APIls on Rails

APIs on Rails

Building REST APIs with Rails

Abraham Kuri

i

Contents

About the author
Copyright and license

1 Introduction
1.1 Conventionsonthisbook
1.2 Gettingstarted o
1.2.1 Development environments
1.3 Initializing the project
1.3.1 Installing PoworPrax
1.3.2 Gemfileand Bundler
1.4 VersionControl
1.5 Conclusion s

2 The API
2.1 Planning the application
2.2 Settingthe APT
2.2.1 Routes, Constraints and Namespaces
222 Apiversioningo e
2.2.3 Improving the versioning
23 Conclusion Lo

3 Presenting the users
3.1 Usermodel
3.1.1 Firstusertests,

CONTENTS

3.1.2 Improving validation tests 37
3.2 Buildingusersendpoints 38
3.2.1 Testing endpoints with CURL 42
322 Creatin@ usSers. v v v v v v v v v e e 43
3.2.3 Updatingusers 46
3.2.4 Destroying USerS v v v v v v v v v e e 48
3.3 Integrating Sabisu 0. 50
34 Conclusion 54
Refactoring tests 57
4.1 Refactoring the jsonresponse 60
4.2 Refactoring the formatparam 62
4.3 Refactor before actions 63
44 Conclusion e 66
Authenticating users 67
5.1 Stateless and signin failure 68
5.1.1 Authenticationtoken 68
5.1.2 Sessionscontroller 71
52 CurrentUser. i e 76
5.3 Authenticate withtoken 79
54 Authorizeactions 0. 81
5.5 Conclusion 86
User products 87
6.1 Productmodel 88
6.1.1 Productbarebones 88
6.1.2 Product validations 90
6.1.3 Product/User association 91
6.2 Productsendpoints 95
6.2.1 Show action for products 96
6.2.2 Productslist. 98
6.2.3 Exploring with Sabisu 99

6.2.4 Creatingproducts 100

CONTENTS

7

6.2.5 Updating products
6.2.6 Destroying products
6.3 Populating the database
6.4 Conclusion

JSON with Active Model Serializers
7.1 Settingupthegem
7.2 Serialisetheusermodel 000
7.3 Serialise the productmodel
T4 SesSIONSo e e e e e
7.5 Serializing associations L.
7.5.1 Embeding productsonusers
7.6 Searching products Lo
7.6.1 Bykeyword L.
7.62 Byprice.
7.6.3 Sortbycreation
7.64 Searchengine
7.7 Conclusion o

Placing Orders
8.1 Modelingtheorder
8.1.1 Ordersand Products
8.2 Userorders
8.3 Exposingtheordermodel
8.3.1 Renderasingleorder
8.3.2 Placingandorder
8.4 Customizing the Order jsonoutput
8.5 Send order confirmationemail
8.6 Conclusion e

Improving orders

9.1 Decrementing the product quantity
9.1.1 Extending the Placement model

9.2 Validation for productonstock

103
106
108
110

111
113
113
117
120
121
126
129
130
131
134
135
138

139
140
141
144
146
148
151
156
159
163

vi CONTENTS
9.3 Updatingthetotal 177
94 Conclusion 178

10 Optimization 179
10.1 Pagination 180

10.1.1 Products, 180
10.1.2 Orders o 185
10.1.3 Refactoring pagination 186
10.2 BackgroundJobs oo 189
103 APICaching. 191
104 Conclusion L 193

About the author

Abraham Kuri is a Rails developer with 5 years experience. His experience
includes working as a freelancer building software products and more recently
to collaborate into the open source community. He developed Furatto a front
end framework built with Sass, Sabisu the next generation api explorer for your
Rails app and have collaborated on other projects. He is a Computer Science
graduate of ITESM and founded two companies in Mexico (Icalia Labs and
Codeando Mexico).

Vil

https://twitter.com/kurenn
http://icalialabs.github.io/furatto/
https://github.com/IcaliaLabs/sabisu-rails
http://itesm.mx/
http://icalialabs.com
http://codeandomexico.org/

viil ABOUT THE AUTHOR

Copyright and license

APD’s on Rails: Building REST API’s with Rails. Copyright I' 2014 by Abra-
ham Kuri. All source code in the tutorial is available jointly under the MIT
License and the Beerware License.

The MIT License
Copyright (c) 2014 Abraham Kuri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

/*

*

* "THE BEER-WARE LICENSE" (Revision 42):

* Abraham Kuri wrote this code. As long as you retain this notice you

* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return.

*

*/

1X

http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://people.freebsd.org/~phk/

COPYRIGHT AND LICENSE

Chapter 1

Introduction

Welcome to APIs on Rails a tutorial on steroids on how to buid your next
API with Rails. The goal of this book is to provide an answer on how to de-
velop a RESTful API following the best practices out there, along with my
own experience. By the time you are done with API’s on Rails you should
be able to build your own API and integrate it with any clients such as a
web browser or your next mobile app. The code generated is built on top of
Rails 4 which is the current version, for more information about this check out
http://rubyonrails.org/. The most up-to-date version of the API’s on Rails can
be found on http://apionrails.icalialabs.com; don’t forget to update your offline
version if that is the case.

The intention with this book it’s not teach just how to build an API with
Rails rather to teach you how to build scalable and maintanable API with Rails,
which means taking your current Rails knowledge to the next level when on this
approach. In this journey we are going to take, you will learn to:

e Build JSON responses
» Use Git for version controlling
 Testing your endpoints

e Optimize and cache the API

http://icalialabs.com
http://rubyonrails.org/
http://apionrails.icalialabs.com

2 CHAPTER 1. INTRODUCTION

I highly recommend you go step by step on this book, try not to skip chap-
ters, as I mention tips and interesting facts for improving your skills on each on
them. You can think yourself as the main character of a video game and with
each chapter you’ll get a higher level.

In this first chapter I will walk you through on how to setup your environ-
ment in case you don’t have it already. We’ll then create the application called
market_place_api. I'll emphasize all my effort into teaching you all the
best practices I've learned along the years, so this means right after initializ-
ing(Section 1.3) the project we will start tracking it with Git (Section 1.4).

In the next chapters we will be building the application to demonstrate a
simple workflow I use on my daily basis. We’ll develop the whole application
using test driven development (TDD), getting started by explaining why you
want to build an API’s for your next project and decising wheter to use JSON
or XML as the response format. From Chapter 3 to Chapter 8 we’ll get our
hands dirty and complete the foundation for the application by building all
the necessary endpoints, securing the API access and handling authentication
through headers exchange. Finally on the last chapter (Chapter 11) we’ll add
some optimization techniques for improving the server responses.

The final application will scratch the surface of being a market place where
users will be able to place orders, upload products and more. There are plenty
of options out there to set up an online store, such as Shopify, Spree or Ma-
gento.

By the end or during the process(it really depends on your expertise), you
will get better and be able to better understand some of the bests Rails resources
out there. I also took some of the practices from these guys and brought them
to you:

e Railscasts

¢ CodeSchool

 Json api

http://shopify.com
http://spreecommerce.com/
http://magento.com
http://magento.com
http://railscasts.com
http://codeschool.com
http://jsonapi.org/format/

1.1. CONVENTIONS ON THIS BOOK 3

1.1 Conventions on this book

The conventions on this book are based on the ones from Ruby on Rails Tuto-
rial. In this section I’ll mention some that may not be so clear.

I’1ll be using many examples using command-line commands. I won’t deal
with windows emd (sorry guys), so I'll based all the examples using Unix-style
command line prompt, as follows:

$ echo "A command-line command"
A command-line command

I’1ll be using some guidelines related to the language, what I mean by this
1s:

e “Avoid” means you are not supposed to do it

* “Prefer” indicates that from the 2 options, the first it’s a better fit

e “Use” means you are good to use the resource

If for any reason you encounter some errors when running a command,
rather than trying to explain every possible outcome, I’ll will recommend you
to ‘google it’, which I don’t consider a bad practice or whatsoever. But if you
feel like want to grab a beer or have troubles with the tutorial you can always
shout me tweet or email me. I’'m always willing to know you guys!

1.2 Getting started

One of the most painful parts for almost every developer is setting everything
up, but as long as you get it done, the next steps should be a piece of cake and
well rewarded. So as an attempt to make this easier and keep you motivated we
will be using a bash script I manage put together called Kaishi, it includes all
the necessary tools (Box 1.1) and more to setup your development environment,
it currently only works for Mac OS:

http://www.railstutorial.org/book/beginning#sec-conventions
http://www.railstutorial.org/book/beginning#sec-conventions
http://twitter.com/kurenn
mailto:kurenn@icalialabs.com
http://icalialabs.github.io/kaishi/

4 CHAPTER 1. INTRODUCTION

Box 1.1. Kaishi development tools

* oh-my-zsh as your default shell

* Homebrew for managing packages

e Git for version controlling

» Postgresql as the database manager

* Vim for text editing

» ImageMagick for images processing

* Rbenv for managing the ruby environment

e Bundler gem

* Foreman for running apps

* Rails gem for creating any rails app

* Heroku toolbelt to interact with the Heroku API
* RailsAppCustomGenerator for initializing any Rails app with Icalia’s flavor

e Pow to run local apps locally like a superhero

1.2.1 Development environments

Text editors and Terminal
There are many cases in which development environments may differ from
computer to computer. That is not the case with text editors or IDE’s. I think

https://github.com/robbyrussell/oh-my-zsh
http://brew.sh/
http://git-scm.com/
http://www.postgresql.org/
http://www.vim.org/
http://www.imagemagick.org/
https://github.com/sstephenson/rbenv
http://bundler.io/
https://github.com/ddollar/foreman
http://rubyonrails.org/
https://toolbelt.heroku.com/
https://github.com/IcaliaLabs/railsAppCustomGenerator
http://pow.cx/

1.2. GETTING STARTED 5

for Rails development an IDE is way to much, but some other might find that
the best way to go, so if that it’s your case I recommend you go with RadRails
or RubyMine, both are well supported and comes with many integrations out
of the box.

Now for those who are more like me, I can tell you that there are a lot of
options out there which you can customize via plugins and more.

e Text editor: I personally use vim as my default editor with janus which
will add and handle many of the plugins you are probably going to use. In
case you are not a vim fan like me, there are a lot of other solutions such
as Sublime Text which is a cross-platform easy to learn and customize
(this is probably your best option), it is highly inspired by TextMate (only
available for Mac OS). A third option is to use a more recent text editor
from the guys at Github called Atom, it’s a promising text editor made
with Javascript, it is easy to extend and customize to meet your needs,
give it a try. Any of the editors I present will do the job, so I'll let you
decide which one fits your eye.

e Terminal: If you decided to go with kaishi for setting the environment
you will notice that it sets the default shell to zsh, which I highly rec-
ommend. For the terminal, I'm not a fan of the Terminal app that comes
out of the box if you are on Mac OS, so check out iTerm?2, which is a ter-
minal replacement for Mac OS. If you are on Linux you probable have a
nice terminal already, but the default should work just fine.

Browsers

When it comes to browsers I would say Chrome immediately, but some
other developers may say Firefox or even Safari. Any of those will help you
build the application you want, they come with nice inspector not just for the
dom but for network analysis and many other features you might know already.

A note on tools

All right, I understand that you may not want to include every single pack-
age that comes with kaishi, and that is fair, or maybe you already have some
tools installed, well I’ll describe you how to install the bare bones you need to
get started:

http://www.aptana.com/products/radrails
http://www.jetbrains.com/ruby/index.html
http://www.vim.org/
https://github.com/carlhuda/janus
http://www.sublimetext.com/
http://macromates.com/
http://gitub.com
https://atom.io/
http://icalialabs.github.io/kaishi/
http://www.iterm2.com/#/section/home
https://www.google.com/intl/en/chrome/browser/
http://www.mozilla.org/en-US/firefox/new/
https://www.apple.com/safari/
http://icalialabs.github.io/kaishi/

6 CHAPTER 1. INTRODUCTION

Package manager

* Mac OS: There are many options to manage how you install packages on
your Mac, such as Mac Ports or Homebrew, both are good options but I
would choose the last one, I’ve encountered less troubles when installing
software and managing it. To install brew just run the command below:

$ ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install

e Linux: You are all set!, it really does not matter if you are using apt,
pacman, yum as long you feel comfortable with it and know how to in-
stall packages so you can keep moving forward.

Git
We will be using Git a lot, and you should use it too not just for the purpose
of this tutorial but for every single project.

e Mac OS:

$ brew install git

e Linux:

$ sudo apt—get install git

Ruby

There are many ways in which you can install and manage ruby, and by
now you should probably have some version installed (1.8) if you are on Mac
OS, to see which version you have, just type:

$ ruby -v

https://www.macports.org/
http://brew.sh/

1.2. GETTING STARTED 7

Rails 4 requires you to install version 1.9 or higher, and in order to accom-
plish this I recommend you to start using Ruby Version Manager (RVM) or
rbenv, any of these will allow you to install multiple versions of ruby. I re-
cently changed from RVM to rbenv and it’s great, so any of these two options
you choose is fine. On this tutorial we’ll be using rbenv.

A note for Mac OS: if you are using Mac just keep in mind you have to have
installed the Command Line Tools for Xcode.

Mac OS:

To get started with the ruby installation, type in:

$ rbenv install 2.1.2

Next you have to set up the just installed version of ruby as the default one:

$ rbenv global 2.1.2
$ rbenv rehash

The rehash command is supposed to run everytime you install a new ruby
version or a gem. Seems like a lot? check out rbenv-gem-rehash brew formula
to mitigate this.

For more information about customization or other types of installation
checkout out the project documentation.

Linux:

The first steo is to setup some dependencies for Ruby:

$ sudo apt-—-get update

$ sudo apt-get install git-core curl zliblg-dev build-essential libssl-dev \
libreadline-dev libyaml-dev libsqglite3-dev sqlite3 \
libxml2-dev libxsltl-dev libcurl4-openssl-dev \
python-software—-properties

Next it is time to install ruby:

http://rvm.io/
http://rbenv.org/
https://developer.apple.com/downloads/
https://github.com/sstephenson/rbenv-gem-rehash
https://github.com/sstephenson/rbenv

8 CHAPTER 1. INTRODUCTION

$ cd

$ git clone git://github.com/sstephenson/rbenv.git .rbenv

$ echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.profile

$ echo 'eval "$(rbenv init -)"' >> ~/.profile

$ exec $SHELL

$ git clone git://github.com/sstephenson/ruby-build.git ~/.rbenv/plugins/ruby-build
$ echo 'export PATH="$HOME/.rbenv/plugins/ruby-build/bin:$PATH"' >> ~/.profile

$ exec $SHELL

$ rbenv install 2.1.2

$ rbenv global 2.1.2

If everything went smooth, it is time to install the rest of the dependencies
we will be using.

Gems, Rails & Missing libraries

First we update the gems on the whole system:

$ gem update —--system

On some cases if you are on a Mac OS, you will need to install some extra
libraries:

$ brew install libtool libxslt libksba openssl

We then install the necessary gems and ignore documentation for each gem:

$ printf 'gem: —--no-document' >> ~/.gemrc
$ gem install bundler

$ gem install foreman

$ gem install rails -v 4.0

Check for everything to be running nice and smooth:

$ rails -v
Rails 4.0.5

1.3. INITIALIZING THE PROJECT 9

Databases

I highly recommend you install Postgresql to manage your databases, but
for simplicity we’ll be using SQlite. If you are using Mac OS you should be
ready to go, in case you are on Linux, don’t worry we have you covered:

$ sudo apt—-get install libxslt-dev libxml2-dev libsglite3-dev

or

$ sudo yum install libxslt-devel libxml2-devel libsqlite3-devel

1.3 Initializing the project

Initializing a Rails application must be pretty straightforward for you, if that is
not the case, here is a super quick tutorial (Listing 1.1):

Heads up: Be aware that we’ll be using Rspec as the testing suite, so just
make sure you include the -7" option when creating the rails application.

Listing 1.1: Initializing the project with rails new.

$ mkdir ~/workspace
$ cd workspace
$ rails new market_place api -T

As you may guess, the commands above(Listing 1.1) will generate the bare
bones of your Rails application. The next step is to add some gems we’ll be
using to build the api.

1.3.1 Installing Pow or Prax

You may ask yourself, why in the hell would I want to install this type of
package?, and the answer is simple, we will be working with subdomains, and
in this case using services like Pow or Prax help us achieve that very easily.

http://www.postgresql.org/
http://www.sqlite.org/
http://rspec.info/
http://en.wikipedia.org/wiki/Subdomain
http://pow.cx/
https://github.com/ysbaddaden/prax

10 CHAPTER 1. INTRODUCTION

Installing Pow:
Pow only works on Mac OS, but don’t worry there is an alternative which
mimics the functionality on Linux. To install it just type in:

$ curl get.pow.cx | sh

And that’s it you are all set. You just have to symlink the application in
order to set up the Rack app.
First you go the ~/ . pow directory:

$ cd ~/.pow

Then you create the symlink:

$ 1n -s ~/workspace/market_place_api

Remember to change the user directory to the one matches yours. You can
now access the application through http://market_place_api.dev/. Your appli-
cation should be up a running by now like the one shown on Figure 1.1.

Installing Prax

For linux users only, I extracted the instructions from the official documen-
tation, so for any further documentation you should refer to the README file
on the github repository.

It is recommended that you clone the repository under the /opt directory
and then run the installer which will set the port forwarding script and NSS-
witch extension.

$ sudo git clone git://github.com/ysbaddaden/prax.git /opt/prax

$ cd /opt/prax/
$./bin/prax install

Then we just need to link the apps:

http://en.wikipedia.org/wiki/Symbolic_link
http://market_place_api.dev/
https://github.com/ysbaddaden/prax/blob/master/README.rdoc

1.3. INITIALIZING THE PROJECT 11

@ Welcome aboard S ainae
Abou! R

Getting started

Figure 1.1: http://market_place_api.dev/

$ cd ~/workspace/market_place_api
$ prax link

If you want to start the prax server automatically, add this line to the .profile
file:

prax start

When using prax, you have to specify the port for the URL, in this case
http://market _place api.dev:3000
You should see the application up and running, see Figure 1.1.

1.3.2 Gemfile and Bundler

Once the Rails application is created, the next step is adding a simple but very
powerful gem to serialize the resources we are going to expose on the api. The
gem is called active_model_serializers which is an excellent choice to
go when building this type of application, is well maintained and the documen-
tation is amazing.

So your Gem£ile should look like this (Listing 1.2) after adding the active
_model_serializers gem.

https://github.com/rails-api/active_model_serializers
https://github.com/rails-api/active_model_serializers

12 CHAPTER 1. INTRODUCTION

Listing 1.2: The default Gemfile with the serializers gem.

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'’
gem 'rails', '4.0.2'

Use sqlite3 as the database for Active Record
gem 'sqglite3'

Use SCSS for stylesheets
gem 'sass-rails', '~> 4.0.0'

Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'

Use CoffeeScript for .js.coffee assets and views
gem 'coffee-rails', '~> 4.0.0'

See https://github.com/sstephenson/execjs#readme for more supported runtimes
gem 'therubyracer', platforms: :ruby

Use jquery as the JavaScript library
gem 'jquery-rails'

#Api gems
gem 'active_model_serializers'

group :doc do
bundle exec rake doc:rails generates the API under doc/api.
gem 'sdoc', require: false

end

Notice that I remove the jbuilder and turbolinks gems, as we are not
really going to use them anyway.

It 1s a good practice also to include the ruby version used on the whole
project, this prevents dependencies to break if the code is shared among differ-
ent developers, whether if is a private or public project.

It is also important that you update the Gem£ile to group the different gems
into the correct environment (Listing 1.3):

Listing 1.3: The updated Gemfile for different groups.

group :development do

1.4. VERSION CONTROL 13

gem 'sglite3'
end

This as you may recall will prevent sqlite from being installed or required
when you deploy your application to a server provider like Heroku.

