1 **Functions**

- A function is a rule which generates exactly ONE OUTPUT for EVERY INPUT. To be defined fully the function has
 - a RULE tells you how to calculate the output from the input a DOMAIN – the set of values which will be used as inputs

e.g. $f(x) = \sqrt{x}$ domain $x \ge 0$ (cannot find the square root of negative values)

ALTERNATIVE NOTATION

 $f: x \mapsto x^2$ means function f such that x maps to x^2 input x is converted to output x²

x can be any real number $x \in \mathbb{R}$

There are different types of functions

MANY-ONE y=

2 different inputs give the same output

ONE-ONE

$$y = 2x + 3$$

for each output there is only one possible input

- The RANGE of a function is the complete set of all of the OUTPUTS
- An INVERSE function is denoted by f⁻¹.

ONLY ONE-ONE FUNCTIONS HAVE INVERSES

The DOMAIN of an inverse function is the RANGE of the function

e.g. The function f is defined by $f(x) = \frac{3}{2x-1}$ find $f^{-1}(x)$

Step 1: Write the rule in terms of x and y

$$y = \frac{3}{2x - 1}$$

Step 2: Rearrange to make x the subject

$$x = \frac{3+y}{2y}$$

Step 3: Replace the y's with x's

$$f^{-1}(x) = \frac{3+x}{2x}$$

Using the same scale on the x and y axis, the graphs of a function and it's inverse have reflection symmetry in the line y = x

COMPOSITE FUNCTIONS

The function gf is called a **composite** function and tells you to' do f first then gf(x)

e.g.
$$f(x) = 2x + 3$$
 $g(x) = x^2 + 2$

$$gf(x) = (2x+3)^2 + 2$$
 $fg(x) = 2(x^2 + 2) + 3$
 $gf(x) = 4x^2 + 12x + 11$ $fg(x) = 2x^2 + 7$

$$fg(x) = 2(x^2 + 2) + 3$$

$$fg(x) = 2x^2 + 7$$

2 The Modulus function

- |x| is the 'modulus of x' or the 'absolute value'
- The modulus of a real number can be thought of as its' distance' from 0 and it is always positive.

The graph of y = |f(x)| is

y = |x - 3| translation

To sketch the graph of y = |(fx)| first sketch the graph of y = f(x) Take any part of the graph that is below the x-axis and reflect it in the x-axis.

SOLVING EQUATIONS

Always sketch the graph before you start to determine the number of solutions

A function is defined by f(x) = |2x+1| - 3Solve the inequality f(x) < x

The graphs shows 2 solutions

$$(2x+1) - 3 = x$$
 $- (2x + 1) - 3 = x$

$$2x - 2 = x \qquad -2x - 4 = x$$

$$x = 2$$
 or $x = -\frac{4}{3}$

3 Transforming Graphs

- TRANSLATION to find the equation of a graph after a translation of a graph after a translation of b you replace x by (x-a) and y by (y b)
 - e.g. The graph of y = x^2 -1 is translated through $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Write down the equation of

the graph formed.

$$(y + 2) = (x-3)^2 - 1$$

 $y = x^2 - 6x + 6$

• REFLECTING

Reflection in the x-axis, replace y with -y Reflection in the y-axis, replace x with -x

• STRETCHING

Stretch of factor k in the x direction replace x by $\frac{1}{k}$ x

 $y = f(\frac{1}{k}x)$ $y = f(\frac{1}{k}x)$ y = kf(x)

Stretch of factor k in the y direction replace y by $\frac{1}{k}$ y

• COMBINING TRANSFORMATIONS

When applying 2 transformations the order does not matter if one involves replacing x and the other replacing y. If both transformations involve replacing x (or y) then the order could matter

e.g. The graph of $y = x^2$ is first translated by $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$ and then reflected in the y-axis

Find the equation of the final image.

Translation
$$y = (x - 3)^2$$

Reflection $y = (-x - 3)^2$
 $y = (x + 3)^2$

4 TRIGONOMETRY INVERSE FUNCTIONS

$$y = \sin^{-1} x$$
 arcsin x or asin x
domain $-1 \le x \le 1$
range $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$y = \cos^{-1} x$$
 arccos x or acos x domain $-1 \le x \le 1$

range
$$0 \le y \le \pi$$

$$y = tan^{-1} x$$
 arctan x or atan x

domain $x \in R$

range
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

2

sec x is defined as $\frac{1}{\cos x}$ y = sec x has domain x \in

$$x \in R$$
 $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}$

and range $y \le -1$ and $y \ge 1$

cosec c is defined as $\frac{1}{\sin x}$ y = cosec x has domain $x \in R$ $x \neq 0, \pm \pi, \pm 2\pi, \pm 3\pi$

