresponding to $x = \frac{\pi}{4}$ and $\frac{\pi}{2}$, giving your answers to 5 decimal places.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
у	0			8.87207	0

(2)

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region *R*. Give your answer to 4 decimal places.

/ A	`
(4	.)

(5)

Leave blank

3.

Figure 2

The curve shown in Figure 2 has equation $y = \frac{1}{(2x+1)}$. The finite region bounded by the

curve, the *x*-axis and the lines x = a and x = b is shown shaded in Figure 2. This region is rotated through 360° about the *x*-axis to generate a solid of revolution.

Find the volume of the solid generated. Express your answer as a single simplified fraction, in terms of a and b.

(i) Find $\int \ln(\frac{x}{2}) dx$.	(4)
$\int_{0}^{\frac{\pi}{2}}$	(4)
(ii) Find the exact value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx$.	
	(5)

1.

Figure 1

Figure 1 shows part of the curve with equation $y = e^{0.5x^2}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2.

(a) Complete the table with the values of y corresponding to x = 0.8 and x = 1.6.

х	0	0.4	0.8	1.2	1.6	2
у	e^0	$e^{0.08}$		$e^{0.72}$		e^2

(1)

(b) Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures.

1	1	`
•	. 🤊	1

2. (a) Use integration by parts to find $\int x e^x dx$.	
2. (a) Ose integration by parts to find $\int_{-\infty}^{\infty} e^{-tx} dx$.	(3)
(b) Hence find $\int x^2 e^x dx$.	
(b) Hence find $\int x e^{-x} dx$.	(3)

2.

Figure 1

Figure 1 shows part of the curve $y = \frac{3}{\sqrt{(1+4x)}}$. The region *R* is bounded by the curve, the x-axis, and the lines x = 0 and x = 2, as shown shaded in Figure 1.

(a) Use integration to find the area of R.

(4)

The region *R* is rotated 360° about the *x*-axis.

(b) Use integration to find the exact value of the volume of the solid formed.

(5)

Question 2 continued	bla

6. (a) Find $\int \tan^2 x \, dx$.

(2)

(b) Use integration by parts to find $\int \frac{1}{x^3} \ln x \, dx$.

(4)

(c) Use the substitution $u = 1 + e^x$ to show that

$$\int \frac{e^{3x}}{1+e^x} dx = \frac{1}{2}e^{2x} - e^x + \ln(1+e^x) + k,$$

(7)

where k is a constant.

	blank
Question 6 continued	Dialik

2.

Figure 1

Figure 1 shows the finite region *R* bounded by the *x*-axis, the *y*-axis and the curve with equation $y = 3\cos\left(\frac{x}{3}\right)$, $0 \le x \le \frac{3\pi}{2}$.

The table shows corresponding values of x and y for $y = 3\cos\left(\frac{x}{3}\right)$.

X	0	$\frac{3\pi}{8}$	$\frac{3\pi}{4}$	$\frac{9\pi}{8}$	$\frac{3\pi}{2}$
у	3	2.77164	2.12132		0

(a) Complete the table above giving the missing value of y to 5 decimal places.

(1)

(b) Using the trapezium rule, with all the values of y from the completed table, find an approximation for the area of R, giving your answer to 3 decimal places.

(4)

(c) Use integration to find the exact area of R.

(3)

nestion 2 continued	

3.
$$f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{x+3}$$

(a) Find the values of the constants A, B and C.

(4)

(b) (i) Hence find $\int f(x) dx$.

(3)

(ii) Find $\int_0^2 f(x) dx$ in the form $\ln k$, where k is a constant.

(3)

(2)

Leave blank

6. (a) Find $\int \sqrt{(5-x)} dx$.

Figure 3

Figure 3 shows a sketch of the curve with equation

$$y = (x - 1) \sqrt{(5 - x)}, \quad 1 \le x \le 5$$

(b) (i) Using integration by parts, or otherwise, find

$$\int (x-1)\sqrt{(5-x)}\,\mathrm{d}x$$

(4)

(ii) Hence find $\int_1^5 (x-1)\sqrt{(5-x)} dx$.

(2)

estion 6 continued	

8. (a) Using the identity $\cos 2\theta = 1 - 2\sin^2\theta$, find $\int \sin^2\theta \, d\theta$.

Figure 4

Figure 4 shows part of the curve C with parametric equations

$$x = \tan \theta$$
, $y = 2\sin 2\theta$, $0 \leqslant \theta < \frac{\pi}{2}$

The finite shaded region *S* shown in Figure 4 is bounded by *C*, the line $x = \frac{1}{\sqrt{3}}$ and the *x*-axis. This shaded region is rotated through 2π radians about the *x*-axis to form a solid of revolution.