Note about deployment: Due to the structure of the application we are not
going to deploy the app to any server, but we will be using Pow by Basecamp.
If you are using Linux there is a similar solution called Prax by ysbaddaden.
See Section 1.3.1

Pow is a zero-config Rack server for Mac OS X. Have it serving
your apps locally in under a minute. - Basecamp

Once you have this configuration set up, it is time to run the bundle
install command to integrate the corresponding dependencies:

$ bundle install
Fetching source index for https://rubygems.org/

After the command finish its execution, it is time to start tracking the project
with git (Section 1.4)

1.4 Version Control

Remember that Git helps you track and maintain history of your code. Keep
in mind source code of the application is published on Github. You can follow
the repository at https://github.com/kurenn/market_place_api.

By this point I’ll asume you have git already configured and ready to use to
start tracking the project. If that is not your case, follow these first-time setup
steps:

http://heroku.com/
http://pow.cx/
https://basecamp.com/
https://github.com/ysbaddaden/prax
http://git-scm.com/
https://github.com/
https://github.com/kurenn/market_place_api

14 CHAPTER 1. INTRODUCTION

$ git config —--global user.name "Type in your name"
$ git config --global user.email "Type in your email"
$ git config --global core.editor "mvim —-f"

Replace the last command editor("mvim —£") with the one you installed
"subl -w" for SublimeText ,"mate -w" for TextMate, or "gvim —£" for
gVim.

So it is now time to init the project with git. Remember to navigate to the
root directory of the market_place_api application:

$ git init
Initialized empty Git repository in ~/workspace/market_place_api/.git/

The next step is to ignore some files that we don’t want to track, so your
.gitignore file should look like the one shown below (Listing 1.4):

Listing 1.4: The modified version of the .gitignore file

/ .bundle

Ignore the default SQLite database.
/db/*.sqglite3
/db/*.sqlite3-journal

Ignore all logfiles and tempfiles.
/log/*.log
/tmp

Extra files to ignore
doc/
* . SWP

J*~
.DS_Store

After modifiying the .gitignore file we just need to add the files and
commit the changes, the commands necessary are shown below:

1.5. CONCLUSION 15

$ git add .
$ git commit -m "Initializes the project"

Good practice: 1 have encounter that commiting with a message starting
with a present tense verb, describes what the commit does and not what it did,
this way when you are exploring the history of the project it is more natural to
read and understand(or at least for me). I’ll follow this practice until the end of
the tutorial.

Lastly and as an optional step we setup the github(I’'m not going through
that in here) project and push our code to the remote server:

We first add the remote:

$ git remote add origin git@github.com:kurenn/market_place_api.git

then:

$ git push -u origin master
Counting objects: 58, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (47/47), done.
Writing objects: 100% (58/58), 13.84 KiB | 0 bytes/s, done.
Total 58 (delta 2), reused 0 (delta 0)
To git@github.com:kurenn/market_place_api.git
* [new branch] master -> master
Branch master set up to track remote branch master from origin.

As we move forward with the tutorial, I’ll be using the practices I follow
on my daily basis, this includes working with branches, rebasing, squash
and some more. For now you don’t have to worry if some of these don’t sound
familiar to you, I walk you through them in time.

1.5 Conclusion

It’s been a long way through this chapter, if you reach here let me congratulate
you and be sure that from this point things will get better. If you feel like want

16 CHAPTER 1. INTRODUCTION

to share how are you doing with the tutorial, I’'ll be happy to read it, a nice
example is shown below:
I just finished the first chapter of Api on Rails tutorial by @kurenn!
So let’s get our hands dirty and start typing some code!

https://twitter.com/kurenn

Chapter 2
The API

In this section I'll outline the application, by now you should have the bare
bones of the application, as shown in Section 1.3, if you did not read it I rec-
ommend you to do it.

You can clone the project until this point with:

$ git clone https://github.com/kurenn/market_place_api.git
$ git checkout -b chapterl 2d95d071lebcd97£624175a428c21lef6797fe881a

And as a quick recap, we really just update the Gemfile to add the active model_ser
gem, see Listing 1.2 for more information.

2.1 Planning the application

As we want to go simple with the application, it consists on 5 models (Fig-
ure 2.1). Don’t worry if you don’t fully understand what is going on, we will
review and build each of these resources as we move on with the tutorial.

In short terms we have the user who will be able to place many orders,
upload multiple products which can have many images or comments from
another users on the app.

We are not going to build views for displaying or interacting with the API,
so not to make this a huge tutorial, I'll let that to you. There are plenty of

17

18

CHAPTER 2. THE API

User

Product

Image

Figure 2.1

Order

Comment

2.2. SETTING THE API 19

options out there, from javascript frameworks(Angular, Ember]S, Backbone)
to mobile consumption(AFNetworking).

By this point you must be asking yourself, all right but I need to explore or
visualize the api we are going to be building, and that’s fair. Probably if you
google something related to api exploring, an application called Postman will
pop, it is a great add on if you are using chrome, but we won’t be using that
anyway, as probably not every developer uses the Google browser. Instead of
that we will be using a gem I built called sabisu_rails which is a powerful
postman-like engine client to explore your Rails application api’s. We will
cover the gem integration on Section 3.3

2.2 Setting the API

An API is defined by wikipedia as an application programming interface (API)
specifies how some software components should interact with each other. In
other words the way systems interact with each other through a common in-
terface, in our case a web service built with json. There are other kinds of
communication protocols like SOAP, but we are not covering that in here.

JSON as the Internet media type is highly accepted because of readability,
extensibility and easy to implement in fact many of the current frameworks con-
sume json api’s by default, in Javascript there is Angular or Ember]S, but there
are great libraries for objective-c too like AFNetworking or RESTKit. There
are probably good solutions for Android, but because of my lack of experience
on that development platform I might not be the right person to recommend
you something.

All right, so we are building our api with json, but there are many ways
to achieve this, the first thing that could come to your mind would be just to
start dropping some routes defining the end points but they may not have a URI
pattern clear enough to know which resource is being exposed. The protocol
or structure I’m talking about is REST which stands for Representational State
Transfer and by wikipedia definition is a way to create, read, update or delete
information on a server using simple HTTP calls. It is an alternative to more

complex mechanisms like SOAP(Listing 2.1), CORBA and RPC. A REST call is

https://angularjs.org/
http://emberjs.com/
http://backbonejs.org/
https://github.com/AFNetworking/AFNetworking
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
http://en.wikipedia.org/wiki/Application_programming_interface
https://angularjs.org/
http://emberjs.com/
https://github.com/AFNetworking/AFNetworking
http://restkit.org/
http://en.wikipedia.org/wiki/Web_Services_Description_Language#Objects_in_WSDL_1.1_.2F_WSDL_2.0
http://www.w3.org/2005/Incubator/wcl/matching.html
http://www.w3.org/2005/Incubator/wcl/matching.html
http://en.wikipedia.org/wiki/Representational_state_transfer

20 CHAPTER 2. THE API

simply a GET HTTP request to the server.

Listing 2.1: SOAP call example

aService.getUser ("1")

And in REST you may call a URL with an especific HTTP request, in this
case with a GET request (Listing 2.2)

Listing 2.2: REST call example

http://domain.com/resources_name/uri_pattern

RESTful APIs must follow at least 3 simple guidelines:

* A base URI, such as http://example.com/resources/.

* An Internet media type to represent the data, it is commonly JSON and is
commonly set through headers exchange.

e Follow the standard HTTP Methods such as GET, POST, PUT, DELETE.

Resource GET
http://example.com/resources | Reads the resource or resources defined by the U

This might not be clear enough or may look like a lot of information to
digest but as we move on with the tutorial, hopefully it’ll get a lot easier to
understand.

2.2.1 Routes, Constraints and Namespaces

Before start typing any code, we prepare the code with git, the workflow we’ll
be using a branch per chapter, upload it to github and then merge it with master,
so let’s get started open the terminal, e¢d to the market_place_api directory

http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://en.wikipedia.org/wiki/HTTP_method#Request_methods

2.2. SETTING THE API 21

and type in the following:

$ git checkout -b setting-api
Switched to a new branch 'setting-api'

We are only going to be working on the config/routes. rb (Listing 2.3),
as we are just going to set the constraints, the base_uri and the default
response format for each request.

Listing 2.3: Default routes.rb file

MarketPlaceApi: :Application.routes.draw do

end

First of all erase all commented code that comes within the file, we are not
gonna need it. Then commit it, just as a warm up:

$ git add config/routes.rb

$ git commit -m "Removes comments from the routes file"
[setting—-api f5e98f7] Removes comments from the routes file
1 file changed, 3 insertions(+), 56 deletions(-)

rewrite config/routes.rb (97%)

We are going to isolate the api controllers under a namespace, in Rails
this 1s fairly simple, just create a folder under the app/controllers named
api, the name is important as it is the namespace we’ll use for managing the
controllers for the api endpoints. (Listing 2.4)

Listing 2.4: Commands to create the api from the terminal

$ mkdir app/controllers/api

We then add that namespace into our routes. rb file (Listing 2.5):

22 CHAPTER 2. THE API

Listing 2.5: Routes with a namespace defined

MarketPlaceApi: :Application.routes.draw do
Api definition
namespace :api do
We are going to list our resources here
end
end

By defining a namespace under the routes.rb file. Rails will automati-
cally map that namespace to a directory matching the name under the controllers
folder, in our case the api/ directory.

Rails can handle up to 21 different media types, you can list them by ac-
cessing the SET class under de Mime module:

$ rails c

Loading development environment (Rails 4.0.2)

2.1.0 :001 > Mime: :SET.collect (&:to_s)

=> ["text/html", "text/plain", "text/javascript", "text/css", "text/calendar",
"text/csv", "image/png", "image/jpeg", "image/gif", "image/bmp",
"image/tiff", "video/mpeg", "application/xml", "application/rss+xml",
"application/atom+xml", "application/x-yaml", "multipart/form-data",
"application/x-www—form-urlencoded", "application/json", "application/pdf",
"application/zip"]

This is important because we are going to be working with JSON, one of the
built-in MIME types accepted by Rails, so we just need to specify this format
as the default one (Listing 2.6):

Listing 2.6: Routes with a namespace and default format defined

MarketPlaceApi: :Application.routes.draw do
Api definition

namespace :api, defaults: { format: :json } do
We are going to list our resources here
end
end

Up to this point we have not made anything crazy, what we want to achieve
next is how to generate a base_uri under a subdomain, in our case something

http://en.wikipedia.org/wiki/Internet_media_type

2.2. SETTING THE API 23

like api .market_place_api.dev. Setting the api under a subdomain is a
good practice because it allows to scalate the application to a DNS level. So
how do we achieve that? (Listing 2.7)

Listing 2.7: Routes with a namespace, default format and subdomain defined

MarketPlaceApi: :Application.routes.draw do
Api definition
namespace :api, defaults: { format: :json },
constraints: { subdomain: 'api' }, path: '/' do
We are going to list our resources here
end
end

Notice the changes?, we didn’t just add a constraints hash to specify
the subdomain, but we also add the path option, and set it a backslash. This is
telling Rails to set the starting path for each request to be root in relation to the
subdomain(Box 2.1), achieving what we are looking for.

Box 2.1. Common api patterns

You can find many approaches to set up the base_uri when building an api
following different patterns, assuming we are versioning our api (Section 2.2.2):

URI Pattern Description

api.example.com/ I my opinion this is the way to go, gives you a better interface an
example.com/api/ This pattern is very common, and it is actually a good way to go
example.com/api/vl | This seems like a good idea, by setting the version of the api thrc

Don’t worry about versioning right now, I'll walk through it on (section 2.2.2)

Time to commit:

http://www.makeuseof.com/tag/optimize-your-dns-for-faster-internet/

24 CHAPTER 2. THE API

$ git add config/routes.rb

$ git commit -m "Set the routes contraints for the api"
[setting—api a5f2e0d] Set the routes contraints for the api
1 file changed, 4 insertions(+), 1 deletion(-)

All right take a deep breath, drink some water, and let’s get going.

2.2.2 Api versioning

At this point we should have a nice routes mapping using a subdomain for name
spacing the requests, your routes. rb file should look like this:

MarketPlaceApi: :Application.routes.draw do
Api definition
namespace :api, defaults: { format: :json },
constraints: { subdomain: 'api' }, path: '/' do
We are going to list our resources here
end
end

Now it is time to set up some other constraints for versioning purposes. You
should care about versioning your application from the beginning since this will
give a better structure to your api, and when changes need to be done, you can
give developers who are consuming your api the opportunity to adapt for the
new features while the old ones are being deprecated. There is an excellent
railscast explaining this.

Your API versioning is wrong, which is why I decided to do it 3
different wrong ways —Troy Hunt

In order to set the version for the api, we first need to add another directory
under the api we created on (Section 2.2.1):

$ mkdir app/controllers/api/vl

http://railscasts.com/episodes/350-rest-api-versioning

2.2. SETTING THE API 25

This way we can scope our api into different versions very easily, now we
just need to add the necessary code to the routes. rb file (Listing 2.8)

Listing 2.8: Routes version specified

MarketPlaceApi: :Application.routes.draw do
Api definition
namespace :api, defaults: { format: :json },
constraints: { subdomain: 'api' }, path: '/' do
scope module: :v1 do
We are going to list our resources here
end
end
end

By this point the API is now scoped via de URL. For example with the
current configuration an end point for retrieving a product would be like:

http://api.marketplace.dev/vl/products/1

2.2.3 Improving the versioning

So far we have the API versioned scoped via the URL, but something doesn’t
feel quite right, isn’t it?. What I mean by this is that from my point of view the
developer should not be aware of the version using it, as by default they should
be using the last version of your endpoints, but how do we accomplish this?.

Well first of all, we need to improve the API version access through HTTP
Headers. This has two benefits:

e Removes the version from the URL

* The API description is handle through request headers(Box 2.2)

Box 2.2. Request headers description

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

26 CHAPTER 2. THE API

HTTP header fields are components of the message header of requests and
responses in the Hypertext Transfer Protocol (HTTP). They define the operating
parameters of an HTTP transaction.

A common list of used headers is presented below:

Header Name Description
Accept Content-Types that are acceptable for the response
Authorization | Authentication credentials for HTTP authentication
Content-Type | The MIME type of the body of the request (used with POST and PUT r
Origin Initiates a request for cross-origin resource sharing (asks server for an *
User—-Agent The user agent string of the user agent

The information above was extracted from

http://en.wikipedia.org/wiki/List_of HTTP_header_fields
to put the most common.

It is important that you feel comfortable with this ones and understand
them.

, I just managed

In Rails is very easy to add this type versioning through an Accept header.
We will create a class under the 1ib directory of your rails app, and remember
we are doing TDD so first things first. (Listing 2.11).

First we need to add our testing suite, which in our case is going to be Rspec
(Listing 2.9):

Listing 2.9: Gemfile with the testing suite

group :test do
gem "rspec-rails", "~> 2.14"
gem "factory girl rails"
gem 'ffaker'

end

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://en.wikipedia.org/wiki/Test-driven_development
http://rspec.info/

2.2. SETTING THE API 27

Then we run the bundle command to install the gems

$ bundle install

Finally we install the rspec and add some configuration to prevent views
and helpers tests from being generated:

$ rails g rspec:install

Listing 2.10: Configuring our test suite (/config/application.rb)

don't generate RSpec tests for views and helpers
config.generators do |g|

.test_framework :rspec, fixture: true

.fixture_replacement :factory girl, dir: 'spec/factories'

.view_specs false

.helper_specs false

.stylesheets = false

.javascripts = false

.helper = false

[sARTeJTe I Te Ve JiToJTe o]

en

config.autoload_paths += $W(\#{config.root}/1lib)

If everything went well it is now time to add a spec directory under 1ib
and add the api_constraints_spec.rb:

$ mkdir lib/spec
$ touch lib/spec/api_constraints_spec.rb

We then add a bunch of specs describing our class:

Listing 2.11: Api constraints spec lib/spec/api_constraints_spec.rb
require 'spec_ helper'

describe ApiConstraints do
let (:api_constraints_vl) { ApiConstraints.new(version: 1) }

28 CHAPTER 2. THE API

let (:api_constraints_v2) { ApiConstraints.new(version: 2, default: true) }

describe "matches?" do

it "returns true when the version matches the 'Accept' header" do
request = double (host: 'api.marketplace.dev',
headers: {"Accept" => "application/vnd.marketplace.vl"})
api_constraints_vl.matches? (request) .should be_true
end

it "returns the default version when 'default' option is specified" do
request = double (host: 'api.marketplace.dev')
api_constraints_v2.matches? (request) . should be_true
end
end
end

Let me walk you through the code. We are initialising the class with an
options hash, which will contain the version of the api, and a default value
for handling the default version. We provide a matches? method which the
router will trigger for the constraint to see if the default version is required or
the Accept header matches the given string.

The implementation looks likes this(Listing 2.12)

Listing 2.12: Api constraints class lib/api_constraints.rb

class ApiConstraints
def initialize (options)
@version = options|:version]
@default = options|[:default]
end

def matches? (req)

@default || req.headers|['Accept'].include? ("application/vnd.marketplace.vi{@ve

end
end

As you imagine we need to add the class to our routes. rb file and set it
as a constraint scope option.(Listing 2.13):

rsion}")

2.3. CONCLUSION 29

Listing 2.13: Routes file config/routes.rb

require 'api_constraints'

MarketPlaceApi: :Application.routes.draw do
Api definition
namespace :api, defaults: { format: :json },
constraints: { subdomain: 'api' }, path: '/' do
scope module: :v1,
constraints: ApiConstraints.new(version: 1, default: true) do
We are going to list our resources here
end
end
end

The configuration above now handles versioning through headers, and for
now the version 1 is the default one, so every request will be redirected to that
version, no matter if the header with the version is present or not.

Before we say goodbye, let’s run our first tests and make sure everything is

nice and green:

$ bundle exec rspec lib/spec/api_constraints_spec.rb

Finished in 0.00238 seconds
2 examples, 0 failures

Randomized with seed 45035

2.3 Conclusion

It’s been a long way, I know, but you made it, don’t give up this is just our small
scaffolding for something big, so keep it up. In the meantime and I you feel
curious there are some gems that handle this kind of configuration:

¢ RocketPants

e Versionist

https://github.com/Sutto/rocket_pants
https://github.com/bploetz/versionist

30 CHAPTER 2. THE API

I’'m not covering those in here, since we are trying to learn how to actually
implement this kind of functionality, but it is good to know though. By the way
the code up to this point is here

Wanna tweet about your accomplishment?:

I just finished the second chapter of Api on Rails tutorial by @kurenn!

https://github.com/kurenn/market_place_api/tree/chapter2
https://twitter.com/kurenn

Chapter 3

Presenting the users

In the last chapter we manage to set up the bare bones for our application
endpoints configuration, we even added versioning through headers. In (Chap-
ter 5) we will handle users authentication through authentication tokens as well
as setting permissions to limit access for let’s say signed in users. In coming
chapters we will relate products to users and give them the ability to place
orders.

You can clone the project until this point with:

$ git clone https://github.com/kurenn/market_place_api.git -b chapter2

As you can already imagine there are a lot of authentication solutions for
Rails, AuthLogic, Clearance and Devise. We will be using the last one (Box 3.1),
which offers a great way to integrate not just basic authentication, but many
other modules for further use.

Box 3.1. Devise for authentication

Flexible authentication solution for Rails with Warden. - Platafor-
matec

Devise comes with up to 10 modules for handling authentication:

31

https://github.com/binarylogic/authlogic
https://github.com/thoughtbot/clearance
https://github.com/plataformatec/devise

32 CHAPTER 3. PRESENTING THE USERS

e Database Authenticable
* Omniauthable

* Confirmable

* Recoverable

* Registerable

* Rememberable
 Trackable

* Timeoutable
 Validatable

e [ockable

If you have not work with devise before, I recommend you visit the reposity
page and read the documentation, there are a lot of good examples out there too.

This is going to be a full-packed chapter, it may be long, but I'm trying to
cover as many topics along with best practices on the way, so feel free to grab
a cup of coffee and let’s get going. By the end of the chapter you will have full
user endpoints, along with validations and error server responses.