and range $y \le -1$ and $y \ge 1$

5 Natural Logarithms and e^x

- e is an irrational; its value is 2.718281828 correct to 9 decimal places
- Natural Logarithms use e as a base and we write $log_e x$ as ln x

$$e^x = y \Rightarrow x = \ln y$$

e.g. Solve the equation $e^{-5x} - 3 = 0$

$$e^{-5x} = 3$$

$$-5x = \ln 3$$

$$x = -\frac{1}{5}\ln^3$$

$$= -0.2197$$

If the question asks for an exact answer do not change into decimals

• $e^x = y \Rightarrow x = \ln y$ so e^x and $\ln x$ are inverse functions

e^x is positive for all x so In x is defined only for positive values of x

e.g The function g is defined by $g(x) = 2e^{x-5} + 3$ for all real x. Find and expression for $g^{-1}(x)$ and state it's domain and range.

$$y = 2e^{x-5} + 3$$

$$y - 3 = 2e^{x-5}$$

$$\frac{1}{2}(y - 3) = e^{x-5}$$

$$\ln(\frac{1}{2}(y - 3)) = x - 5$$

$$\ln(\frac{1}{2}(y - 3)) + 5 = x$$

$$g^{-1}(x) = \ln(\frac{1}{2}(x-3)) + 5$$

The range of g is g(x) > 3 so the domain of $g^{-1}(x)$ is x > 3The domain of g is all real values of x so the range $g^{-1}(x)$ is all real values

Transformation of graphs

e.g. Describe the sequence of geometrical transformations needed to obtain the graph of $y = 2e^{-x}$ from the graph of $y = e^{x}$.

Reflection in the y-axis gives $y = e^{-x}$ Stretch factor of 2 in the y direction gives $y = 2e^{-x}$

6 Differentiation

Key points from C1 and C2

- \rightarrow The derivative of $x^n = nxn^{-1}$
- ightharpoonup If f'(a) > 0, f is increasing at x = a. If f'(a) < 0, f is decreasing at x = a
- \triangleright The points where f'(a) = 0 are called stationary points

If f''(a) > 0 then x = a is a local minimum

If f''(a) < 0 then x = a is a local maximum

- The derivative of e^x is e^x
- The derivative of ln x is $\frac{1}{x}$

e.g. If
$$f(x) = e^x + ln(2x^3)$$
 find $f'(x)$
 $f(x) = e^x + ln2 + 3lnx$

$$f'(x) = e^x + \frac{3}{x}$$

Product Rule

If
$$y = uv$$
 then $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

Quotient Rule

If
$$y = \frac{u}{v}$$
 then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Chain Rule

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

Find $\frac{dy}{dx}$ given that ln (1 + x^2)

Let $u = 1 + x^2$ so $v = \ln u$

$$\frac{du}{dx} = 2x$$
 $\frac{dy}{du} = \frac{1}{u}$

$$\frac{dy}{dx} = \frac{2x}{1+x^2}$$

Differentiating sin x, cos x and tan x

The derivative of $\sin x$ is $\cos x$.

The derivative of cos x is -sin x

The derivative of tan x is sec² x

- The derivative of f(ax) is af' (ax)
- The derivative of f(ax+b) is af' (ax + b)

e.g. Find f'(x) given that $f(x) = \sin 3x \cos 2x$ Let u=sin 3x and v=cos 2x

$$\frac{du}{dx} = 3\cos 3x \qquad \frac{dv}{dx} = -2\sin 2x \qquad \qquad \frac{dy}{dx} = (\sin 3x)(-2\sin 2x) + (\cos 2x)(3\cos 3x)$$

$$\frac{dy}{dx} = 3\cos 2x\cos 3x - 2\sin 2x\sin 3x$$

Integration 7

Key points from C1 and C2

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\int_{b}^{a} f(x) dx$$

 $\int_{b}^{a} f(x) dx$ Gives the area under the graph of y=f(x) between x=a and x=b

Areas below the x-axis are negative

Key integrals TO LEARN

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int \frac{1}{ax + b} dx = \frac{1}{a} \ln|ax + b| + c$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + c$$

$$\int \cos ax dx = \frac{1}{a} \sin ax + c$$

Integration by SUBSTITUTION

e.g. Use the substitution
$$u = 1-x^2$$
 to find
$$\int x\sqrt{1-x^2}$$
First find du in terms of dx
$$\frac{du}{dx} = -2x \quad \text{so} \quad du = -2x dx$$

Rewrite the function in terms of u and du

$$\int x\sqrt{1 - x^2} \, dx = -\frac{1}{2} \int \sqrt{1 - x^2} \, (-2x) dx$$
$$= -\frac{1}{2} \int \sqrt{u} \, du = -\frac{1}{2} \int u^{-\frac{1}{2}} \, du$$