(b) Show that the volume of the solid of revolution formed is given by the integral

$$k \int_0^{\frac{\pi}{6}} \sin^2 \theta \, d\theta$$

where k is a constant.

(5)

(c) Hence find the exact value for this volume, giving your answer in the form $p\pi^2 + q\pi\sqrt{3}$, where p and q are constants.

(3)

Question 8 continued		blank
		Q8
	(Total 10 marks)	
	TOTAL FOR PAPER: 75 MARKS	
EN	ND	

2.

Figure 1

Figure 1 shows a sketch of the curve with equation $y = x \ln x$, $x \ge 1$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 4.

The table shows corresponding values of x and y for $y = x \ln x$.

х	1	1.5	2	2.5	3	3.5	4
у	0	0.608			3.296	4.385	5.545

(a) Complete the table with the values of y corresponding to x = 2 and x = 2.5, giving your answers to 3 decimal places.

(2)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.

(4)

(c) (i) Use integration by parts to find $\int x \ln x \, dx$.

(ii) Hence find the exact area of R, giving your answer in the form $\frac{1}{4}(a \ln 2 + b)$, where a and b are integers.

(7)

uestion 2 continued	
	_
	_
	_
	_
	_
	_
	-
	_
	-
	-
	-
	-
	_
	_
	_
	_
	_
	_
	-
	-
	-
	-
	_
	_
	_
	_

8. (a) Using the substitution $x = 2\cos u$, or otherwise, find the exact value of

$$\int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{(4-x^2)}} \, \mathrm{d}x$$

(7)

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = \frac{4}{x(4-x^2)^{\frac{1}{4}}}$, 0 < x < 2.

The shaded region S, shown in Figure 3, is bounded by the curve, the x-axis and the lines with equations x = 1 and $x = \sqrt{2}$. The shaded region S is rotated through 2π radians about the x-axis to form a solid of revolution.

(b) Using your answer to part (a), find the exact volume of the solid of revolution formed.

(3)

uestion 8 continued		Lea bla
		(
	(Total 10 marks)	

1.

Figure 1

Figure 1 shows part of the curve with equation $y = \sqrt{(0.75 + \cos^2 x)}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation $x = \frac{\pi}{3}$.

(a) Complete the table with values of y corresponding to $x = \frac{\pi}{6}$ and $x = \frac{\pi}{4}$.

х	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
у	1.3229	1.2973			1

(b) Use the trapezium rule

(i) with the values of y at x = 0, $x = \frac{\pi}{6}$ and $x = \frac{\pi}{3}$ to find an estimate of the area of R. Give your answer to 3 decimal places.

(ii) with the values of y at x = 0, $x = \frac{\pi}{12}$, $x = \frac{\pi}{6}$, $x = \frac{\pi}{4}$ and $x = \frac{\pi}{3}$ to find a further estimate of the area of R. Give your answer to 3 decimal places.

(6)

(2)

uestion 1 continued	

$\int_0^{\frac{\pi}{2}} e^{\cos x + 1} \sin x dx = e(e - 1)$	
\mathbf{J}_0	
	(6)

physicoanamamstator.com	
Use integration to find the exact value of	
$\int_{0}^{\frac{\pi}{2}}$	
$\int_{0}^{2} x \sin 2x dx$	
	(6)
	(6)

6. The curve C has parametric equations

$$x = \ln t$$
, $y = t^2 - 2$, $t > 0$

Figure 1

The finite area R, shown in Figure 1, is bounded by C, the x-axis, the line $x = \ln 2$ and the line $x = \ln 4$. The area R is rotated through 360° about the x-axis.

(c) Use calculus to find the exact volume of the solid generated.

-		1
-	h	. 1

Question 6 continued	blank

7.

$$I = \int_{2}^{5} \frac{1}{4 + \sqrt{(x - 1)}} \, \mathrm{d}x$$

(a) Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, complete the table below with values of y corresponding to x = 3 and x = 5. Give your values to 4 decimal places.

х	2	3	4	5
y	0.2		0.1745	

(2)

(b) Use the trapezium rule, with all of the values of *y* in the completed table, to obtain an estimate of *I*, giving your answer to 3 decimal places.

(4)

(c) Using the substitution $x = (u-4)^2 + 1$, or otherwise, and integrating, find the exact value of I.

(8)

	Leave blank
Question 7 continued	
	Q7
(Total 14 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

4.