We want to track this chapter, so it would be a good time to create a new
branch for this:

$ git checkout -b chapter3

Just make sure you are on the master branch before checking out.

https://github.com/plataformatec/devise
https://github.com/plataformatec/devise

3.1. USER MODEL 33

3.1 User model

We need to first add the devise gem into the Gemfile (Listing 3.1):

Listing 3.1: Gemfile with devise

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails’
gem 'rails', '4.0.2'

Use SCSS for stylesheets
gem 'sass-rails', '~> 4.0.0'

Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'

Use CoffeeScript for .js.coffee assets and views
gem 'coffee-rails', '~> 4.0.0'

See https://github.com/sstephenson/execjs#readme for more supported runtimes
gem 'therubyracer', platforms: :ruby

Use jquery as the JavaScript library
gem 'jquery-rails'

#Api gems
gem 'active_model_serializers'

group :doc do
bundle exec rake doc:rails generates the API under doc/api.
gem 'sdoc', require: false

end

group :development do
gem 'sglite3'
end

group :test do
gem "rspec-rails"
gem "factory girl rails"
gem 'ffaker'

end

gem "devise"

Then run the bundle install command to install it. Once the bundle
command finishes, we need to run the devise install generator:

34 CHAPTER 3. PRESENTING THE USERS

$ rails g devise:install
create config/initializers/devise.rb
create config/locales/devise.en.yml

By now and if everything went well we will be able to generate the user
model through the devise generator:

$ rails g devise User
invoke active_ record

create db/migrate/20140622003340_devise create_users.rb
create app/models/user.rb

invoke rspec

create spec/models/user_spec.rb

invoke factory girl

create spec/factories/users.rb

insert app/models/user.rb

route devise_for :users

From now every time we create a model, the generator will also create a
factory file for that model(Listing 3.2). This will help us to easily create test
users and facilitate our tests writing.

Listing 3.2: User factory (spec/factories/users.rb)

FactoryGirl.define do
factory :user do
end

end

Next we migrate the database and prepare the test database.

$ rake db:migrate

= DeviseCreateUsers: migrating
—— create_table(:users)

-> 0.0031s

add_index(:users, :email, {:unique=>true})

3.1. USER MODEL 35

-> 0.0010s
—— add_index(:users, :reset_password token, {:unique=>true})
-> 0.0004s
== DeviseCreateUsers: migrated (0.0047s)

$ rake db:test:prepare

Let’s commit this, just to keep our history points very atomic.

$ git add .

$ git commit -m "Adds devise user model"

[chapter3 be4e03f] Adds devise user model

10 files changed, 423 insertions(+), 1 deletion(-)
create mode 100644 app/models/user.rb

create mode 100644 config/initializers/devise.rb
create mode 100644 config/locales/devise.en.yml
create mode 100644 db/migrate/20140622003340_devise_create_users.rb
create mode 100644 db/schema.rb

create mode 100644 spec/factories/users.rb

create mode 100644 spec/models/user_spec.rb

3.1.1 First user tests

We will add some specs to make sure the user model responds to the email,
password and password_confirmation attributes provided by devise, let’s
add them(Listing 3.4). Also for convenience we will modify the users factory
file to add the corresponding attributes (Listing 3.3).

Listing 3.3: User factory file with attributes (spec/factories/users.rb)

FactoryGirl.define do
factory :user do
email { FFaker::Internet.email }
password "12345678"
password_confirmation "12345678"
end
end

36 CHAPTER 3. PRESENTING THE USERS

Once we’d added the attributes it is time to test our User model (List-
ing 3.4).

Listing 3.4: Testing for devise provided attributes
(spec/models/user_spec.rb)
require 'spec_ helper'

describe User do
before { @Quser = FactoryGirl.build(:user) }

subject { @user }
it { should respond_to(:email) }
it { should respond_to(:password) }

it { should respond to(:password confirmation) }

it { should be_valid }
end

Because we previously prepare the test database, with rake db:test:prepare,
we just simply run the tests:

$ bundle exec rspec spec/models/user_spec.rb

Our tests should pass.

Finished in 0.03747 seconds
4 examples, 0 failures

Randomized with seed 31597

That was easy, we should probably commit this changes:

$ git add .
$ git commit —-am 'Adds user firsts specs'
[chapter3 80b4cb6] Adds user firsts specs

2 files changed, 12 insertions(+), 1 deletion(-)

3.1. USER MODEL 37

3.1.2 Improving validation tests

As you may notice in Section 3.1.1 we did not add tests for validations, even
though devise already add some on the user model. We could write some tests
which could look like this in case of validating email presence (Listing 3.5):

Listing 3.5: Validation tests without shoulda-matchers
(spec/models/user_spec.rb)

describe "when email is not present" do
before { @Quser.email = " " }
it { should not be_valid }

end

But this can be improved with a gem called shoulda-matchers, let’s add
it to our Gemfile:

group :test do
gem "rspec-rails"
gem "factory girl rails"
gem 'ffaker'
gem '"shoulda-matchers"
end

As usual before adding a gem, run the bundle command to install it.
Shoulda-matchers help us refactor our tests(Listing 3.5) like so:

it { should validate_ presence_of(:email) }

Let’s finish up the user specs and commit the changes:

https://github.com/thoughtbot/shoulda-matchers

38 CHAPTER 3. PRESENTING THE USERS

it
it
it
it

should validate_presence_of (:email) }

should validate uniqueness_of (:email) }

should validate_confirmation_of (:password) }

should allow_value('example@domain.com') .for(:email) }

L e W e

$ git add .

$ git commit -m "Adds shoulda matchers for spec refactors"
[chapter3 9f£8c6cl] Adds shoulda matchers for spec refactors
3 files changed, 10 insertions (+)

3.2 Building users endpoints

It is showtime people, we are building our first endpoint. We are just going
to start building the show action for the user which is going to expose a user
record in plain old json. We first need to generate the users_controller,
add the corresponding tests and then build the actual code.

First we generate the users controller:

$ rails generate controller users

This command will create a users_controller_spec.rb(Listing 3.6).
Before we get into that, there are 2 basic steps we should be expecting when
testing api endpoints.

* The json structure to be returned from the server

* The status code we are expecting to receive from the server (Box 3.2).

Box 3.2. Most common http codes

The first digit of the status code specifies one of five classes of response; the
bare minimum for an HTTP client is that it recognises these five classes - Wikipedia
A common list of used http codes is presented below:

3.2. BUILDING USERS ENDPOINTS 39

HTTP Code | Description

200 Standard response for successful HTTP requests

201 The request has been fulfilled and resulted in a new resource being ¢
204 The server successfully processed the request, but is not returning at
400 The request cannot be fulfilled due to bad syntax.

401 Similar to 403 Forbidden, but specifically for use when authenticatic
404 The requested resource could not be found but may be available aga
500 A generic error message, given when an unexpected condition was €

rreated.
1y conten

dn 1S requ
in in the {
ncounter

it

For a full list of HTTP method check out the article on Wikipedia talking about

To keep our code nicely organised, we will create some directories under
the controller specs directory in order to be consistent with our current setup
(Listing 2.4). There is also another set up out there which uses instead of the
controllers directory a request or integration directory, I this case I
like to be consistent with the app/controllers directory.

$ mkdir -p spec/controllers/api/vl
$ mv spec/controllers/users_controller_spec.rb spec/controllers/api/vl

After creating the corresponding directories we need to change the file

describe name from UsersControllertoApi: :V1: :UsersController,
the updated file should look like:

require 'spec_helper'
describe Api::V1l::UsersController do

end

Now with tests added your file should look like:

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

40 CHAPTER 3. PRESENTING THE USERS

Listing 3.6: Users controller spec file
(spec/controllers/api/v1/users_controller_spec.rb)

require 'spec_helper'

describe Api::V1l::UsersController do
before (:each) { request.headers|['Accept'] = "application/vnd.marketplace.vl" }

describe "GET #show" do

before (:each) do
@Quser = FactoryGirl.create :user
get :show, id: @user.id, format: :json

end

it "returns the information about a reporter on a hash" do

user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response|[:email]) .to eql @Quser.email

end

it { should respond _with 200 }
end
end

So far, the tests look good, we just need to add the implementation(Listing 3.7),

it is extremely simple:

Listing 3.7: Users controller file (app/controllers/api/vi/users_controller.rb)

class Api::V1l::UsersController < ApplicationController

respond_to :json

def show
respond_with User.find(params|[:id])

end
end

If you run the tests now with bundle exec rspec spec/controllers
you will see an error message similar to this:

FF

Failures:

3.2. BUILDING USERS ENDPOINTS 41

1) Api::V1l::UsersController GET #show
Failure/Error: get :show, id: @user.id, format: :json
ActionController: :UrlGenerationError:

2) Api::Vl1l::UsersController GET #show returns the information about a...
Failure/Error: get :show, id: @user.id, format: :json
ActionController: :UrlGenerationError:

Finished in 0.0552 seconds
2 examples, 2 failures

This kind of error if very common when generating endpoints manually, we
totally forgot the routes , so let’s add them:

require 'api_constraints'

MarketPlaceApi: :Application.routes.draw do
devise_ for :users
Api definition
namespace :api, defaults: { format: :json },
constraints: { subdomain: 'api' }, path: '/' do
scope module: :v1,
constraints: ApiConstraints.new(version: 1, default: true) do
We are going to list our resources here
resources :users, :only => [:show]
end
end
end

If you try again bundle exec rspec spec/controllers you will see
your all your tests passing.

As usual and after adding some bunch of code we are satisfied with, we
commit the changes:

$ git add .
$ git commit -m "Adds show action the users controller"

42 CHAPTER 3. PRESENTING THE USERS

3.2.1 Testing endpoints with CURL

So we finally have an endpoint to test, there are plenty of options to start playing
with. The first that come to my mind is using cURL, which comes built-in on
almost any Linux distribution and of course on your Mac OSX. So let’s try it
out:

Remember our base uri is api .market_place_api.dev (Section 2.2.1).

$ curl -H 'Accept: application/vnd.marketplace.vl' \
http://api.market_place_api.dev/users/1

This will throw us an error, well you might expect that already, we don’t
have a user with id 1, let’s create it first through the terminal:

$ rails console

Loading development environment (Rails 4.0.2)

2.1.0 :001 > User.create({email: "example@marketplace.com",
password: "12345678",
password_confirmation: "12345678"})

After creating the user successfully our endpoint should work:

$ curl -H 'Accept: application/vnd.marketplace.vl' \
http://api.market_place_api.dev/users/1
{"id":1,"email" :"a@a.com", "created_at":"2014-06-23T04:24:42.031z", ...

So there you go, you now have a user record api endpoint. If you are having
problems with the response and double checked everything is well assembled,
well then you might need to visit the application_controller. rb file and
update it a little bit like so (Listing 3.8):

Listing 3.8: Application controller for api responses
(app/controllers/application_controller.rb)

class ApplicationController < ActionController: :Base
Prevent CSRF attacks by raising an exception.
For APIs, you may want to use :null session instead.
protect_from_forgery with: :null_session

end

http://curl.haxx.se/

3.2. BUILDING USERS ENDPOINTS 43

As suggested even by Rails we should be using null_session to pre-
vent CSFR attacks from being raised, so I highly recommend you do it as
this will not allow POST or PUT requests to work. After updating the
application_controller.rb file it is probably a good point to place a
commit:

$ git add .
$ git commit -m "Updates application controller to prevent CSRF exception from being raised"

3.2.2 Creating users

Now that we have a better understanding on how to build endpoints and how
they work, it’s time to add more abilities to the api, one of the most important
is letting the users actually create a profile on our application. As usual we will
write tests before implementing our code extending our testing suite.

Creating records in Rails as you may know is really easy, the trick when
building an api is which is the best fit for the HTTP codes (Box 3.2) to send on
the response, as well as the actual json response. If you don’t totally get
this, it will probably be more easy on the code:

Make sure your repository is clean and that you don’t have any com-
mits left, if so place them so we can start fresh.

Let’s proceed with our test-driven development by adding a create end-
point on the users_controller_spec.rb file (Listing 3.9):

Listing 3.9: Users controller spec file with create tests
(spec/controllers/api/v1/users_controller_spec.rb)

describe "POST #create" do

context "when is successfully created" do
before(:each) do
@user_attributes = FactoryGirl.attributes_for :user
post :create, { user: Quser_attributes }, format: :json
end

it "renders the json representation for the user record just created" do
user_response = JSON.parse (response.body, symbolize_names: true)

44 CHAPTER 3. PRESENTING THE USERS

expect (user_response|[:email]) .to eql Quser_attributes|[:email]
end

it { should respond_with 201 }
end

context "when is not created" do
before(:each) do
#notice I'm not including the email
@invalid_user_attributes = { password: "12345678",
password_confirmation: "12345678" }
post :create, { user: Q@Qinvalid_user_attributes }, format: :json
end

it "renders an errors json" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response) .to have_key (:errors)

end

it "renders the json errors on why the user could not be created" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response|[:errors] [:email]) .to include "can't be blank"
end

it { should respond_with 422 }
end
end

There is a lot of code up there(Listing 3.9) but don’t worry I'll walk you
through it:

¢ We need to validate to states on which the record can be, valid or invalid.
In this case we are using the context clause to achieve this scenarios.

e In case everything goes smooth, we should return a 201 HTTP code
which means a record just got created, as well as the json representa-
tion of that object.

* In case of any errors, we have to return a 422 HTTP code which stands
for Unprocessable Entity meaning the server could save the record.
We also return a json representation of why the resource could not be
saved.

If we run our tests now, they should fail:

3.2. BUILDING USERS ENDPOINTS 45

$ bundle exec rspec spec/controllers/api/vl/users_controller_spec.rb
. .FFFFF

Time to implement some code and make our tests pass (Listing 3.10)

Listing 3.10: Users controller file with create action
(app/controllers/api/vi/users_controller.rb)

def create
user = User.new (user_params)
if user.save

render json: user, status: 201, location: [:api, user]
else
render json: { errors: user.errors }, status: 422
end
end
private

def user_ params
params.require (:user) .permit (:email, :password, :password confirmation)
end

Remember that each time we add an enpoint we have to add that action into
our routes. rb file

scope module: :v1l, constraints: ApiConstraints.new(version: 1, default: true) do
We are going to list our resources here
resources :users, :only => [:show, :create]

end

As you can see the implementation is fairly simple, we also added the
user_params private method to sanitize the attribute to be assigned through
mass-assignment. Now if we run our tests, they all should be nice and green:

46 CHAPTER 3. PRESENTING THE USERS

$ bundle exec rspec spec/controllers/api/vl/users_controller_spec.rb

Finished in 0.12152 seconds
7 examples, 0 failures

Randomized with seed 24824

Let’s commit the changes and continue building our application:

$ git add .

$ git commit -m "Adds the user create endpoint"
[chapter3 9222e75] Adds the user create endpoint
3 files changed, 52 insertions(+), 1 deletion(-)

3.2.3 Updating users

The pattern for updating users is very similar as creating new ones (Sec-
tion 3.2.2). If you are an experienced rails developer you may already know
the differences between these two actions, and the implications:

* The update action responds to a PUT/PATCH request (Section 2.2).

* Only the current user should be able to update their information,
meaning we have to enforce a user to be authenticated. We will cover
that on Chapter 5

As usual we start by writing our tests (Listing 3.11):

Listing 3.11: Users controller spec file with wupdate tests
(spec/controllers/api/v1/users_controller_spec.rb)

describe "PUT/PATCH #update" do

context "when is successfully updated" do
before (:each) do
@user = FactoryGirl.create :user
patch :update, { id: Quser.id,

3.2. BUILDING USERS ENDPOINTS 47

user: { email: "newmail(@example.com" } }, format: :json
end

it "renders the json representation for the updated user" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response[:email]) .to eql "newmail(@example.com"

end

it { should respond_with 200 }
end

context "when is not created" do
before (:each) do
@user = FactoryGirl.create :user
patch :update, { id: Quser.id,
user: { email: "bademail.com" } }, format: :json
end

it "renders an errors json" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response) .to have_key (:errors)

end

it "renders the json errors on whye the user could not be created" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response|[:errors] [:email]) .to include "is invalid"

end

it { should respond_with 422 }
end
end

Getting the tests to pass requires us to build the update action on the
users_controller.rb file as well as adding it to the routes.rb. As you
can see we have to much code duplicated, we’ll refactor our tests in Chapter 4

First we add the action the routes. rb file

scope module: :v1l, constraints: ApiConstraints.new(version: 1, default: true) do
We are going to list our resources here
resources :users, :only => [:show, :create, :update]

end

48 CHAPTER 3. PRESENTING THE USERS

Then we implement the update action on the users controller and make
our tests pass (app/controllers/api/vi/users_controller.rb):

def update
user = User.find(params|[:id])

if user.update (user_params)

render json: user, status: 200, location: [:api, user]
else

render json: { errors: user.errors }, status: 422
end

end

If we run our tests, we should now have all of our tests passing.
We commit the changes as we added a bunch of working code:

$ git add .

$ git commit -m "Adds update action the users controller"
[chapter3 d4422ff] Adds update action the users controller
3 files changed, 48 insertions(+), 1 deletion(-)

3.2.4 Destroying users

So far we have built a bunch of actions on the users controller along with their
tests, but we have not ended yet, we are just missing one more which is the
destroy action. So let’s do that (Listing 3.12):

Listing 3.12: Users controller spec file with destroy tests
(spec/controllers/api/v1/users_controller_spec.rb)
describe "DELETE #destroy" do
before(:each) do
@Quser = FactoryGirl.create :user

delete :destroy, { id: @user.id }, format: :json
end

it { should respond with 204 }

end

3.2. BUILDING USERS ENDPOINTS 49

As you can see the spec is very simple, as we only respond with a status
of 204 which stands for No Content, meaning that the server successfully
processed the request, but is not returning any content. We could also return a
200 status code, but I find more natural to respond with nothing in this case as
we are deleting a resource and a success response may be enough.

The implementation for the destroy action is fairly simple as well:

def destroy
user = User.find(params|[:id])
user .destroy
head 204

end

Remember to add the dest roy action to the user resources on the routes. rb
file:

scope module: :v1l, constraints: ApiConstraints.new(version: 1, default: true) do
We are going to list our resources here
resources :users, :only => [:show, :create, :update, :destroy]

end

If you run your tests now, they should be all green:

Finished in 0.25011 seconds
13 examples, 0 failures

Randomized with seed 16839

Remember after making some changes to our code, it is good practice to
commit them so that we keep our history very atomic.

$ git add .

$ git commit -m "Adds destroy action to the users controller"
[chapter3 2034ddf] Adds destroy action to the users controller
3 files changed, 17 insertions(+), 1 deletion(-)

50 CHAPTER 3. PRESENTING THE USERS

3.3 Integrating Sabisu

As shown on Section 3.2.1 we play around a bit with curl to test our enpoints,
or at least the index action. Well, even is a good starting point to see the api
on action, as the application grows it becomes harder to maintain and visualize,
with many endpoints all over the place and quite large json outputs, things will
get nasty in the short term.

At Icalia Labs we are always looking for tools which make our life easy, and
when working with an api, a fine solution we have found is PostMan, which
1S a REST client for inspecting any api and even better comes as a chrome
add on. One thing we encounter with this app though, was when sharing the
application among other developers, we had to go part by part and explain
them what was going on around the enpoints, which seems a bit of waste of
time. That’s why I put on together a gem which mounts on to your rails api and
maps your resources for placing requests (Box 3.3).

Box 3.3. Sabisu gem

Sabisu is a powerful postman-like engine client to explore your Rails
application api. It’s still under heavy development, but it is quite im-
pressive and beautiful. — Abraham Kuri

This tool was developed with the intention to reduce the learning curve when
integrating new teammates to the project, or simply because is will just run on any
browser and offers, almost the same support as postman.

It uses well supported dependencies such as:

e Compass
* Furatto
* Simple Form

¢ Font Awesome

http://icalialabs.com
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en

3.3. INTEGRATING SABISU 51

Even better you can customise to never add the attributes for creating a new
record, believe me, I have worked with models with up to 20 attributes and I’ve
had to add them manually, it really takes a lot of time.

You will know what I mean as we move forward with the gem integration.

Following the documentation from the repo:
We add the necessary gems to the Gemfile

gem 'sabisu_rails', github: "Icalialabs/sabisu-rails"
gem 'compass-rails'

gem 'furatto'

gem 'font-awesome-rails'

gem 'simple_ form'

Then run the bundle command to install them.

$ bundle install

After installing the gems via bundler, we run the simple_form and
sabisu generators:

$ rails generate simple_form:install
$ rails generate sabisu_rails:install

The commands above will generate two initialiser files, we only care about
the one related to sabisu located on config/initializers/sabisu_rails.rb.