Carry out the integration in terms of u

$$= -\frac{1}{2} \left(\frac{2}{3} u^{\frac{3}{2}} \right) + c = -\frac{1}{3} u^{\frac{3}{2}} + c$$

Rewrite the result in terms of x

$$-\frac{1}{3}(1-x^2)^{\frac{3}{2}}+c$$

Integration by parts

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx + c$$

e.g. Find
$$\int x e^{5x} dx$$

Let
$$u = x$$
 and $\frac{dv}{dx} = e^{5x}$
 $\frac{du}{dx} = 1$ $v = \frac{1}{5}e^{5x}$

$$\int xe^{5x} = \frac{x}{5}e^{5x} - \int \frac{1}{5}e^{5x} dx$$
$$= \frac{x}{5}e^{5x} - \frac{1}{25}e^{5x} + c$$

• Integrating $\frac{f'(x)}{f(x)}$ (the numerator is a multiple of the derivative of the denominator)

$$\int \frac{f'(x)}{f(x)} = \ln|f(x)| + c$$
e.g. Find
$$\int \frac{x^3}{x^4 + 1} dx$$

The derivative of the denominator, x^4+1 is $4x^3$, so think of the numerator as $\frac{1}{4}(4x^3)$

$$\int \frac{x^3}{x^4 + 1} dx = \frac{1}{4} \int \frac{4x^3}{x^4 + 1} dx = \frac{1}{4} \ln|x^4 + 1| + c$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a} \right) + c$$

STANDARD INTEGRALS TO LEARN

8 Solids of Revolution

• Revolution about the x-axis

The volume of a solid of revolution about the x-axis between x = a and x = b is

given by
$$\int_{a}^{b} \pi y^{2} dx$$

• Revolution about the y-axis

The volume of a solid of revolution about the y-axis between y = a and y = b is

given by
$$\int_{a}^{b} \pi x^{2} dy$$

e.g. The region shown is rotated through 2π radians about the y axis. Find the volume of the solid generated.

First express x^2 in terms of y

$$y = \frac{1}{8}x^3 \implies 8y = x^3 \implies 2y^{\frac{1}{8}} = x \implies x^2 = 4y^{\frac{2}{8}}$$

When x = 0 y = 0 when x = 2 y = 1

Volume =
$$\int_0^1 \pi x^2 dy = \int_0^1 \sqrt[4]{y^3} dy = 4\pi \left[\frac{3\frac{5}{3}}{5y} \right] = \frac{12}{5}\pi$$

9 Numerical Methods

• Change of sign

For an equation f(x) = 0, if $f(x_1)$ and $f(x_2)$ have opposite signs and f(x) is continuous between x_1 and x_2 , then a root (solution) of the equation lies between x_1 and x_2

• Staircase and Cobweb Diagrams

If an **iterative** formula (**recurrence relation**) of the form $x_{n+1} = f(x_n)$ converges to a limit, the value of the limit is the x-coordinate of the point of intersection of the graphs y=f(x) and y=x

The limit is therefore the solution of the equation f(x) = x

A **staircase** or **cobweb** diagram based on the graphs of y = f(x) and y = x illustrates the convergence

e.g Solve the equation $x^3 - 12x + 12 = 0$

First we will write it in the form x = f(x)

$$x^3 + 12 = 12x \Rightarrow \frac{x^3}{12} + 1 = x$$

Plotting the graphs $y = \frac{x^3}{12} + 1$ and y = x

the solution is the point of intersection of the two graphs.

We can confirm that there is a point of intersection between x = 1 and x = 2 by a change of sign the values are substituted.

Substituting
$$x = 2$$
 into $y = \frac{x^3}{12} + 1$ gives $y = 1.66...$ (shown on the diagram)

Substituting x = 1.66.... y = 1.38...

Repeating this the values converge to 1.1157

The solution of $x^3 - 12x + 12 = 0$ is x = 1.1157

• The mid-ordinate Rule (Numerical Integration)

Gives and approximation to the area under a graph.

The area is divided into strips of equal width.

The value of the function halfway across each strip (the mid-ordinate) is calculated

Total area = width of strip x sum of mid-ordinates

X	Υ
2.5	ln 2.5
3.5	In 3.5
4.5	In 4.5
5.5	In 5.5

• Simpson's Rule

Gives a more accurate approximation to the area under a graph.

An **even** number of strips of equal width are used.

The ordinates $y_0, y_1, y_2,...$ are the values of the function on the vertical edges of the strips. The area is given by

$$\frac{1}{3}$$
h(sum of end ordinates + 4 x sum of **odd** ordinates +

2 x sum of remaining **even** ordinates)