Figure 2

Figure 2 shows a sketch of the curve with equation $y = x^3 \ln(x^2 + 2)$, $x \ge 0$. The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis and the line $x = \sqrt{2}$.

The table below shows corresponding values of x and y for $y = x^3 \ln(x^2 + 2)$.

λ	ĸ	0	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{3\sqrt{2}}{4}$	√2
J	V	0		0.3240		3.9210

(a) Complete the table above giving the missing values of y to 4 decimal places.

(2)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.

(3)

(c) Use the substitution $u = x^2 + 2$ to show that the area of R is

$$\frac{1}{2} \int_{2}^{4} (u - 2) \ln u \, du \tag{4}$$

(d) Hence, or otherwise, find the exact area of R.

(6)

	blank
Question 4 continued	

7.

Figure 3

Figure 3 shows part of the curve C with parametric equations

$$x = \tan \theta$$
, $y = \sin \theta$, $0 \le \theta < \frac{\pi}{2}$

The point *P* lies on *C* and has coordinates $\left(\sqrt{3}, \frac{1}{2}\sqrt{3}\right)$.

(a) Find the value of θ at the point P.

(2)

The finite shaded region *S* shown in Figure 3 is bounded by the curve *C*, the line $x = \sqrt{3}$ and the *x*-axis. This shaded region is rotated through 2π radians about the *x*-axis to form a solid of revolution.

(c) Find the volume of the solid of revolution, giving your answer in the form $p\pi\sqrt{3+q\pi^2}$, where p and q are constants.

(7)

estion 7 continued		

		Lea
		bla
2. (a) Use integration by parts to find $\int x \sin 3x dx$.		
2. (a) Ose integration by parts to find $\int x \sin 3x dx$.	(3)	
	(3)	
(b) Using your answer to part (a), find $\int x^2 \cos 3x dx$.		
(b) Using your answer to part (a), third Jx cos 3x dx.	(3)	
	(3)	
		1

4.

Figure 1

Figure 1 shows the curve with equation

$$y = \sqrt{\left(\frac{2x}{3x^2 + 4}\right)}, \ x \geqslant 0$$

The finite region S, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 2

The region *S* is rotated 360° about the *x*-axis.

Use integration to find the exact value of the volume of the solid generated, giving your answer in the form $k \ln a$, where k and a are constants.

-	_
-	-
	71

6.

Figure 3

Figure 3 shows a sketch of the curve with equation $y = \frac{2\sin 2x}{(1+\cos x)}$, $0 \le x \le \frac{\pi}{2}$.

The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

The table below shows corresponding values of x and y for $y = \frac{2\sin 2x}{(1+\cos x)}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
у	0		1.17157	1.02280	0

(a) Complete the table above giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places.

(3)

(c) Using the substitution $u = 1 + \cos x$, or otherwise, show that

$$\int \frac{2\sin 2x}{(1+\cos x)} \, dx = 4\ln(1+\cos x) - 4\cos x + k$$

where k is a constant.

(5)

(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.

(3)

	blank
Question 6 continued	

1	f(x) -	1 _	A	В	C
1,	$\Gamma(\lambda)$ –	$\frac{1}{x(3x-1)^2} =$	\bar{x}	$\overline{(3x-1)}^{T}$	$(3x-1)^2$

(a) Find the values of the constants A, B and C.

(4)

(b) (i) Hence find $\int f(x) dx$.

(ii) Find $\int_{1}^{2} f(x) dx$, leaving your answer in the form $a + \ln b$, where a and b are constants.

(6)

7.

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = x^{\frac{1}{2}} \ln 2x$.

The finite region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the lines x = 1 and x = 4

(a) Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of R, giving your answer to 2 decimal places.

(4)

(b) Find $\int x^{\frac{1}{2}} \ln 2x \, dx$.

(4)

(c) Hence find the exact area of R, giving your answer in the form $a \ln 2 + b$, where a and b are exact constants.

(3)

uestion 7 continued		
		_
		_

$$\int \frac{1}{x^3} \ln x \, \mathrm{d}x$$

(5)

$$\int_{1}^{2} \frac{1}{x^{3}} \ln x \, \mathrm{d}x$$

(2)

4

4.

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \frac{x}{1 + \sqrt{x}}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the line with equation x = 1 and the line with equation x = 4.

(a) Complete the table with the value of y corresponding to x = 3, giving your answer to 4 decimal places.

(1)

х	1	2	3	4
у	0.5	0.8284		1.3333

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate of the area of the region R, giving your answer to 3 decimal places.