If everything went smooth we just have to customise the sabisu engine
(Listing 3.13):

Listing 3.13: Sabisu initialiser customization (con-
fig/initializers/sabisu_rails.rb)

https://github.com/IcaliaLabs/sabisu-rails

52 CHAPTER 3. PRESENTING THE USERS

Use this module to configure the sabisu available options
SabisuRails.setup do |config]|

Base uri for posting the
config.base_api_uri = 'api.market_place_api.dev'

Ignored attributes for building the forms
config.ignored attributes = $%$w{ created at updated at id }

HTTP methods
config.http methods = %w{ GET POST PUT DELETE PATCH }

Headers to include on each request

#

You can configure the api headers fairly easy by just adding the correct headgrs
config.api_headers = { "Accept" => "application/vnd.marketplace.vl" }

#

config.api_ headers = {}

Layout configuration
config.layout = '"sabisu"

Resources on the api
config.resources = [:users]

Default resource

config.default_resource = :users
Application name
mattr_accessor :app_ name
@@app_name = Rails.application.class.parent_name
Authentication
mattr accessor :authentication username
@Rauthentication username = "admin"
mattr_accessor :authentication password
@@Rauthentication _password = "sekret"
end

You can customize it further to meet other requirements, but for now this
just works fine. Now let’s try the explorer now, by running rails server on
the console and open up the browser with the following url http://localhost:3000/sabisu_rails
(Figure 3.1)
If you don’t see the error message and instead a window for authentication
pops up, the credentials to access are admin for the username and sekret

http://localhost:3000/sabisu_rails/explorer

3.3. INTEGRATING SABISU 53

4 C

URI::invalidURIError in SabisuRails::ExplorerController#index
heme hitp s Not stname’

tp does: not accept registry part: apl.market_place_apl.dev (or bad hostname?)

Figure 3.1: http://api.market_place_api.dev/sabisu_rails/explorer

for the password. These settings can be customized under the sabisu_rails
config file under config/initializers.

But wait a minute there is an error over there. this is something I have found
when using pow and httparty. For some reason URIs with underscore cannot
be parsed correctly so we get:

- the scheme http does not accept registry part: api.market_place_api.dev
(or bad hostname?) -

Trust me, I spent hours trying to solve this and wanted to point out this
issue on purpose as it might save you some cups of coffee. The solution is
fairly simple and is related to directory naming:

First move to the workspace directory or wherever the market_place_api
directory is:

$ cd ~/workspace/
$ mv market_place_api marketplaceapi

Yes you can do this through the UI, but I feel more comfortable working
through the terminal. Then we update the symbolic link we created on Sec-
tion 1.3.1 to point to the new directory:

$ cd ~/.pow
$ 1n -s ~/workspace/marketplaceapi

https://github.com/jnunemaker/httparty

54 CHAPTER 3. PRESENTING THE USERS

Figure 3.2: http://localhost:3000/sabisu_rails/explorer

And just keep things organised we delete the old symbolic link:

$ rm market_place_api

Then we need to update the base_api_uri on the sabisu rails.rb
initialiser file as well:

config.base_api_uri = 'api.marketplaceapi.dev'

Now if we visit http://localhost:3000/sabisu_rails/explorer (Figure 3.2) and
add an id number of the field, in this case 1, and hit send we should see the
json response from the server.

If you have similar issues with prax on Linux, the solution above should
also do the job.

Remember you can always review the code base on github or shout me a
tweet

3.4 Conclusion

Oh you are here!, great job! I know it probably was a long way, but don’t give
up you are doing it great. Make sure you are understanding every piece of code,

http://localhost:3000/sabisu_rails/explorer
https://github.com/kurenn/market_place_api/tree/chapter3
https://twitter.com/kurenn

3.4. CONCLUSION 55

things will get better, in Chapter 4 we will refactor our tests to clean our code
a bit and make it easy to extend the test suite more. So stay with me guys!
Feeling like want to share your achievement, I'll be glad to read about it:
I just finished modeling the users for my api of Api on Rails tutorial by
@kurenn!

https://twitter.com/kurenn
https://twitter.com/kurenn

56

CHAPTER 3. PRESENTING THE USERS

Chapter 4

Refactoring tests

In Chapter 3 we manage to put together some user resources endpoints, if you
skip it, or simple missed it I highly recommend you take a look at it, it covers
the first test specs and an introduction to json responses.

You can clone the project until this point with:

$ git clone https://github.com/kurenn/market_place_api.git -b chapter3

In this chapter we’ll refactor our test specs by adding some helper methods,
remove the format param sent on every request and do it through headers, and
hopefully build more consistent and scalable test suite.

So let’ take a look to the users_controller_spec.rb file (Listing 4.1):

Listing 4.1: Users controller spec (app/controllers/api/v1/users_controller.rb)

require 'spec_helper'

describe Api::V1::UsersController do
before (:each) { request.headers['Accept'] = "application/vnd.marketplace.vl" }

describe "GET #show" do
before (:each) do
@user = FactoryGirl.create :user
get :show, id: Quser.id, format: :json
end

it "returns the information about a reporter on a hash" do

57

58 CHAPTER 4. REFACTORING TESTS

user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response|[:email]) .to eql Quser.email
end

it { should respond_with 200 }
end

describe "POST #create" do

context "when is successfully created" do
before (:each) do
@Quser_attributes = FactoryGirl.attributes_for :user
post :create, { user: Quser_attributes }, format: :json
end

it "renders the json representation for the user record just created" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response|[:email]) .to eql Quser_attributes|[:email]

end

it { should respond_with 201 }
end

context "when is not created" do

before(:each) do
#notice I'm not including the email
@invalid user_attributes = { password: "12345678",

password_confirmation: "12345678" }
post :create, { user: Q@invalid_ user_attributes },
format: :json
end

it "renders an errors json" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response) .to have_key (:errors)

end

it "renders the json errors on whye the user could not be created" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response|[:errors][:email]) .to include "can't be blank"
end

it { should respond_with 422 }
end
end

describe "PUT/PATCH #update" do
before (:each) do
Quser = FactoryGirl.create :user
end

59

context "when is successfully updated" do
before(:each) do
patch :update, { id: Quser.id, user: { email: "newmail(@example.com" } },
format: :json
end

it "renders the json representation for the updated user" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response[:email]) .to eql "newmail(@example.com"

end

it { should respond with 200 }
end

context "when is not created" do
before (:each) do
patch :update, { id: Quser.id, user: { email: "bademail.com" } 1},
format: :json
end

it "renders an errors json" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response) .to have_key (:errors)

end

it "renders the json errors on whye the user could not be created" do
user_response = JSON.parse (response.body, symbolize_names: true)
expect (user_response|:errors][:email]) .to include "is invalid"

end

it { should respond with 422 }
end
end

describe "DELETE #destroy" do
before (:each) do
@user = FactoryGirl.create :user
delete :destroy, { id: @user.id }, format: :json
end

it { should respond _with 204 }

end
end

As you can see there is a lot of duplicated code, two big refactors here are:

* The JSON. parse method can be encapsulated on a method(Section 4.1).

60 CHAPTER 4. REFACTORING TESTS

 The format param is sent on every request.(Section 4.2). Although
is not a bad practice perse, it is better if you handle the response type
through headers.

So let’s add a method for handling the json response, but before we con-
tinue, and if you have been following the tutorial you may know that we are
creating a branch for each chapter, so let’s do that:

$ git checkout -b chapter4

4.1 Refactoring the json response

Back to the refactor, we will add file under the spec/support directory.
Currently we don’t have this directory, so let’s add it:

$ mkdir spec/support

Then we create a request_helpers. rb file under the just created support
directory:

$ touch spec/support/request_helpers.rb

It is time to extract the JSON.parse method into our own support method
(Listing 4.2):

Listing 4.2: Request helpers JSON parse (spec/support/request_helpers.rb)

module Request
module JsonHelpers
def json_response
@json_response ||= JSON.parse (response.body, symbolize names: true)
end
end
end

4.1. REFACTORING THE JSON RESPONSE 61

We scope the method into some modules just to keep our code nice and
organised. The next step here is to update the users_controller_ spec.rb
file to use the method. A quick example is presented below:

it "returns the information about a reporter on a hash" do
user_response = json_response # this is the updated line
expect (user_response|[:email]) .to eql Quser.email

end

Now it is your turn to update the whole file.

After you are done updating the file, if you tried to run your tests, you prob-
ably encounter a problem, for some reason it is not finding the json_response
method which is weird because if we take a look at the spec_helper. rb file
we can see that is actually loading all files from the support directory:

Dir[Rails.root. join("spec/support/**/*.rb")].each { |f| require f }

So what is missing?, the problem in here is we have to include this meth-
ods into rspec as controller type helpers. This is done by adding a single line
of code on the spec_helper.rb file within the Rspec.configure block
(Listing 4.3):

Listing 4.3: Include json helpers into Rspec (spec/spec_helper.rb)

RSpec.configure do |config]|

#Including to test requests
config.include Request::JsonHelpers, :type => :controller
end

After that if we run our tests again, everything should be green again. So
let’s commit this before adding more code:

62 CHAPTER 4. REFACTORING TESTS

$ git add .

$ git commit -m "Refactors the json parse method"
[chapter4 26b7e51] Refactors the json parse method
3 files changed, 17 insertions(+), 7 deletions(-)
create mode 100644 spec/support/request_helpers.rb

4.2 Refactoring the format param

We want to remove the format param sent on every request and instead of that
let’s handle the response we are expecting through headers. This is extremely
easy, just by adding one line to our users_controller_spec.rb file:

describe Api: :V1l::UsersController do
we concatenate the json format
before (:each) { request.headers['Accept'] = "application/vnd.marketplace.vl, #{M

By adding this line, you can now remove all the format param we were
sending on each request and forget about it for the whole application, as long
as you include the Accept header with the json mime type.

Wait we are not over yet! We can add another header to our request that
will help us describe the data contained we are expecting from the server to
deliver. We can achieve this fairly easy by adding one more line specifying the
Content-Type header:

describe Api::V1::UsersController do
before (:each) { request.headers['Accept'] = "application/vnd.marketplace.vl, #{M
now we added this line
before (:each) { request.headers|['Content-Type'] = Mime::JSON.to_s }

And again if we run our tests, we can see they are all nice and green:

ime::JSON}" }

ime: :JSON}" }

4.3. REFACTOR BEFORE ACTIONS 63

$ bundle exec rspec spec/controllers/api/vl/users_controller_spec.rb

Finished in 0.19013 seconds
13 examples, 0 failures

As always, this is a good time to commit:

4.3 Refactor before actions

I’m very happy with the code we got so far, but we can still improve it a little
bit, the first thing that comes to my mind is to group the 3 custom headers being
added before each request:

before (:each) do

request .headers['Accept'] = "application/vnd.marketplace.vl, #{Mime::JSON}"
request .headers ['Content-Type'] = Mime::JSON.to_s
end

This is good, but not good enough, because we will have to add this 5
lines of code for each file, and if for some reason we are changing let’s say
the response type to xml, well you do the math. But don’t worry I provide a
solution which will solve all these problems.

First of all we have to extend our request_helpers.rb file to include
another module, which I named HeadersHelpers and which will have the
necessary methods to handle these custom headers(Listing 4.4)

Listing 4.4: Include headers helpers nto Rspec
(spec/support/request_helpers.rb)

module Request
module JsonHelpers
def json_response
@json_response ||= JSON.parse (response.body, symbolize_names: true)
end
end

64 CHAPTER 4. REFACTORING TESTS

Our headers helpers module
module HeadersHelpers
def api_header (version = 1)
request .headers|['Accept'] = "application/vnd.marketplace.vi{version}"
end

def api_response_format (format = Mime: :JSON)

request .headers|['Accept'] = "#{request.headers|['Accept']}, #{format}"
request .headers|['Content-Type'] = format.to_s
end

def include_default_accept_headers
api_header
api_response_format
end
end
end

As you can see I broke the calls into 2 methods, one for setting the api
header and the other one for setting the response format. Also and for conve-
nience I wrote a method (include_default_accept_headers) for calling
those two.

And now to call this method before each of our test cases we can add the
before hook on the Rspec.configure block at spec_helper.rb 4.5 file, and make
sure we specify the type to : controller, as we don’t to run this on unit tests.

RSpec.configure do |config]|

config.include Request: :HeadersHelpers, :type => :controller

config.before (:each, type: :controller) do
include_default_accept_headers
end
end

After adding this lines, we can remove the before hooks on the users_controller sr
file and check that our tests are still passing.

You can review a full version of the spec_helper.rb file below (List-
ing 4.5):

4.3. REFACTOR BEFORE ACTIONS

65

Listing 4.5: Rspec helper (spec/spec_helper.rb)

This file is copied to spec/ when you run 'rails generate rspec:install'’
ENV["RAILS_ENV"] ||= 'test'

require File.expand path("../../config/environment", _ FILE_)

require 'rspec/rails'

require 'rspec/autorun'

Requires supporting ruby files with custom matchers and macros, etc,
in spec/support/ and its subdirectories.
Dir[Rails.root. join ("spec/support/**/*.rb")].each { |f| require f }

Checks for pending migrations before tests are run.
If you are not using ActiveRecord, you can remove this line.
ActiveRecord: :Migration.check_pending! if defined? (ActiveRecord::Migration)

RSpec.configure do |config]
Mock Framework

config.mock with :mocha
config.mock _with :flexmock
config.mock with :rr

H O W

Remove this line if you're not using ActiveRecord or ActiveRecord fixtures
config.fixture_path = "#{::Rails.root}/spec/fixtures"

If you're not using ActiveRecord, or you'd prefer not to run each of your
examples within a transaction, remove the following line or assign false
instead of true.

config.use_transactional fixtures = true

If true, the base class of anonymous controllers will be inferred

automatically. This will be the default behavior in future versions of
rspec-rails.

config.infer base_class_for_ anonymous_controllers = false

Run specs in random order to surface order dependencies. If you find an

order dependency and want to debug it, you can fix the order by providing
the seed, which is printed after each run.

——seed 1234

config.order = "random"

#Including to test requests
config.include Request::JsonHelpers, :type => :controller
config.include Request::HeadersHelpers, :type => :controller

config.before(:each, type: :controller) do
include_default_accept_headers
end

If you prefer to use mocha, flexmock or RR, uncomment the appropriate line:

66 CHAPTER 4. REFACTORING TESTS

end

Well now I do feel satisfied with the code, let’s commit the changes:

$ git add .

$ git commit —-am "Refactors test headers for each request"
[chapterd4 aelOfe9] Refactors test headers for each request
3 files changed, 21 insertions(+), 5 deletions(-)

Remember you can review the code up to this point at the github repository.

4.4 Conclusion

Nice job on finishing this chapter, although it was a short one it was a crucial
step as this will help us write better and faster tests. On Chapter 5 we will add
the authentication mechanism we’ll be using across the application as well as
limiting the access for certain actions.
I’1l be really excited to hear about you:
I just finished refactoring the test suite for my api of Api on Rails tutorial
by @kurenn!

https://github.com/kurenn/market_place_api/tree/chapter4
https://twitter.com/kurenn
https://twitter.com/kurenn

Chapter 5

Authenticating users

It’s been a long way since you started, I hope you are enjoying this trip as much
as me. On Chapter 4 we refactor our test suite and since we did not add much
code, it didn’t take to much. If you skipped that chapter I recommend you read
it, as we are going to be using some of the methods in the chapters to come.

You can clone the project up to this point:

$ git clone https://github.com/kurenn/market_place_api.git -b chapter4

In this chapter things will get very interesting, and that is because we are
going to set up our authentication mechanism. In my opinion this is going to
be one of the most interesting chapters, as we will introduce a lot of new terms
and you will end with a simple but powerful authentication system. Don’t feel
panic we will get to that.

First things first, and as usual when starting a new chapter, we will create a
new branch:

$ git checkout -b chapter5

67

68 CHAPTER 5. AUTHENTICATING USERS

5.1 Stateless and sign in failure

Before we go any further, something must be clear, an API does not handle
sessions and if you don’t have experience building these kind of applications it
might sound a little crazy, but stay with me. An API should be stateless which
means by definition is one that provides a response after your request, and
then requires no further attention., which means no previous or future state is
required for the system to work.

The flow for authenticating the user through an API is very simple:

1. The client request for sessions resource with the corresponding cre-
dentials, usually email and password.

2. The server returns the user resource along with its corresponding au-
thentication token

3. Every page that requires authentication, the client has to send that authentication
token

Of course this is not the only 3-step to follow, and even on step 2 you
might think, well do I really need to respond with the entire user or just the
authentication token, [would say, it really depends on you, but I like to
return the entire user, this way I can map it right away on my client and save
another possible request from being placed.

In this section and the next we will be focusing on building a Sessions
controller along with its corresponding actions. We’ll then complete the request
flow by adding the necessary authorization access.

5.1.1 Authentication token

Before we proceed with the logic on the sessions controller, we have to first add
the authentication token field to the user model and then add a method
to actually set it.

First we generate the migration file:

5.1. STATELESS AND SIGN IN FAILURE 69

$ rails generate migration add_authentication_token_to_users auth_token:string

As a good practice I like to setup string values to an empty string and
in this case let’s add an index with a unique condition to true. This way we
warranty there are no users with the same token, at a database level, so let’s do
that:

class AddAuthenticationTokenToUsers < ActiveRecord::Migration
def change
add_column :users, :auth_token, :string, default: ""
add_index :users, :auth_token, unique: true
end
end

Then we run the migrations to add the field and prepare the test database:

$ rake db:migrate & rake db:test:prepare
== AddAuthenticationTokenToUsers: migrating

—— add_column (:users, :auth _token, :string, {:default=>""})
-> 0.0050s

—— add_index(:users, :auth_token, {:unique=>true})
-> 0.0013s

AddAuthenticationTokenToUsers: migrated (0.0065s) === ===

Now it would be a good time to add some response and uniqueness tests to
our user model spec (Listing 5.1)

Listing 5.1: Response and uniqueness tests (spec/models/user_spec.rb)

we test the user actually respond to this attribute
it { should respond_to(:auth_token) }

we test the auth_token is unique
it { should validate_uniqueness_of (:auth_token)}

We then move to the user. rb file and add the necessary code to make our
tests pass:

70 CHAPTER 5. AUTHENTICATING USERS

class User < ActiveRecord: :Base
validates :auth_token, uniqueness: true

end

Next we will work on a method that will generate a unique authentication
token for each user in order to authenticate them later through the API. So let’s
build the tests first (Listing 5.2).

Listing 5.2: Generate token spec (spec/models/user_spec.rb)

it { should validate_uniqueness_of (:auth_token)}

describe "#generate_authentication_token!" do
it "generates a unique token" do
Devise.stub (:friendly token) .and_return ("auniquetokenl23")
@Quser.generate_authentication_token!
expect (Quser.auth_token) .to eql "auniquetokenl23"
end

it "generates another token when one already has been taken" do
existing user = FactoryGirl.create(:user, auth_token: "auniquetokenl23")
Quser.generate_authentication_token!
expect (Quser.auth_token) .not_to eql existing user.auth_token
end
end

The tests initially fail, as expected:

$ bundle exec rspec spec/models/user_spec.rb

We are going to hook this generate_authentication_token! to a
before_ create callback to warranty every user has an authentication token
which does not collides with an existing one. To create the token there are
many solutions, I’'ll go with the friendly token that devise offers already,
but I could also do it with the hex method from the SecureRandom class.

The code to generate the token is fairly simple:

5.1. STATELESS AND SIGN IN FAILURE 71

def generate_authentication_token!
begin
self.auth token = Devise.friendly token
end while self.class.exists? (auth_token: auth_token)
end

After that we just need to hook it up to the before_create callback:

before_create :generate_authentication_token!

After doing this we should have all of our tests passing:

$ bundle exec rspec spec/models/user_spec.rb

Finished in 0.13354 seconds
12 examples, 0 failures

As usual, let’s commit the changes and move on:

git add db/migrate/20140629060140_add authentication_token_to_users.rb

git add app/models/user.rb

git add db/schema.rb

git add spec/models/user_spec.rb

git commit -m "Adds user authentication token"

[chapter5 076e03e] Adds user authentication token

4 files changed, 35 insertions(+), 1 deletion(-)

create mode 100644 db/migrate/20140629060140_add_authentication_token_to_users.rb

v« v v n

5.1.2 Sessions controller

Back to the sessions controller the actions we’ll be implementing on it are
going to be handled as RESTful services: the sign in will be handled by a POST
request to the create action(Section 5.1.2) and the sign out will be handled
by a DELETE request to the destroy action(Recall for the Listing 2.2 about
HTTP verbs).

To get started we will start by creating the sessions controller:

72 CHAPTER 5. AUTHENTICATING USERS

$ rails generate controller sessions

Then we need to move the files into the api/v1 directory, for both on the
app and spec folders:

$ mv app/controllers/sessions_controller.rb app/controllers/api/vl
$ mv spec/controllers/sessions_controller spec.rb spec/controllers/api/vl

After moving the files we have to update them to meet the directory struc-
ture we currently have as shown on Listing 5.3 and Listing 5.4.

Listing 5.3: Sessions controller name update
(app/controllers/api/v1/sessions_controller.rb)

class Api::V1l::SessionsController < ApplicationController

end

Listing 5.4: Sessions controller spec name update
(spec/controllers/api/v1/sessions_controller_spec.rb)

require 'spec_helper'
describe Api::V1l::SessionsController do

end

Sign in success

Our first stop will be the create action, but first and as usual let’s generate our
tests (Listing 5.5)

Listing 5.5: Create tests for the ‘create action
(spec/controllers/api/v1/sessions_controller_spec.rb)

5.1. STATELESS AND SIGN IN FAILURE 73

require 'spec_helper'
describe Api::V1l::SessionsController do
describe "POST #create" do
before(:each) do
Quser = FactoryGirl.create :user
end

context "when the credentials are correct" do

before (:each) do

credentials = { email: @Quser.email, password: "12345678" }
post :create, { session: credentials }
end

it "returns the user record corresponding to the given credentials" do
@Quser.reload

expect (json_response|[:auth_token]) .to eql @Quser.auth_token
end

it { should respond_with 200 }
end

context "when the credentials are incorrect" do

before (:each) do

credentials = { email: (@Quser.email, password: "invalidpassword" }
post :create, { session: credentials }
end

it "returns a json with an error" do

expect (json_response|[:errors]) .to eql "Invalid email or password"
end

it { should respond with 422 }
end
end
end

The tests are pretty straightforward we simply return the user in json for-
mat if the credentials are correct, but if not we just send a json with an error
message. Next we need to implement the code to make our tests be green (List-
ing 5.6). But before that we will add the end points to our route. rb file (both
the create and destroy end point).

74 CHAPTER 5. AUTHENTICATING USERS

scope module: :v1, constraints: ApiConstraints.new(version: 1, default: true) do
We are going to list our resources here
resources :users, :only => [:show, :create, :update, :destroy]
resources :sessions, :only => [:create, :destroy]

end

Listing 5.6: Sessions controller ~ with ‘create® action
(app/controllers/api/v1/sessions_controller.rb)

class Api::V1l::SessionsController < ApplicationController

def create
user_password = params|:session] [:password]
user_email = params|[:session][:email]
user = user_email.present? && User.find by (email: user_email)

if user.valid_password? user_password
sign_in user, store: false
user.generate_authentication_token!
user.save

render json: user, status: 200, location: [:api, user]
else
render json: { errors: "Invalid email or password" }, status: 422
end
end
end

Before we run our tests, it is necessary to add the devise test helpers in
the spec_helper. rb file:

#Including to test requests

config.include Request::JsonHelpers, :type => :controller
config.include Request::HeadersHelpers, :type => :controller
config.include Devise::TestHelpers, :type => :controller

5.1. STATELESS AND SIGN IN FAILURE 75

Now if we run our tests they should be all passing:

$ bundle exec rspec spec/controllers/api/vl/sessions_controller_spec.rb

Now this would be a nice moment to commit the changes:

$ git add .
$ git commit -m "Adds sessions controller create action"

Sign out

We currently have the sign in end point for the api, now it is time to build a
sign out url, and you might wonder why, since we are not handling sessions
and there is nothing to destroy. In this case we are going to update the authen-
tication token so the last one becomes useless and cannot be used again.

It is actually not necessary to include this end point, but I do like to include
it to expire the authentication tokens

As usual we start with the tests (Listing 5.7)

Listing 5.7: Destroy action sessions spec
(spec/controllers/api/v1/sessions_controller_spec.rb)

describe "DELETE #destroy" do

before (:each) do
Quser = FactoryGirl.create :user
sign_in (@user, store: false
delete :destroy, id: Q@user.auth_token
end

it { should respond _with 204 }

end

As you can see the test is super simple, now we just need to implement
the necessary code to make our tests pass (Listing 5.8)

76 CHAPTER 5. AUTHENTICATING USERS

Listing 5.8: Destroy action sessions
(app/controllers/api/v1/sessions_controller.rb)

def destroy
user = User.find by (auth_token: params[:id])
user.generate_authentication_token!
user.save
head 204

end

In this case we are expecting an id to be sent on the request, which has
to correspond to the user authentication token, on Section 5.2, we will add the
current_user method to handle this smoothly. For now we will just leave it
like that.

Take a deep breath, we are almost there!, but in the meantime commit the
changes:

$ git add .

$ git commit -m "Adds destroy session action added"
[chapter5 cb8b47a] Adds destroy session action added
3 files changed, 21 insertions(+), 1 deletion(-)

5.2 Current User

If you have worked with devise before you probably are familiar with the auto-
generated methods for handling the authentication filters or getting the user that
is currently on session.(See documentation on this for more details).

In our case we will need to override the current_user method to meet
our needs, and that is finding the user by the authentication token that is going
to be sent on each request to the api. Let me clarify that for you.

Once the client sign ins a user with the correct credentials, the api will
return the authentication token from that actual user, and each time that
client requests for a protected page we will need to fetch the user from that
authentication token thatcomes in the request and it could be as a param
or as a header.

https://github.com/plataformatec/devise
https://github.com/plataformatec/devise#getting-started

5.2. CURRENT USER 77

In our case we’ll be using an Authorization header which is commonly
used for this type of purpose. I personally find it better because it gives context
to the actual request without polluting the URL with extra parameters.

When it comes to authentication I like to add all the related methods into a

separate file, and after that just include the file inside the ApplicationController.

This way it is really easy to test in isolation. Let’s create the file under de
controllers/concerns directory:

$ touch app/controllers/concerns/authenticable.rb

After that let’s create a concerns directory under spec/controllers/
and an authenticable_spec. rb file for our authentication tests.

$ mkdir spec/controllers/concerns
$ touch spec/controllers/concerns/authenticable_spec.rb

As usual we start by writing our tests, in this case for our current_user

method, which will fetch a user by the authentication token ok the Authorization

header.(Listing 5.9)

Listing 5.9: Authenticable spec current user method
(spec/controllers/concerns/authenticable_spec.rb)

require 'spec_helper'

class Authentication
include Authenticable
end

describe Authenticable do
let (:authentication) { Authentication.new }
subject { authentication }

describe "#current user" do
before do
@user = FactoryGirl.create :user
request .headers["Authorization"] = Quser.auth_token
authentication.stub (:request) .and_return(request)
end

78 CHAPTER 5. AUTHENTICATING USERS

it "returns the user from the authorization header" do
expect (authentication.current_user.auth_token) .to eql Quser.auth_token
end
end
end

If you are wondering, why in the hell we created a Authentication class
inside the spec file. The answer is simple, when it comes to test modules I find
it easy to include them into a temporary class and stub any other methods 1
may require later, like the request shown above.

Our tests should fail:

$ bundle exec rspec spec/controllers/concerns/authenticable_spec.rb

Let’s implement the necessary code (Listing 5.10):

Listing 5.10: Authenticable current user method
(app/controllers/concerns/authenticable.rb)

module Authenticable

Devise methods overwrites
def current_user
@Qcurrent_user | |= User.find by (auth_token: request.headers|['Authorization'])
end
end

Now our tests should be passing:

$ bundle exec rspec spec/controllers/concerns/authenticable_spec.rb

Finished in 0.03838 seconds
1 example, 0 failures

Now we just need to include the Authenticable module into the ApplicationCont:

5.3. AUTHENTICATE WITH TOKEN 79

class ApplicationController < ActionController: :Base
Prevent CSRF attacks by raising an exception.
For APIs, you may want to use :null session instead.
protect_from_forgery with: :null_session

include Authenticable

end

This would be a good time to commit the changes:

$ git add .

$ git commit -m "Adds authenticable module for managing authentication methods"
[chapter5 1d049cl] Adds authenticable module for managing authentication methods
3 files changed, 30 insertions (+)

create mode 100644 app/controllers/concerns/authenticable.rb

create mode 100644 spec/controllers/concerns/authenticable_spec.rb

5.3 Authenticate with token

Authorization is a big part when building applications because in contrary to
authentication that allows us to identify the user in the system, authorization
help us to define what they can do.

Although we have a good end point for updating the user it has a major
security hole: allowing anyone to update any user on the application. In this
section we’ll be implementing a method that will require the user to be signed
in, preventing in this way any unauthorized access. We will return a not autho-
rized json message along with its corresponding http code.

First we have to add some tests on the authenticable_spec. rb for the
authenticate_with_token method(Listing 5.11).

Listing 5.11: Authenticable authenticate with token method
(spec/controllers/concerns/authenticable_spec.rb)

describe Authenticable do

80 CHAPTER 5. AUTHENTICATING USERS

describe "#authenticate with_ token" do

before do
@user = FactoryGirl.create :user
authentication.stub (:current_user) .and return(nil)
response.stub (:response_code) .and_return(401)
response.stub (:body) .and_return({"errors" => "Not authenticated"}.to_json)
authentication.stub(:response) .and_return (response)

end

it "render a json error message" do
expect (json_response|:errors]) .to eql "Not authenticated"
end

it { should respond with 401 }
end
end

As you can see we are using the Authentication class again and stub-
bing the request and response for handling the expected answer from the
server. Now it is time to implement the code to make our tests pass (List-
ing 5.12).

Listing 5.12: Authenticable authenticate with token method
(app/controllers/concerns/authenticable.rb)

module Authenticable

Devise methods overwrites

def authenticate_ with_ token!
render json: { errors: "Not authenticated" },
status: :unauthorized unless current_user.present?

end

end

At this point, we just built a super simple authorization mechanism to pre-
vent unsigned users to access the api. We just need to update the users_controller.rb
file with the current_user method and prevent the access with the authenticate_with

Let’s commit this changes and keep moving:

5.4. AUTHORIZE ACTIONS 81

$ git commit -m "Adds the authenticate with token method to handle access to actig
[chapter5 99e869d] Adds the authenticate with token method to handle access to act]
2 files changed, 22 insertions (+)

5.4 Authorize actions

It is now time to update our users_controller.rb file to deny the access to
some of the actions. Also we will implement the current_user method on
the update and destroy actions to make sure that the user who is on ‘session’
will be capable only to update its data or self destroy.

We will start with the update action (Listing 5.13). We will no longer fetch
the user by id, instead of that by the auth_token on the Authorization
header provided by the current_user method.

Listing 5.13: Implementation of current user for the update action
(app/controllers/users_controller.rb)

def update
user = current_user

if user.update (user_params)

render json: user, status: 200, location: [:api, user]
else
render json: { errors: user.errors }, status: 422
end
end

And as you might expect, if we run our users controller specs they should
fail:

ns'l
ions

82 CHAPTER 5. AUTHENTICATING USERS

$ bundle exec rspec spec/controllers/api/vl/users_controller.rb

Failures:

The solution is fairly simple, we just need to add the Authorization
header to the request:

describe "PUT/PATCH #update" do
before (:each) do
@Quser = FactoryGirl.create :user
request .headers|['Authorization'] = (@user.auth_token
end

end

Now the tests should be all green. But wait something does not feel quite

rightisn’tit?, we can refactor the line we just added and put it on the HeadersHelpers

module we build on Chapter 4. Listing 5.14

Listing 5.14: Authorization header method
(spec/support/request_helpers.rb)

module HeadersHelpers

def api_authorization_header (token)
request .headers|['Authorization'] = token
end

end

Now each time we need to have the current_user on our specs we simply
call the api_authorization_header method. I'll let you do that with the
users_controller_spec.rb for the update spec.

5.4. AUTHORIZE ACTIONS 83

For the destroy action we will do the same, because we just have to make
sure a user is capable to self destroy Listing 5.15

Listing 5.15: Destroy action with current, ser(app/controllers/api/v1/users_controller.rb)

def destroy
current_user.destroy
head 204

end

Now for the spec file and as mentioned before, we just need to add the
api_authorization_header:

describe "DELETE #destroy" do
before (:each) do
@user = FactoryGirl.create :user
api_authorization_header Quser.auth_token #we added this line
delete :destroy, id: @user.auth_token
end

it { should respond with 204 }

end

We should have all of our tests passing. The last step for this section consist
on adding the corresponding authorization access for these last 2 actions.

It is common to just prevent the actions on which the user is performing
actions on the record itself, in this case the destroy and update action

On the users_controller.rb we have to filter some these actions to
prevent the access Listing 5.16

Listing 5.16: Filter actions for users controller
(app/controllers/api/v1/users_controller.rb)

84 CHAPTER 5. AUTHENTICATING USERS

class Api::V1::UsersController < ApplicationController
before_action :authenticate_with_token!, only: [:update, :destroy]
respond_to :json

end

Our tests should still be passing. And from now on everytime we want to
prevent any action from being trigger, we simply add the authenticate_with_token!
method on a before action hook.

Let’s just commit this:

$ git add .

$ git commit -m "Adds authorization for the users controller"
[chapter5 7c19c79] Adds authorization for the users controller
3 files changed, 10 insertions(+), 4 deletions(-)

Lastly but not least we will finish the chapter by refactoring the authenticate_with_1
method, it is really a small enhancement, but it will make the method more de-
scriptive. You’ll see what I mean in a minute(Listing 5.18), but first things first,
let’s add some specs.

Listing 5.17: User signed in method spec
(spec/controllers/concerns/authenticable_spec.rb)

describe Authenticable do

describe "#user_signed_in?" do
context "when there is a user on 'session'" do
before do
@user = FactoryGirl.create :user
authentication.stub (:current_user) .and_return (Quser)
end

it { should be_user_signed in }
end

context "when there is no user on 'session'" do
before do

5.4. AUTHORIZE ACTIONS 85

@user = FactoryGirl.create :user
authentication.stub(:current_user) .and return(nil)
end

it { should not be_user_ signed_in }
end
end

end

As you can see we added two simple specs to know whether the user is
signed in or not, and as I mentioned early it is just for visual clarity. But let’s
keep going and add the implementation. (Listing 5.18)

Listing 5.18: User signed in method
(app/controllers/concerns/authenticable.rb)

module Authenticable

def authenticate_with_token!
render json: { errors: "Not authenticated" },
status: :unauthorized unless user_signed_ in?
end

def user_signed in?
current_user.present?

end

end

As you can see, now the authenticate_with_ token! it’s easier to read
not just for you but for other developers joining the project. This approach has
also another side benefit, which in any case you want to change or extend how
to validate if the user is signed in you can just do it on the user_signed_in?
method.

Now our tests should be all green:

86 CHAPTER 5. AUTHENTICATING USERS

$ bundle exec rspec/spec/controllers/concerns/authenticable.rb

Finished in 0.08268 seconds
5 examples, 0 failures

Randomized with seed 59972

Let’s commit the changes:

$ git add .
$ git commit -m "Adds user_signed_in? method to know whether the user is logged in

5.5 Conclusion

Yei! you made it! you are half way done! keep up the good work, this chap-
ter was a long and hard one but it is a great step forward on setting a solid
mechanism for handling user authentication and we even scratch the surface
for simple authorization rules.

In the next chapter we will be focusing on customizing the json output
for the user with active_model_serializers gem and adding a product
model to the equation by giving the user the ability to create a product and
publish it for sale.

In the mean time let me know how you doing and shout me a tweet:

I can authenticate users for my api thanks to Api on Rails tutorial by
@kurenn!

or not"

https://twitter.com/kurenn
https://twitter.com/kurenn

Chapter 6

User products

On Chapter 5 we implemented the authentication mechanism we’ll be using
all along the app. Right now we have a very simple implementation of the
user model but the moment of truth has come where we will customise the
json output but also add a second resource: user products. These are the items
that the user will be selling in the app, and by consequence will be directly
associated. If you are familiar with Rails you may already know what I'm
talking about, but for those who doesn’t, we will associated the User to the
Product model using the has_many and belongs_ to active record methods.
Recall (Figure 2.1).

In this chapter we will build the Product model from the ground up, asso-
ciate it with the user and create the necessary end points for any client to access
the information.

You can clone the project up to this point:

$ git clone https://github.com/kurenn/market_place_api.git -b chapter5

Before we start and as usual when starting new features, we need to branch
it out:

$ git checkout -b chapteré6

87

88 CHAPTER 6. USER PRODUCTS

6.1 Product model

We first start by creating Product model, then we add some validations to it,
and finally we will associate it with the user model. As the user model the
product will be fully tested, and will also have an automatic destruction if the
user in this case is destroyed

6.1.1 Product bare bones

The product model will need several fields: a price attribute to hold the prod-
uct price, a published boolean to know whether the product is ready to sell
or not, a title to define a sexy product title, and last but not least a user_id
to associate this particular product to a user. As you may already know, we
generate it with the rails generate command:

$ rails generate model Product title:string price:decimal published:boolean \
user_id:integer:index
invoke active_record
create db/migrate/20140718160927_create_products.rb

create app/models/product.rb

invoke rspec

create spec/models/product_spec.rb
invoke factory girl

create spec/factories/products.rb

As you may notice we also added an index option to the user_id attribute,
this is a good practice when using association keys, as it optimizes the query to
a database level. It is not compulsory that you do that but I highly recommend
it.

The migration file should look like this:

class CreateProducts < ActiveRecord::Migration
def change
create_table :products do |t]
t.string :title, default: ""
t.decimal :price, default: 0.0
t .boolean :published, default: false
t.integer :user_id

6.1. PRODUCT MODEL 89

t.timestamps
end
add_index :products, :user_id
end
end

Take note that we set some default values for all of the attributes except the
user_id, this way we keep a high consistency level on our database as we
don’t deal with many NULL values.

Next we will add some basic tests to the Product model. We will just make
sure the object responds to the fields we added, as shown in Listing 6.1:

Listing 6.1: Product model bare bones spec (spec/models/product_spec.rb)
require 'spec_helper'
describe Product do

let (:product) { FactoryGirl.build :product }
subject { product }

it { should respond_to(:title) }

it { should respond_to(:price) }

it { should respond_to(:published) }
it { should respond_to(:user_id) }

it { should not_be_published }
end

Remember to migrate the database and prepare the test one so we get out
tests green:

$ rake db:migrate
$ rake db:test:prepare

Make sure the tests pass:

$ bundle exec rspec spec/modes/product_spec.rb

90 CHAPTER 6. USER PRODUCTS

Although our tests are passing, we need to do some ground work for the
product factory, as for now is all hardcoded. As you recall we have been using
Faker to fake the values for our tests models (Listing 3.3), now it is time to do
the same with the product model. See Listing 6.2

Listing 6.2: Product factory bare bones (spec/factories/products.rb)

FactoryGirl.define do
factory :product do
title { FFaker: :Product.product_name }
price { rand() % 100 }
published false
user_id "1"
end
end

Now each product we create will look a bit more like a real product. We
still need to work on the user_id as is hardcoded, but we will get to that on
Section 6.1.3.

6.1.2 Product validations

As we saw with the user, validations are an important part when building any
kind of application, this way we prevent any junk data from being saved onto
the database. In the product we have to make sure for example the price is a
number and that is not negative.

Also an important thing about validation when working with associations,
1s in this case to validate that every product has a user, so in this case we need
to validate the presence of the user_id. In Listing 6.3 you can see what I'm
talking about.