(3)

(c) Use the substitution $u = 1 + \sqrt{x}$, to find, by integrating, the exact area of R.

(8)

Question 4 continued	blank
Question 4 continued	

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = 1 - 2\cos x$, where x is measured in radians. The curve crosses the x-axis at the point A and at the point B.

(a) Find, in terms of π , the x coordinate of the point A and the x coordinate of the point B. (3)

The finite region S enclosed by the curve and the x-axis is shown shaded in Figure 3. The region S is rotated through 2π radians about the x-axis.

(b) Find, by integration, the exact value of the volume of the solid generated. (6)

Question 6 continued	blank
Question o continueu	

blank

3.	Using the substitution $u = 2 + \sqrt{(2x + 1)}$, or other suitable substitutions, find the	exact
	value of	

$$\int_0^4 \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x$$

giving your answer in the form $A + 2 \ln B$, where A is an integer and B is a positive constant.

(8)

5.

Figure 1

Figure 1 shows part of the curve with equation $x = 4te^{-\frac{1}{3}t} + 3$. The finite region R shown shaded in Figure 1 is bounded by the curve, the x-axis, the t-axis and the line t = 8.

(a) Complete the table with the value of x corresponding to t = 6, giving your answer to 3 decimal places.

t	0	2	4	6	8
X	3	7.107	7.218		5.223

(1)

(b) Use the trapezium rule with all the values of x in the completed table to obtain an estimate for the area of the region R, giving your answer to 2 decimal places.

(3)

(c) Use calculus to find the exact value for the area of R.

(6)

(d) Find the difference between the values obtained in part (b) and part (c), giving your answer to 2 decimal places.

(1)

nestion 5 continued		
		1

7.

Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 27 \sec^3 t, \ y = 3 \tan t, \qquad 0 \leqslant t \leqslant \frac{\pi}{3}$$

- (a) Find the gradient of the curve C at the point where $t = \frac{\pi}{6}$
- (b) Show that the cartesian equation of C may be written in the form

$$y=(x^{\frac{2}{3}}-9)^{\frac{1}{2}},$$

 $a \leqslant x \leqslant b$

stating the values of a and b.

(3)

(4)

Figure 3

The finite region R which is bounded by the curve C, the x-axis and the line x = 125 is shown shaded in Figure 3. This region is rotated through 2π radians about the x-axis to form a solid of revolution.

(c) Use calculus to find the exact value of the volume of the solid of revolution.

(5)

estion 7 continued	

Leave blank	

(b) Hence find the exact value of $\int_0^1 x^2 e^x dx$.	
J ()	(2)

3.

Figure 1

Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line $x = \frac{\pi}{2}$ and the curve with equation

$$y = \sec\left(\frac{1}{2}x\right), \quad 0 \leqslant x \leqslant \frac{\pi}{2}$$

The table shows corresponding values of x and y for $y = \sec\left(\frac{1}{2}x\right)$.

X	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
y	1	1.035276		1.414214

(a) Complete the table above giving the missing value of y to 6 decimal places.

(1)

(b) Using the trapezium rule, with all of the values of y from the completed table, find an approximation for the area of R, giving your answer to 4 decimal places.

(3)

Region R is rotated through 2π radians about the x-axis.

(c) Use calculus to find the exact volume of the solid formed.

(4)

estion 3 continued		

5. (a) Use the substitution $x = u^2$, u > 0, to show that

$$\int \frac{1}{x(2\sqrt{x}-1)} dx = \int \frac{2}{u(2u-1)} du$$

(b) Hence show that

$$\int_{1}^{9} \frac{1}{x(2\sqrt{x} - 1)} \, \mathrm{d}x = 2\ln\left(\frac{a}{b}\right)$$

where a and b are integers to be determined.

-	7	١
(/)

(3)

estion 5 continued	

Candidates sitting C4 may also require those formulae listed under Core Mathematics C1, C2 and C3.

Integration (+ constant)

$$f(x) \qquad \int f(x) dx$$

$$\sec^2 kx \qquad \frac{1}{k} \tan kx$$

$$\tan x \qquad \ln|\sec x|$$

$$\cot x \qquad \ln|\sin x|$$

$$\csc x \qquad -\ln|\csc x + \cot x|, \quad \ln|\tan(\frac{1}{2}x)|$$

$$\sec x \qquad \ln|\sec x + \tan x|, \quad \ln|\tan(\frac{1}{2}x + \frac{1}{4}\pi)|$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx
$$k \sec^2 kx$$

sec x $\sec x \tan x$
cot x $-\csc^2 x$
cosec x $-\csc x \cot x$

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$