Listing 6.3: Product validation specs (spec/models/product_spec.rb)

describe Product do
let (:product) { FactoryGirl.build :product }
subject { product }

6.1. PRODUCT MODEL 91

it { should validate_presence_of :title }
it { should validate_presence_of :price }
it { should validate_numericality of (:price) .is_greater_than_or_equal_to(0) }
it { should validate_ presence_of :user_id }
end

Now we need to add the implementation to make the tests pass:

class Product < ActiveRecord: :Base
validates :title, :user_id, presence: true
validates :price, numericality: { greater_than or_equal_to: 0 },
presence: true

end

We have a bunch of good quality code, let’s commit it and keep moving:

$ git add .

$ git commit -m "Adds product model bare bones along with some validations"
[chapter6 £774173] Adds product model bare bones along with some wvalidations
5 files changed, 58 insertions(+), 1 deletion(-)

create mode 100644 app/models/product.rb

create mode 100644 db/migrate/20140718160927_create_products.rb

create mode 100644 spec/factories/products.rb

create mode 100644 spec/models/product_spec.rb

6.1.3 Product/User association

In this section we will be building the association between the product and the
user model, we already have the necessary fields, so we just need to update a
couple of files and we will be ready to go. First we need to modify the products
factory to relate it to the user, so how do we do that?:

FactoryGirl.define do
factory :product do
title { FFaker: :Product.product_name }
price { rand() = 100 }
published false

92 CHAPTER 6. USER PRODUCTS

user
end
end

As you can see we just rename the user_id attribute to user and we did
not specify a value, as FactoryGirl is smart enough to create a user object for
every product and associate them automatically. Now we need to add some
tests for the association. See Listing 6.4

Listing 6.4: Product association specs (spec/models/product_spec.rb)

describe Product do
let (:product) { FactoryGirl.build :product }
subject { product }

it { should belong to :user }

end

As you can see the test we added is very simple, thanks to the power of
shoulda-matchers. We continue with the implementation now:

class Product < ActiveRecord: :Base
validates :title, :user_id, presence: true
validates :price, numericality: { greater_than_or_equal_to: 0 },
presence: true

we added this line
belongs_to :user

end

Remember to run the test we added just to make sure everything is all right:

$ bundle exec rspec spec/models/product_spec.rb

Currently we only have one part of the association, but as you may be won-
dering already we have to add a has_many association to the user model.
First we add the test on the user_spec.rb file:

https://github.com/thoughtbot/shoulda-matchers

6.1. PRODUCT MODEL 93

describe User do

it { should have_many (:products) }

end

The implementation on the user model is extremely easy:

class User < ActiveRecord: :Base

before_create :generate_authentication_token!

has_many :products

end

Now if we run the user specs, they should be all nice and green:

$ bundle exec rspec spec/models/user_spec.rb

Dependency destroy

Something I’ve seen in other developers code when working with associa-
tions, is that they forget about dependency destruction between models. What I
mean by this is that if a user is destroyed, the user’s products in this case should
be destroyed as well.

So to test this interaction between models, we need a user with a bunch of
products, then we destroy that user expecting the products disappear along with
it. A simple implementation would look like this:

94 CHAPTER 6. USER PRODUCTS

products = user.products
user .destroy
products.each do |product|

expect (Product . find (product.id)) .to raise_error ActiveRecord: :RecordNotFound
end

We first save the products into a variable for later access, then we destroy
the user and loop through the products variable expecting each of the products

to raise an exception. Putting everything together should look like the code in
Listing 6.5:

Listing 6.5: User products destroy dependency specs
(spec/models/user_spec.rb)

describe User do
before { @Quser = FactoryGirl.build(:user) }

subject { (@user }

describe "#products association" do

before do
@Quser.save

3.times { FactoryGirl.create :product, user: Quser }
end

it "destroys the associated products on self destruct" do
products = Quser.products
@user.destroy
products.each do |product|
expect (Product. find (product)) .to raise_error ActiveRecord: :RecordNotFound
end
end
end
end

The necessary code to make the code on Listing 6.5 to pass is just an option
on the has_many association method:

6.2. PRODUCTS ENDPOINTS 95

class User < ActiveRecord: :Base

has_many :products, dependent: :destroy

end

With that code added all of our tests should be passing:

$ bundle exec rspec spec/

Let’s commit this and move on to the next Section 6.2

$ git add .

$ git commit -m "Finishes modeling the product model along with user associations'|
[chapter6 13795aa] Finishes modeling the product model along with user association
5 files changed, 26 insertions(+), 2 deletions(-)

6.2 Products endpoints

It is now time to start building the products endpoints, for now we will just build
5 REST actions and some of them will be nested inside the users resource.
In the next Chapter we will customise the json output by implementing the
active_model_serializers gem.

First we need to create the products_controller, and we can easily
achieve this with the command below:

$ rails generate controller api/vl/products

The command above will generate a bunch of files ready to start working,
what I mean by this is that it will generate the controller and specs files already
scoped to the version 1 of the api. Listing 6.6

96 CHAPTER 6. USER PRODUCTS

Listing 6.6: Products controller bare bones
(app/controllers/api/v1/products_controller.rb)

class Api::V1::ProductsController < ApplicationController
end

And the spec file should look like the one on Listing 6.7

Listing 6.7: Products controller spec bare bones
(spec/controllers/api/v1/products_controller_spec.rb)

require 'spec_ helper'
describe Api::V1l::ProductsController do

end

As a warmup we will start nice and easy by building the show action for
the product.

6.2.1 Show action for products

As usual we begin by adding some product show controller specs. Listing 6.8.
The strategy here is very simple, we just need to create a single product and
make sure the response from server is what we expect, as recall on Listing 3.6.

Listing 6.8: Product show action specs
(spec/controllers/api/v1/products_controller_spec.rb)

describe Api::V1::ProductsController do
describe "GET #show" do
before (:each) do
@product = FactoryGirl.create :product
get :show, id: @product.id
end

it "returns the information about a reporter on a hash" do
product_response = json_response
expect (product_response[:title]) .to eql @product.title

6.2. PRODUCTS ENDPOINTS 97

end

it { should respond with 200 }
end

end

We then add the code to make the test pass:

class Api::V1l::ProductsController < ApplicationController
respond_to :json

def show
respond_with Product. find(params|[:id])
end
end

Wait!, don’t run the tests yet, remember we need to add the resource to the
routes.rb file:

namespace :api, defaults: { format: :json },
constraints: { subdomain: 'api' }, path: '/' do
scope module: :v1,
constraints: ApiConstraints.new(version: 1, default: true) do
We are going to list our resources here
resources :users, :only => [:show, :create, :update, :destroy]
resources :sessions, :only => [:create, :destroy]
resources :products, :only => [:show]
end
end

Now we make sure the tests are nice and green:

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 0.1068 seconds
2 examples, 0 failures

Randomized with seed 25484

As you may notice already the specs and implementation are very simple,
actually they behave the same as the users, recall Listing 3.6

98 CHAPTER 6. USER PRODUCTS

6.2.2 Products list

Now it is time to output a list of products, which could be displayed as the mar-
ket place product catalog. This endpoint is also accessible without credentials,
that means we don’t require the user to be logged-in to access the data. As
usual we will start writing some specs. Listing 6.9:

Listing 6.9: Product index action specs
(spec/controllers/api/v1/products_controller_spec.rb)

describe Api::V1::ProductsController do

describe "GET #index" do
before (:each) do
4.times { FactoryGirl.create :product }
get :index
end

it "returns 4 records from the database" do

products_response = json_response
expect (products_response|[:products]) .to have(4) .items
end

it { should respond with 200 }
end
end

Let’s move into the implementation, which for now is going to be a sad all
class method. Listin 6.10

Listing 6.10: Product index action
(spec/controllers/api/v1/products_controller.rb)

class Api::V1::ProductsController < ApplicationController
respond_to :json

def index

respond_with Product.all
end

end

6.2. PRODUCTS ENDPOINTS 99

And remember, you have to add the corresponding route:

resources :products, :only => [:show, :index]

In next chapters we will improve this endpoint, and give it the ability to
receive parameters to filter them.

6.2.3 Exploring with Sabisu

Hey, remember back in Chapter 3 on Section 3.3 we integrate a gem called
sabisu_rails, well let’s customize it to map the products endpoints. This is
easily done by going to the sabisu_rails. rb initialiser file and modify line
25 like the one below:

SabisuRails.setup do |config]|

config.resources = [:users, :products]

end

If you run the rails server from the command line, and visit http://localhost:3000/sabisu_
the product resource should be selected and the screen should look like Fig-
ure 6.1
You can create a bunch of products through the console using Factory-
Girl and see a reasonable response.
We are done for now with the public product endpoints, in the sections to
come we will focus on building the actions that require a user to be logged in
to access them. Said that we are committing this changes and continue.

$ git add .
$ git commit -am "Adds public product endpoints(show, index)"
[chapter6 185adcb] Adds public product endpoints (show, index)

http://localhost:3000/sabisu_rails/explorer?explorer%5Bresource%5D=products

100 CHAPTER 6. USER PRODUCTS

Figure 6.1: http://localhost:3000/sabisu_rails/explorer?explorer%5Bresource%5D=products

4 files changed, 46 insertions(+), 1 deletion(-)
create mode 100644 app/controllers/api/vl/products_controller.rb
create mode 100644 spec/controllers/api/vl/products_controller spec.rb

6.2.4 Creating products

Creating products is a bit tricky because we’ll need some extra configuration to
give a better structure to this endpoint. The strategy we will follow is to nest the
products create action into the users which will deliver us a more descriptive
endpoint, in this case /users/:user_id/products.

So our first stop will be the products_controller_spec.rb file. List-
ing 6.11

Listing 6.11: Products create action spec
(spec/controllers/api/v1/products_controller_spec.rb)

describe Api::V1::ProductsController do

6.2. PRODUCTS ENDPOINTS 101

describe "POST i#create" do
context "when is successfully created" do

before (:each) do
user = FactoryGirl.create :user
@product_attributes = FactoryGirl.attributes_for :product
api_authorization header user.auth_ token
post :create, { user_id: user.id, product: @product_attributes }

end

it "renders the json representation for the product record just created" do

product_response = json_response
expect (product_response[:title]) .to eql @product_attributes[:title]
end

it { should respond_with 201 }
end

context "when is not created" do
before (:each) do
user = FactoryGirl.create :user
@invalid product_attributes = { title: "Smart TV", price: "Twelve dollars'|
api_authorization_header user.auth_token

post :create, { user_id: user.id, product: @invalid_product_attributes }
end

it "renders an errors json" do
product_response = json_response
expect (product_response) .to have_key (:errors)
end

it "renders the json errors on whye the user could not be created" do

product_response = json_response
expect (product_response|[:errors] [:price]) .to include "is not a number"
end

it { should respond_with 422 }
end
end
end

Wow!, we added a bunch of code, but if you recall from Section 3.2.2, the
spec actually looks the same as the user create action but with minor changes.
Remember we have this endpoint nested so we need to make sure we send the
user_id param on each request, as you can see on:

102 CHAPTER 6. USER PRODUCTS

post :create, { user_id: user.id, product: @product_attributes }

This way we can fetch the user and create the product for that specific
user. But wait there is more, if we take this approach we will have to in-
crement the scope of our authorization mechanism, because we have to fetch
the user from the user_ id param. Well in this case and if you remember
we built the logic to get the user from the authorization header and as-
signed it a current_user method. This is rapidly fixable, by just adding the
authorization header into the request, and fetch that user from it, so let’s
do that. Listing 6.12

Listing 6.12: Products create action
(spec/controllers/api/v1/products_controller.rb)

class Api::V1::ProductsController < ApplicationController
before_action :authenticate _with token!, only: [:create]

def create
product = current_user.products.build (product_params)
if product.save

render json: product, status: 201, location: [:api, product]
else
render json: { errors: product.errors }, status: 422
end
end
private

def product_params
params.require (:product) .permit (:title, :price, :published)
end
end

As you can see we are protecting the create action with the authenticate_with_toke
method, and on the create action we are building the product in relation to
the current_user.

By this point you may be asking yourself, well is it really necessary to nest
the action?, because by the end of the day we don’t really use the user_id

6.2. PRODUCTS ENDPOINTS 103

from the uri pattern. In my opinion you are totally right, my only argument
here is that with this approach the endpoint is way more descriptive from the
outside, as we are telling the developers that in order to create a product we
need a user.

Soitis really up to you how you want to organize your resources and expose
them to the world, my way is not the only one and it does not mean is the correct
one either, in fact [encourage you to play around with different approaches and
choose the one that fills your eye.

One last thing before you run your tests, just the necessary route:

scope module: :v1l, constraints: ApiConstraints.new(version: 1, default: true) do
We are going to list our resources here
resources :users, :only => [:show, :create, :update, :destroy] do
this is the line

resources :products, :only => [:create]
end
resources :sessions, :only => [:create, :destroy]
resources :products, :only => [:show, :index]

end

Now if you run the tests now, they should be all green:

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 0.26459 seconds
9 examples, 0 failures
Randomized with seed 48949

6.2.5 Updating products

Hopefully by now you understand the logic to build the upcoming actions, in
this section we will focus on the update action, which will work similarly to
the create one, we just need to fetch the product from the database and the
update it.

We are first add the action to the routes, so we don’t forget later:

104 CHAPTER 6. USER PRODUCTS

scope module: :vl, constraints: ApiConstraints.new(version: 1, default: true) do
We are going to list our resources here
resources :users, :only => [:show, :create, :update, :destroy] do
this is the line
resources :products, :only => [:create, :update]

end

resources :sessions, :only => [:create, :destroy]

resources :products, :only => [:show, :index]
end

Before we start dropping some tests, I just want to clarify that similarly to
the create action we will scope the product to the current_user, in this
case we want to make sure the product we are updating, actually belongs to
the user, so we will fetch that product from the user.products association
provided by rails.

First we add some specs, Listing 6.13

Listing 6.13: Products update action spec
(spec/controllers/api/v1/products_controller_spec.rb)

describe "PUT/PATCH #update" do
before(:each) do
@user = FactoryGirl.create :user
@product = FactoryGirl.create :product, user: Q@Quser
api_authorization header Quser.auth_token
end

context "when is successfully updated" do
before (:each) do
patch :update, { user_id: Quser.id, id: @product.id,
product: { title: "An expensive TV" } }
end

it "renders the json representation for the updated user" do
product_response = json_response
expect (product_response[:title]) .to eql "An expensive TV"
end

it { should respond_with 200 }
end

context "when is not updated" do
before (:each) do
patch :update, { user_id: Quser.id, id: @product.id,
product: { price: "two hundred" } }

6.2. PRODUCTS ENDPOINTS 105

end

it "renders an errors json" do
product_response = json_response
expect (product_response) .to have_key (:errors)
end

it "renders the json errors on whye the user could not be created" do

product_response = json_response
expect (product_response|[:errors] [:price]) .to include "is not a number"
end

it { should respond_with 422 }
end
end

The tests may look complex, but take a second peek, they are almost the
same as the users on Listing 3.11, the only difference here is the nested routes
as we saw on Section 6.2.4, which in this case we need to send the user id
as a parameter.

Now let’s implement the code to make our tests pass Listing 6.14:

Listing 6.14: Products update action
(spec/controllers/api/v1/products_controller.rb)

class Api::V1::ProductsController < ApplicationController
before_action :authenticate_with token!, only: [:create, :update]

def update
product = current_user.products.find(params|[:id])
if product.update (product_params)

render json: product, status: 200, location: [:api, product]
else
render json: { errors: product.errors }, status: 422
end
end

end

As you can see the implementation is pretty straightforward, we simply
fetch the product from the current_user and simply update it. We also added

106 CHAPTER 6. USER PRODUCTS

this action to the before_action hook, to prevent any unauthorised user to

update a product.
Now if we run the tests, they should be all green:

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 0.36063 seconds
14 examples, 0 failures

Randomized with seed 24040

6.2.6 Destroying products

Our last stop for the products endpoints, will be the destroy action and you
might now imagine how this would look like. The strategy in here will be pretty
similar to the create and update action, which means we are going to nest the
route into the users resources, then fecth the product from the user . products

association and finally destroy it, returning a 204 code.
Let’s start again by adding the route name to the routes file:

scope module: :v1l, constraints: ApiConstraints.new(version: 1, default: true) do

We are going to list our resources here
resources :users, :only => [:show, :create, :update, :destroy] do
resources :products, :only => [:create, :update, :destroy]
end
resources :sessions, :only => [:create, :destroy]
resources :products, :only => [:show, :index]
end

After this, we have to add some tests as shown on Listing 6.15:

Listing 6.15: Products destroy action
(spec/controllers/api/v1/products_controller_spec.rb)
describe "DELETE #destroy" do

before (:each) do
@user = FactoryGirl.create :user

spec

6.2. PRODUCTS ENDPOINTS 107

@product = FactoryGirl.create :product, user: Q@Quser

api_authorization_header Quser.auth_token

delete :destroy, { user_id: @Quser.id, id: (@product.id }
end

it { should respond with 204 }
end

Now we simply add the necessary code to make the tests pass, see List-
ing 6.16:

Listing 6.16: Products destroy action
(spec/controllers/api/v1/products_controller.rb)

def destroy
product = current_user.products.find(params|[:id])
product .destroy
head 204

end

As you can see the three-line implementation does the job, we can run the
tests to make sure everything is good, and after that we will commit the changes
as we added a bunch of new code. Also make sure you hook this action to the
before_action callback as with the update action. Listing 6.14

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 0.44976 seconds
15 examples, 0 failures

Randomized with seed 33241

Let’s commit the changes:

$ git add .
$ git commit -m "Adds the products create, update and destroy action nested on the

user resourc

[chapter6 73057d2] Adds the products create, update and destroy action nested on the user resou

3 files changed, 124 insertions(+), 1 deletion(-)

108 CHAPTER 6. USER PRODUCTS

6.3 Populating the database

Before we continue with more code, let’s populate the database with some fake
data. Thanfully we have some factories that should do the work for us. So let’s

do use them.
First we run the rails console command from the Terminal:

$ rails console

We then create a bunch of product objects with the FactoryGirl gem:

Loading development environment (Rails 4.0.2)
2.1.0 :001 > 20.times { FactoryGirl.create :product }

Oops, you probably have some errors showing up:

NameError: uninitialized constant FactoryGirl
from (irb):1:in “block in irb_binding'
from (irb):1l:in “times'
from (irb):1

from bin/rails:4:in "require'
from bin/rails:4:in " <main>'

This is because we are running the console on development environment
but that does not make sense with our Gemfile, which currently looks like
this:

group :development do
gem 'sglite3'
end

group :test do

6.3. POPULATING THE DATABASE 109

gem '"rspec-rails"

gem "factory girl rails"

gem 'ffaker'

gem "shoulda-matchers"
end

You see where the problem is?. If you pay attention you will notice that the
factory girl_rails gem is only available for the test environment, but no
for the development one, which is what we need. This can be fix really fast:

group :development do
gem 'sglite3'
end

group :development, :test do
gem "factory girl_ rails"
gem 'ffaker'

end

group :test do

gem "rspec-rails"

gem "shoulda-matchers"
end

Notice the we moved the £faker gem to the shared group as we use it
inside the factories we describe earlier. Now just run the bundle command to
update the libraries. Then build the products you want like so:

$ rails console
Loading development environment (Rails 4.0.2)
2.1.0 :001 > 20.times { FactoryGirl.create :product }

From now on, you will be able to create any object from factories, such as
users, products, orders, etc.
So let’s commit this tiny change:

110 CHAPTER 6. USER PRODUCTS

Figure 6.2: http://localhost:3000/sabisu_rails/explorer?explorer%5Bresource%5D=products

$ git add .

$ git commit -m "Updates test environment factory gems to work on development"
[chapter6 6da3f8f] Updates test environment factory gems to work on development
1 file changed, 5 insertions(+), 2 deletions(-)

If you check the output now for the products using sabisu, it should look
like the Figure 6.2. It does not look nice isn’t it?, we have to make some
customisation to the output using active_model_serializers.

6.4 Conclusion

On the next chapter we, will focus on customising the output from the user
and product models using the active model serializers gem which will help
us to easily filter the attributes to display, or handle associations as embebed
objects for example.

I hope you have enjoyed this chapter, it is a long one but the code we put
together is an excellent base for the core app. In the mean time, tell me how
are you doing, I’'ll be glad to hear from you:

I just finished modeling the products for my api of Api on Rails tutorial
by @kurenn!

https://twitter.com/kurenn
https://twitter.com/kurenn

Chapter 7

JSON with Active Model
Serializers

In Chapter 6 we added a products resource to the application, and built all the
necessary endpoints up to this point. We also associated the product model with
the user, and protected some of the products_controller actions on the
way. By now you should feel really happy with all the work, but we still have to
do some heavy lifting. Currently we have something like the Figure 7.1, which
doesn’t look nice, as the json output should render just an array of products,
with the products as the root key, something like Listing 7.1

Listing 7.1: Desired products json output

"products"B [
{
"id": 1,
"title": "Digital Portable System",
},
{
"id": 2,
"title": "Plasma TV",

}

This is further explained in the JSON API website.

111

http://jsonapi.org/format/#document-structure-resource-collection-representations

112 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

Figure 7.1: http://localhost:3000/sabisu_rails/explorer?explorer%35Bresource%5D=products

A collection of any number of resources SHOULD be represented as an
array of resource objects or IDs, or as a single “collection object”
I highly recommend you go and bookmark this reference. It is amazing and
will cover some points I might not.
In this chapter we will customise the json output using the active_model_ serialize
gem, for more information you can review the repository on github. I’'ll cover
some points in here, from installation to implementation but I do recommend
you check the gem docs on your free time.

You can clone the project up to this point with:

$ git clone https://github.com/kurenn/market_place_api.git -b chapteré6

Let’s branch out this chapter with:

$ git checkout -b chapter?
Switched to a new branch 'chapter7'

https://github.com/rails-api/active_model_serializers

7.1. SETTING UP THE GEM 113

7.1 Setting up the gem

If you have been following the tutorial all along, you should already have the
gem installed, but in case you just landed here, I’'ll walk you through the setup.
Add the following line to your Gemfile:

Run the bundle install command to install the gem, and that is it, you
should be all set to continue with the tutorial.

7.2 Serialise the user model

First we need to add a user_serializer file, we can do it manually, but the
gem already provides a command line interface to do so:

$ rails generate serializer user
create app/serializers/user_serializer.rb

This created a file called user_serializer underthe app/serializers
directory, which should look like the one on Listing 7.2:

Listing 7.2: User model serializer bare bones
(app/serializers/user_serializer.rb)
class UserSerializer < ActiveModel: :Serializer

attributes :id
end

By now we should have some failing tests. Go ahead and try it:

gem 'active_model_serializers',K git: 'gitQ@github.com:rails-api/active_model_seriallizers.git',

b

114 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

$ bundle exec rspec spec/controllers/api/vl/users_controller_spec.rb
P F.F

Finished in 0.2492 seconds
13 examples, 3 failures

If you take a quick look at the users_controller, you may have some-
thing like Listing 3.7 for the show action, and as it is mention on the gem
documentation, Box 7.1

Box 7.1. Active model serializers gem

In this case, Rails will look for a serializer named PostSerializer, and
if it exists, use it to serialize the Post.

This also works with respond_with, which uses to_json under the
hood. Also note that any options passed to render :json will be passed
to your serializer and available as @options inside.

This means that no matter if we are using the render json method or
respond_with, from now on Rails will look for the corresponding serialiser first.

Now back to the specs, you can see that for some reason the response it’s
not quite what we are expecting, and that is because the gem encapsulates the
model into a javascript object with the model name as the root, in this case
user.

So in order to make the tests pass we just need to add the attributes to seri-

alise into the user_serializer.rb and update the users_controller_ spec.rb
file:

7.2. SERIALISE THE USER MODEL 115

class UserSerializer < ActiveModel: :Serializer

attributes :id, :email, :created_at, :updated at, :auth_token
end

require 'spec_helper'

describe Api::V1l::UsersController do
describe "GET #show" do
before (:each) do
Quser = FactoryGirl.create :user
get :show, id: @user.id
end

it "returns the information about a reporter on a hash" do

user_response = Jjson_response|:user]
expect (user_response|[:email]) .to eql (@Quser.email
end

it { should respond_with 200 }
end

describe "POST #create" do

context "when is successfully created" do
before (:each) do
Quser_attributes = FactoryGirl.attributes_for :user

post :create, { user: Quser_attributes }
end

it "renders the json representation for the user record just created" do

user_response = json_response|:user]
expect (user_response|[:email]) .to eql Quser_attributes|[:email]
end

it { should respond_with 201 }
end

context "when is not created" do
before(:each) do
@invalid_user_ attributes = {
password: "12345678",
password_confirmation: "12345678"
} #notice I'm not including the email

post :create, { user: Q@invalid user_attributes }
end

it "renders an errors json" do
user_response = json_response
expect (user_response) .to have_key (:errors)

116 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

end

it "renders the json errors on whye the user could not be created" do
user_response = json_response
expect (user_response|[:errors][:email]) .to include "can't be blank"
end

it { should respond_with 422 }
end
end

describe "PUT/PATCH #update" do
before (:each) do
@user = FactoryGirl.create :user
api_authorization header Quser.auth_token
end

context "when is successfully updated" do
before (:each) do

patch :update, { id: Quser.id, user: { email: "newmail@example.com" } }
end

it "renders the json representation for the updated user" do

user_response = json_response|:user]
expect (user_response[:email]) .to eql "newmail@example.com"
end

it { should respond_with 200 }
end

context "when is not updated" do
before(:each) do

patch :update, { id: Quser.id, user: { email: "bademail.com" } }
end

it "renders an errors json" do

user_response = json_response
expect (user_response) .to have_key (:errors)
end

it "renders the json errors on whye the user could not be created" do
user_response = json_response
expect (user_response|[:errors][:email]) .to include "is invalid"

end

it { should respond_with 422 }
end
end

describe "DELETE #destroy" do
before (:each) do

7.3. SERIALISE THE PRODUCT MODEL 117

@user = FactoryGirl.create :user
api_authorization_header Quser.auth_token
delete :destroy, { id: @user.id }

end

it { should respond with 204 }

end
end

If you pay enough attention and as I mentioned before the gem adds a root
for the json object that corresponds to the serialised object name, in this case
user. You can check it out with sabisu.

Now if you run the tests now, they should be all green:

bundle exec rspec spec/controllers/api/vl/users_controller_spec.rb

Finished in 0.25168 seconds
13 examples, 0 failures

Randomized with seed 10177

Let’s commit the changes:

$ git add .

$ git commit -am "Adds user serializer for customizing the json output"
[chapter7 827bl£f9] Adds user serializer for customizing the json output
2 files changed, 6 insertions(+), 3 deletions(-)

create mode 100644 app/serializers/user_serializer.rb

We can also test the serialiser objects, as shown on the documentation, but
I’11 let that to you to decide wheter or not to test.

7.3 Serialise the product model

Now that we kind of understand how the serializers gem works, it is time to
customize the products output. The first step and as with the user we need a
product serializer, so let’s do that:

http://localhost:3000/sabisu_rails/explorer
https://github.com/rails-api/active_model_serializers#rspec

118 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

$ rails generate serializer product
create app/serializers/product_serializer.rb

Now let’s add the attributes to serialize for the product, just as we did it
with the user back in Section 7.2:

class ProductSerializer < ActiveModel: :Serializer
attributes :id, :title, :price, :published
end

If we run the tests now, we should have 3 specs failing:

Failures:

1) Api::V1::ProductsController GET #show returns the information about a reporte
Failure/Error: expect (product_response[:title]) .to eql @product.title

expected: "Direct Digital Compressor"
got: nil

(compared using eql?)
./spec/controllers/api/vl/products_controller_spec.rb:13:in “block (3 level

2) Api::Vl1l::ProductsController PUT/PATCH #update when is successfully updated re
Failure/Error: expect (product_response[:title]).to eql "An expensive TV"

expected: "An expensive TV"
got: nil

(compared using eql?)
./spec/controllers/api/vl/products_controller_spec.rb:86:in ‘block (4 level

3) Api::Vl1l::ProductsController POST #create when is successfully created renders
Failure/Error: expect (product_response[:title]).to eql @product_attributes[:Y

expected: "Performance Mount"
got: nil

(compared using eql?)
./spec/controllers/api/vl/products_controller_spec.rb:44:in “block (4 level

Finished in 0.34357 seconds
15 examples, 3 failures

r on a hash

s) in <top (r

nders the jso

s) in <top (r

the json rep
itle]

s) in <top (r

7.3. SERIALISE THE PRODUCT MODEL 119

Let’s go one spec at a time. First we go to line 13 on the products_controller_ spec
an update the product_response variable:

it "returns the information about a reporter on a hash" do
product_response = json_response | :product]
expect (product_response[:title]) .to eql @product.title
end

Then we jump to line 86 and make the same change as the last one:

it "renders the json representation for the updated user" do

product_response = json_response]| :product]
expect (product_response[:title]) .to eql "An expensive TV"
end

Lastly we jump back to line 44, and yeah we make the same little change
we’ve been doing so far:

it "renders the json representation for the product record just created" do
product_response = json_response | :product]
expect (product_response[:title]) .to eql @product_attributes[:title]

end

Now if we run the tests we should be back to green:

120 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

Finished in 0.3121 seconds
15 examples, 0 failures

Randomized with seed 37796

If you feel anxious on how the json outputs are right now, remember you
can always use sabisu and play around with it.

Let’s commit the changes and move on onto Section 7.4:

$ git add .

$ git commit -a "Adds product serializer for custom json output"
[chapter7 £8834ec] Adds product serializer for custom json output
4 files changed, 8 insertions(+), 5 deletions(-)

create mode 100644 app/serializers/product_serializer.rb

7.4 Sessions

If you run all of your test suite, you may notice that we have a failing test on
the sessions_controlles_spec.rb file:

Failures:

1) Api::V1l::SessionsController POST ficreate when the credentials are correct ret]
Failure/Error: expect (json_response|:auth_token]) .to eql Quser.auth_token

expected: "z-zkCoks3xycLAUyBXzf"
got: nil

(compared using eql?)
./spec/controllers/api/vl/sessions_controller_spec.rb:20:in “block (4 level

Finished in 0.82319 seconds
62 examples, 1 failure

This is because we change the output format for the json response, and as
we have been doing it so far we have to update the spec as shown on Listing 7.3.

urns the user

s) in <top (r

http://localhost:3000/sabisu_rails/explorer

7.5. SERIALIZING ASSOCIATIONS 121

Listing 7.3: Sessions controller fix (spec/controllers/api/v1/sessions_controlllerspec.rb)

line 18
it "returns the user record corresponding to the given credentials" do
@user.reload
expect (json_response|[:user] [:auth_token]) .to eql Quser.auth_token
end

Now that we have everything nice and green let’s commit the changes:

$ git add .

$ git commit -am "Fixes the sessions controller spec"
[chapter7 6342601] Fixes the sessions controller spec
2 files changed, 2 insertions(+), 2 deletions(-)

7.5 Serializing associations

We have been working with serializers and you may notice that it is quite sim-
ple. In some cases the hard decision is how to name your endpoints, or how to
structure the json output, so your solution is kept through time.

When working with and API and associations between models, there are
many approaches you can take, here I will explain what I found works for
me and I let you judge. In this section we will extend our API to handle the
product-user association, and I'll to explain some of the common mistakes or
holes in which you can fall into.

Just to recap, we have a has_many type association between the user and
product model, check Listing 7.4 and Listing 7.5

Listing 7.4: User model association (app/models/user.rb)

class User < ActiveRecord: :Base

http://guides.rubyonrails.org/association_basics.html#the-has-many-association

122 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

has_many :products, dependent: :destroy

end

Listing 7.5: Product model association (app/models/product.rb)

class Product < ActiveRecord: :Base

belongs_to :user

end

This is important, because sometimes to save some requests from being
placed it is a good idea to embed objects into other objects, this will make the
output a bit heavier, but when fetching many records, this can save you from a
huge bottleneck. Let me explain with a use case for the actual application as
shown on Box 7.2.

Box 7.2. Association embeded object use case

Image an scenario where you are fetching the products from the api, but in this
case you need to display some of the user info.

One possible solution to this would be to add the user_id attribute to the
product_serializer so we can fetch the corresponding user later. This might
sound like a good idea, but if you care about performance, or your database trans-
actions are not fast enough, you should reconsider this approach, because you have
to realize that for every product you fetch, you’ll have to request its corresponding
user.

When facing this problem I’ve come with two possible alternatives:

7.5. SERIALIZING ASSOCIATIONS 123

* One good solution in my opinion is to embed the user ids related to the
products into a meta attribute, so we have a json output like:

{
"meta": { "user_ids": [1,2,3] },
"products": [

This might need some further configuration on the user’s endpoint, so the client
can fetch those users from those user_ids.

* Another solution and the one which I’ll be using here, is to embed the user
object into de product object, this can make the first request a bit slower, but
this way the client does not need to make another extra request. An example
of the expected output is presented below:

"products":
[
{

"id": 1,

"title": "Digital Portable System",

"price": "25.0277354166289",

"published": false,

"user": {
"id": 2,
"email": "stephany@lind.co.uk",
"created_at": "2014-07-29T03:52:07.432z2",
"updated_at": "2014-07-29T03:52:07.432Z",
"auth_token": "Xbnzbf3YkquUrF_1lbNkZzZ"

124 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

So according to Box 7.2 we’ll be embeding the user object into the product,
let’s start by adding some tests. We will just modify the show and index
endpoints spec. Listing 7.6

7.5. SERIALIZING ASSOCIATIONS 125

Listing 7.6: Product with user embeded
(spec/controllers/api/v1/products_controller_spec.rb)

describe Api::V1::ProductsController do

describe "GET #show" do
before (:each) do
@product = FactoryGirl.create :product
get :show, id: @product.id
end

it "has the user as a embeded object" do

product_response = json_response]| :product]

expect (product_response|[:user] [:email]) .to eql @product.user.email
end

end

describe "GET #index" do
before (:each) do
4.times { FactoryGirl.create :product }
get :index
end

it "returns the user object into each product" do
products_response = json_response]|:products]
products_response.each do |product_response|
expect (product_response[:user]) .to be_present
end
end

end

The implementation is really easy, we just need to add one line to the prod-
uct serializer:

class ProductSerializer < ActiveModel: :Serializer
attributes :id, :title, :price, :published
has_one :user #this is the line

end

126 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

Now if we run our tests, they should be all green:

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 0.40742 seconds
17 examples, 0 failures
Randomized with seed 11585

Let’s commit the changes:

$ git add .

$ git commit -m "Embeds the user into the product json output”
[chapter7 e99ddf4] Embeds the user into the product json output
2 files changed, 13 insertions (+)

7.5.1 Embeding products on users

By now you may be asking yourself if you should embed the products into the
user, the same as the the section above, although it may sound fair, this can
take to severe optimization problems, as you could be loading huge amounts
of information and it is really easy to fall into the Circular Reference problem
which in short loops the program until it runs out of memory and throws you
and error or never respond you at all.

But don’t worry not all is lost, we can easily solve this problem, and this
1s by embeding just the ids from the products into the user, giving your API
a better performance and avoid loading extra data. So in this section we will
extend our products index endpoint to deal with a product_ids parameter
and format the json output accordingly.

First we make sure the product_ids it is part of the user serialized object:

Listing 1.7: User product ids embeded
spec(spec/controllers/api/v1/users_controller_spec.rb)

describe Api::V1l::UsersController do
describe "GET #show" do

http://en.wikipedia.org/wiki/Circular_reference

7.5. SERIALIZING ASSOCIATIONS 127

before (:each) do
@user = FactoryGirl.create :user
get :show, id: Quser.id

end

it "has the product ids as an embeded object" do

user_response = Jjson_response|:user]
expect (user_response|:product_ids]) .to eql []
end

end

The implementation is very simple, as described by the active_model_serializers
gem documentation:

Listing 7.8: User product ids embeded (app/serializers/user_serializer.rb)

class UserSerializer < ActiveModel: :Serializer
embed :ids
attributes :id, :email, :created at, :updated at, :auth_token

has_many :products
end

We should have our tests passing:

$ bundle exec rspec spec/controllers/api/vl/users_controller_spec.rb

Finished in 0.24388 seconds
14 examples, 0 failures

Randomized with seed 58058

Now we need to extend the index action from the products_controller
so it can handle the product_ids parameter and display the scoped records. Let’s
start by adding some specs, see Listing 7.9

https://github.com/rails-api/active_model_serializers#embedding-associations

128 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

Listing 7.9: Products controller index with
product;dsspec(spec/controllers/api/v1/products_controller_spec.rb)

describe Api::V1::ProductsController do

describe "GET #index" do
before (:each) do
4.times { FactoryGirl.create :product }
end

context "when is not receiving any product_ids parameter" do
before (:each) do
get :index
end

it "returns 4 records from the database" do
products_response = json_response
expect (products_response|[:products]) .to have(4) .items
end

it "returns the user object into each product" do
products_response = json_response|:products]
products_response.each do |product_response|
expect (product_response|[:user]) .to be_present
end
end

it { should respond_with 200 }
end

context "when product_ids parameter is sent" do
before (:each) do
Quser = FactoryGirl.create :user
3.times { FactoryGirl.create :product, user: Quser }
get :index, product_ids: Q@Quser.product_ids
end

it "returns just the products that belong to the user" do
products_response = json_response|:products]
products_response.each do |product_response|
expect (product_response[:user] [:email]) .to eql @Quser.email
end
end
end

end

7.6. SEARCHING PRODUCTS 129

As you can see from Listing 7.9 we just wrapped the index action into two
separate contexts, one which will recevive the product_ids, and the old one
we had which does not. Let’s add the necessary code to make the tests pass:

class Api::V1::ProductsController < ApplicationController

def index
products = params|:product_ids] .present? ? Product.find(params|[:product_ids])
respond_with products

end

end

As you can see the implementation is super simple, we simply just fetch the
products from the product_ids params in case they are present, otherwise we
just fetch all of them. Let’s make sure the tests are passing:

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 0.49507 seconds
18 examples, 0 failures

Randomized with seed 31154

Let’s commit the changes:

$ git commit -m "Embeds the products_ids into the user serialiser and fetches the
[chapter7 57d052b] Embeds the products_ids into the user serialiser and fetches th
4 files changed, 41 insertions(+), 10 deletions(-)

7.6 Searching products

In this last section we will keep up the heavy lifting on the index action for
the products controller by implementing a super simple search mechanism to

: Product.all

correct produ
e correct pro

130 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

let any client filter the results. This section is optional as it’s not going to have
impact on any of the modules in the app, but if you want to practice more with
TDD and keep the brain warm I recommend you complete this last step.

I’ve been using Ransack to build advance search forms extremely fast, but
as this is an education tool (or at least I consider it), and the search we’ll be
performing is really simple, I think we can build a simple search engine, we
just need to consider the criteria by which we are going to filter the attributes.
Hold tight to your seats this is going to be a rough ride.

We will filter the products by the following criteria:

* By a title pattern
* By price

* Sort by creation

This may sound short and easy but believe me it will give you a headache
if you don’t plan it.

7.6.1 By keyword

We will create a scope to find the records which match a particular pattern of
characters, let’s called it filter_by_title, let’s add some specs first:

Listing 7.10: Product model filter by title specs (spec/models/product.rb)

describe Product do

describe ".filter by title" do
before (:each) do

@productl = FactoryGirl.create :product, title: "A plasma TV"
@product2 = FactoryGirl.create :product, title: "Fastest Laptop"
@product3 = FactoryGirl.create :product, title: "CD player"
@product4 = FactoryGirl.create :product, title: "LCD TV"

end

https://github.com/activerecord-hackery/ransack

7.6. SEARCHING PRODUCTS 131

context "when a 'TV' title pattern is sent" do
it "returns the 2 products matching" do
expect (Product.filter_by title("TV")) .to have(2) .items
end

it "returns the products matching" do
expect (Product . filter_by title("TV") .sort) .to match_array([@productl, Q@prgduct4d])
end
end
end
end

The caveat in here is to make sure no matter the case of the title sent we
have to sanitize it to any case in order to make the apropiate comparison, in this
case we’ll use the lower case approach. Let’s implement the necessary code:

Listing 7.11: Product model filter by title (app/models/product.rb)

class Product < ActiveRecord: :Base

scope :filter by title, lambda { |keyword|
where ("lower (title) LIKE ?", "%#{keyword.downcase}%")

}

end

The implementation above should be enough to make the tests pass:

$ bundle exec rspec spec/models/product_spec.rb

Finished in 0.24312 seconds
12 examples, 0 failures

Randomized with seed 40477

7.6.2 By price

In order to filter by price, things can get a little bit tricky, but actually it is very
easy, we will break the logic to filter by price into two different methods, one

132 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

which will fetch the products greater than the price received and the other one
to look for the ones under that price. By doing this we keep everything really
flexible and we can easily test the scopes.

Let’s start by building the above_or_equal_to_price scope specs:

Listing 7.12: Product model above or equal to price specs
(spec/models/product.rb)

describe Product do

describe ".above_or_ equal_to_price" do
before (:each) do

@productl = FactoryGirl.create :product, price: 100

@product2 = FactoryGirl.create :product, price: 50

@product3 = FactoryGirl.create :product, price: 150

@product4 = FactoryGirl.create :product, price: 99
end

it "returns the products which are above or equal to the price" do
expect (Product.above_or_equal_to_price(100) .sort) .to match_array([@productl,
end
end
end

The implementation is extremely simple:

Listing 7.13: Product model above or equal to price (app/models/product.rb)

class Product < ActiveRecord: :Base

scope :above_or equal to_price, lambda { |price|
where ("price >= ?", price)

}

end

That should be sufficient, let’s just verify everything is ok:

@product3])

7.6. SEARCHING PRODUCTS 133

$ bundle exec rspec spec/models/product_spec.rb

Finished in 0.29903 seconds
13 examples, 0 failures

Randomized with seed 59453

You can now imagine how the opposite method will behave, let’s add the
specs:

Listing 7.14: Product model below or equal to price specs
(spec/models/product.rb)

describe Product do

describe ".below _or_ equal_to_price" do
before (:each) do

@productl = FactoryGirl.create :product, price: 100

@product2 = FactoryGirl.create :product, price: 50

@product3 = FactoryGirl.create :product, price: 150

@product4 = FactoryGirl.create :product, price: 99
end

it "returns the products which are above or equal to the price" do
expect (Product .below_or_equal_to_price(99) .sort) .to match_array([@product2,
end
end
end

And now the implementation:

Listing 7.15: Product model below or equal to price (app/models/product.rb)

class Product < ActiveRecord: :Base

scope :below_or_equal_to_price, lambda { |price|
where ("price <= ?", price)

}

end

@product4])

134 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

For our sake let’s run the tests and verify evertyhing is nice and green:

$ bundle exec rspec spec/models/product_spec.rb

Finished in 0.31304 seconds
14 examples, 0 failures

Randomized with seed 59836

As you can see we have not gotten in a lot of trouble, let’s just add another
scope, to sort the records by date of last update, this is because in case the
propietary of the product decides to update some of the data, the client always
fetches the most updated records.

7.6.3 Sort by creation

This scope is super easy, let’s add some specs first:

Listing 7.16: Product model recent scope spec(spec/models/product.rb)

describe Product do

describe ".recent" do
before (:each) do

@productl = FactoryGirl.create :product, price: 100
@product2 = FactoryGirl.create :product, price: 50
@product3 = FactoryGirl.create :product, price: 150
@product4 = FactoryGirl.create :product, price: 99

#we will touch some products to update them
@product2.touch
@product3.touch

end

it "returns the most updated records" do
expect (Product . recent) .to match_array ([@product3, @product2, @producté4, @prg
end
end
end

ductl])

7.6. SEARCHING PRODUCTS 135

And now the code:

Listing 7.17: Product model recent scope (app/models/product.rb)

class Product < ActiveRecord: :Base

scope :recent, —> {
order (:updated_at)
}

end

All of our tests should be green:

$ bundle exec rspec spec/models/product_spec.rb

Finished in 0.32053 seconds
15 examples, 0 failures

Randomized with seed 36491

Now it would be a good time to commit the changes as we are done adding
scopes:

$ git commit —-am "Adds search scopes on the product model"
[chapter7 3e9495b] Adds search scopes on the product model
2 files changed, 78 insertions (+)

7.6.4 Search engine

Now that we have the ground base for the search engine we’ll be using in the
app it is time to implement a simple but powerful search method, which will
handle all the logic for fetching product records.

The method will consist on chaining all of the scopes we previously built
and return the expected search. Let’s start by adding some tests:

136 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

Listing 7.18: Product model search method spec(spec/models/product.rb)

describe Product do

describe ".search" do
before (:each) do
@productl = FactoryGirl.create :product, price: 100, title: "Plasma tv"
@product2 = FactoryGirl.create :product, price: 50, title: "Videogame consol
@product3 = FactoryGirl.create :product, price: 150, title: "MP3"
@product4 = FactoryGirl.create :product, price: 99, title: "Laptop"
end

context "when title 'videogame' and '100' a min price are set" do
it "returns an empty array" do

search_hash = { keyword: "videogame", min_price: 100 }
expect (Product . search (search_hash)) .to be_empty
end
end
context "when title 'tv', 'l150' as max price, and '50' as min price are set" d

it "returns the productl" do
search_hash = { keyword: "tv", min_price: 50, max price: 150 }
expect (Product . search (search_hash)) .to match_array([@productl])
end
end

context "when an empty hash is sent" do
it "returns all the products" do
expect (Product .search({})) .to match_array([@productl, @product2, Q@product3
end
end

context "when product_ids is present" do
it "returns the product from the ids" do
search_hash = { product_ids: [@productl.id, Q@product2.id]}
expect (Product . search (search_hash)) .to match_array ([@productl, @product2])
end
end
end
end

We added a bunch of code, but the implementation is very easy, you’ll
see. You can go further and add some more specs, in my case I did not find it
necessary.

I4

@product4])

7.6. SEARCHING PRODUCTS 137

Listing 7.19: Product model search method (app/models/product.rb)

class Product < ActiveRecord: :Base

def self.search(params = {})
products = params|:product_ids].present? ? Product.find(params|:product_ids])

products = products.filter by title(params|[:keyword]) if params|[:keyword]
products = products.above_or_equal_to_price(params|[:min_price] .to_£f) if param;
products = products.below_or_equal_to_price (params|[:max_price] .to_£f) if param
products = products.recent (params|[:recent]) if params|[:recent].present?
products
end
end

It is important to notice that we return the products as an ActiveRelation
object, so we can further chain more methods in case we need so, or paginate
them which we will see on the last chapters. We just need to update the products
controller index action to fetch the products from the search method:

class Api::V1l::ProductsController < ApplicationController

def index
respond_with Product.search (params)
end

end

We can run the whole test suite, to make sure the app is healthy up to this
point:

$ bundle exec rspec

Finished in 1.31 seconds

75 examples, 0 failures

: Product.all

[:min_price]
[:max_price]

138 CHAPTER 7. JSON WITH ACTIVE MODEL SERIALIZERS

Randomized with seed 58705

Let’s commit this:

$ git commit —-am "Adds search class method to filter products"
[chapter7 2072£23] Adds search class method to filter products
4 files changed, 49 insertions(+), 3 deletions(-)

7.7 Conclusion

On chapters to come, we will start building the 0rder model, associate it with
users and products, which so far and thanks to the active_model_serializers
gem, it’s been easy.

This was a long chapter, you can sit back, rest and look how far we got. I
hope you are enjoying what you got until now, it will get better. We still have a
lot of topics to cover one of them is optimization and caching.

I just finished chapter 7 of Api on Rails tutorial by @kurenn!

https://github.com/rails-api/active_model_serializers
https://twitter.com/kurenn

Chapter 8

Placing Orders

Back in Chapter 7 we handle associations between the product and user models,
and how to serialize them in order to scale fast and easy. Now it is time to
start placing orders which is going to be a more complex situation, because we
will handle associations between 3 models and we have to be smart enough to
handle the json output we are delivering.

In this chapter we will make several things which I list below:

1. Create an order model with its corresponding specs

2. Handle json output association between the order user and product mod-
els

3. Send a confirmation email with the order summary

So now that we have everything clear, we can get our hands dirty. You can
clone the project up to this point with:

$ git clone https://github.com/kurenn/market_place_api.git -b chapter?

Let’s create a branch to start working:

139

140 CHAPTER 8. PLACING ORDERS

$ git checkout -b chapter8
Switched to a new branch 'chapter8'

8.1 Modeling the order

If you recall Figure 2.1 the order model is associated with users and products
at the same time, it is actually really simply to achieve this in Rails, the tricky
part is whens comes to serializing this objects. I talk about more about this on
Section 8.3.

Let’s start by creating the order model, with a special form:

$ rails generate model order user:references total:decimal

The command above will generate the order model, but I’'m taking advan-
tage of the references method to create the corresponding foreign key for
the order to belong to a user, it also adds the belongs_to directive into the
order model. Let’s migrate the database and jump into the order_spec.rb
file.

$ rake db:migrate

= CreateOrders: migrating
—— create_table (:orders)

-> 0.0039s

CreateOrders: migrated (0.0040s) ========================= ===

Now it is time to drop some tests into the order_spec. rb file:

Listing 8.1: Order first specs (spec/models/order_spec.rb)
require 'spec_ helper'
describe Order do

let (:order) { FactoryGirl.build :order }
subject { order }

8.1. MODELING THE ORDER 141

it { should respond_to(:total) }
it { should respond_to(:user_id) }

it { should validate_ presence_of :user_id }
it { should validate_presence_of :total}
it { should validate_numericality of (:total) .is_greater_than_ or_equal_to(0) }

it { should belong_to :user }
end

The implementation is fairly simple:

class Order < ActiveRecord: :Base
belongs_to :user

validates :total, presence: true,
numericality: { greater_than_or_equal_to: 0 }

validates :user_id, presence: true
end

If we run the tests now, they should be all green:

$ bundle exec rspec spec/models/order_spec.rb

Finished in 0.04942 seconds
6 examples, 0 failures

Randomized with seed 62339

8.1.1 Orders and Products

We need to setup the association between the order and the product, and
this is build with a has-many-to-many association, as many products will be
placed on many orders and the orders will have multiple products. So in this
case we need a model in the middle which will join these two other objects and
map the appropiate association.

Let’s generate this model:

142 CHAPTER 8. PLACING ORDERS

$ rails generate model placement order:references product:references

Let’s migrate the database and prepare the test one:

$ rake db:migrate; rake db:test:prepare
= CreatePlacements: migrating
—— create_table(:placements)
-> 0.0057s
== CreatePlacements: migrated (0.0058s)

Let’s add the order association specs first:

Listing 8.2: Order placements associations specs
(spec/models/order_spec.rb)

require 'spec_helper'

describe Order do
let (:order) { FactoryGirl.build :order }
subject { order }

it { should have_many(:placements) }
it { should have_many (:products) .through(:placements) }
end

The implementation is like so:

class Order < ActiveRecord: :Base

has_many :placements
has_many :products, through: :placements
end

Now it is time to jump into the product-placement association:

8.1. MODELING THE ORDER

143

Listing 8.3: Product placements associations
(spec/models/product_spec.rb)

require 'spec_helper'

describe Product do

it { should have_many (:placements) }
it { should have_many (:orders) .through(:placements) }

end

specs

Let’s add the code to make it pass:

class Product < ActiveRecord: :Base
validates :title, :user_id, presence: true

has_many :placements
has_many :orders, through: :placements

end

And lastly but not least, the placement specs:

Listing 8.4: Placement specs (spec/models/placement_spec.rb)
require 'spec_helper'

describe Placement do
let (:placement) { FactoryGirl.build :placement }
subject { placement }

it { should respond_to :order_id }
it { should respond_to :product_id }

it { should belong to :order }
it { should belong to :product }
end

144 CHAPTER 8. PLACING ORDERS

If you have been following the tutorial so far, the implementation is already
there, because of the references type we pass on the model command gen-
erator. We should add the inverse option to the placement model for each
belongs_to call. This gives a little boost when referencing the parent object.

class Placement < ActiveRecord: :Base
belongs_to :order, inverse_of: :placements
belongs_to :product, inverse_of: :placements
end

Let’s run the models spec and make sure everything is green:

$ bundle exec rspec spec/models

Finished in 0.63099 seconds
47 examples, 0 failures

Randomized with seed 33160

Now that everything is nice and green, let’s commit the changes and con-
tinue with Section 8.3

$ git add .

$ git commit -m "Associates products and orders with a placements model"
[chapter8 2bd331d] Associates products and orders with a placements model
11 files changed, 105 insertions(+), 1 deletion(-)

create mode 100644 app/models/order.rb

create mode 100644 app/models/placement.rb

create mode 100644 db/migrate/20140826170754_create_orders.rb

create mode 100644 db/migrate/20140826173533_create_placements.rb
create mode 100644 spec/factories/orders.rb

create mode 100644 spec/factories/placements.rb

create mode 100644 spec/models/order_spec.rb

create mode 100644 spec/models/placement_spec.rb

8.2 User orders

We are just missing one little but very important part, which is to relate the user
to the orders, which it already started as shown on Listing~{code:order_first_specs},

8.2. USER ORDERS 145

but we did no complete the implementation. So let’s do that:
First open the user_model_spec. rb file to add the corresponding tests:

#line 20
it { should have_many (:products) 1}
it { should have_many (:orders) }

And then just add the implementation, which is super simple:

#line 9
has_many :products, dependent: :destroy
has_many :orders, dependent: :destroy

You can run the tests for both files, and they should be all nice and green:

$ bundle exec rspec spec/models/order_spec.rb

Finished in 0.06012 seconds
8 examples, 0 failures

Randomized with seed 22530

$ bundle exec rspec spec/models/user_spec.rb

Finished in 0.21172 seconds
15 examples, 0 failures

Randomized with seed 49329

146 CHAPTER 8. PLACING ORDERS

Let’s commit this small changes and move on to section 8.3.

$ git add .
$ git commit -m 'Adds user order has many relation'

8.3 Exposing the order model

It is now time to prepare the orders controller to expose the correct order object,
and if you recall past chapters, with ActiveModelSerializers this is really easy.

But wait, what are we suppose to expose?, you may be wondering, and you
are right, let’s first define which actions are we going to build up:

1. An index action to retrieve the current user orders
2. A show action to retrieve a particular order from the current user

3. A create action to actually place the order

Let’s start with the index action, so first we have to create the orders con-
troller.

$ rails g controller api/vl/orders
create app/controllers/api/vl/orders_controller.rb
invoke erb

create app/views/api/vl/orders

invoke rspec

create spec/controllers/api/vl/orders_controller_ spec.rb
invoke assets

invoke coffee

invoke scss

Up to this point and before start typing some code, we have to ask our-
selves, should I leave my order endpoints nested into the UsersController,
or should I isolate them, and the answer is really simple. I would say it depends
on how much information in this case in particular you want to expose to the
developer, not from a json output point of view, but from the URI format.

https://github.com/rails-api/active_model_serializers

8.3. EXPOSING THE ORDER MODEL 147

I’1ll nest the routes, because I like to give this type of information to the
developers, as I think it gives more context to the request itself.
Let’s start by dropping some tests:

Listing 8.5: Orders controller index spec(spec/controllers/api/v1/orders_contt

describe Api::V1::OrdersController do

describe "GET #index" do
before (:each) do
current_user = FactoryGirl.create :user
api_authorization_header current_user.auth_token
4.times { FactoryGirl.create :order, user: current_user }
get :index, user_id: current_user.id
end

it "returns 4 order records from the user" do

orders_response = json_response|:orders]
expect (orders_response) .to have (4) .items
end

it { should respond with 200 }
end

end

If we run the test suite now, as you may expect, both tests will fail, because
have not even set the correct routes, nor the action. So let’s start by adding the
routes:

#line 9

resources :users, :only => [:show, :create, :update, :destroy] do
resources :products, :only => [:create, :update, :destroy]
resources :orders, :only => [:index]

end

Now it is time for the orders controller implementation:

olller_spec.

148 CHAPTER 8. PLACING ORDERS

Listing 8.6: Orders controller index ac-
tion(spec/controllers/api/v1/orders_controlller.rb)

class Api::V1::0rdersController < ApplicationController
before_action :authenticate_with_ token!
respond_to :json

def index
respond _with current_user.orders
end
end

And now all of our tests should pass:

$ bundle exec rspec spec/controllers/api/vl/orders_controller_spec.rb

Finished in 0.13456 seconds
2 examples, 0 failures

Randomized with seed 14135

We like our commits very atomic, so let’s commit this changes:

$ git add .
$ git commit -m "Adds index orders controller action nested into the users resourdes"

8.3.1 Render a single order

As you may imagine already, this endpoint is super easy, we just have to set
up some configuration(routes, controller action) and that would be it for this
section.

Let’s start by adding some specs:

Listing 8.7: Orders controller show spec(spec/controllers/api/v1/orders_controlller_spec.r

8.3. EXPOSING THE ORDER MODEL 149

#line 20
describe "GET #show" do
before (:each) do
current_user = FactoryGirl.create :user
api_authorization_header current_user.auth_token
Qorder = FactoryGirl.create :order, user: current_user
get :show, user_id: current_user.id, id: @order.id
end

it "returns the user order record matching the id" do

order_response = json_response]|:order]
expect (order_ response[:id]) .to eql @order.id
end

it { should respond_with 200 }
end

Let’s add the implementation to make our tests pass:
On the routes. rb file add the show action to the orders resources:

resources :orders, :only => [:index, :show]

And the the implementation should look like this:

def show
respond_with current_user.orders.find(params|[:id])
end

Can you guess the result of running the tests now?.
If you expect that one test would fail, you are right, but do you know the
reason, think about it, I’ll wait.

$ bundle exec rspec spec/controllers/api/vl/orders_controller_ spec.rb
R

Failures:

1) Api::V1::0OrdersController GET #show returns the user order record matching th
Failure/Error: expect (order_ response[:id]) .to eql Q@order.id
NoMethodError:
undefined method "[]' for nil:NilClass

e

id

150 CHAPTER 8. PLACING ORDERS

./spec/controllers/api/vl/orders_controller_spec.rb:31:in “block (3 levels)

Finished in 0.19786 seconds
4 examples, 1 failure

Failed examples:
rspec ./spec/controllers/api/vl/orders_controller spec.rb:29 # Api::V1l::0rdersCont

Randomized with seed 18274

Couln’t wait?, well the answer is that we are expecting some format from
the API, which is given by ActiveModelSerializers, which in this case
we have not created an order serializer. This is fairly easy to fix:

$ rails g serializer order

And just by adding the serializer, our tests should be all green:

$ bundle exec rspec spec/controllers/api/vl/orders_controller_ spec.rb

Finished in 0.17973 seconds
4 examples, 0 failures

Randomized with seed 35825

We will leave the order serializer as it is for now, but don’t worry we will
customize it later.

Let’s commit the changes and move onto the create order action:

$ git add .

$ g commit -m "Adds the show action for order"
[chapter8 9038cld] Adds the show action for order

4 files changed, 23 insertions(+), 1 deletion(-)
create mode 100644 app/serializers/order_serializer.rb

in <top (req

roller GET #s

8.3. EXPOSING THE ORDER MODEL 151

8.3.2 Placing and order

It is now time to let the user place some orders, this will add some complexity
to the whole application, but don’t worry we will go one step at a time to keep
things simple.

Before start this feature, let’s sit back and think about the implications of
creating an order in the app. I’'m not talking about implementing a transactions
service like Stripe or Braintree, but things like handling out of stock products,
decrementing the product inventory, add some validation for the order place-
ment to make sure there is enough products by the time the order is place. Did
you already detected that?, it may look like we are way down on the hill, but
believe, you are closer than you think, and is not as hard as it sounds.

For now let’s keep things simple an assume we always have enough prod-
ucts to place any number of orders, we just care about the server response for
now.

If you recall the order model on Section 8.1 we need basically 3 things,
a total for the order, the user who is placing the order and the products for the
order. Given that information we can start adding some specs:

Listing 8.8: Orders controller create
spec(spec/controllers/api/vi/orders_controlller_spec.rb)

#line 36
describe "POST #create" do
before (:each) do
current_user = FactoryGirl.create :user
api_authorization_header current_user.auth_token

product_1 = FactoryGirl.create :product
product_2 = FactoryGirl.create :product

order params = { total: 50, user_id: current_user.id, product_ids: [product_1.id, product_2

post :create, user_id: current_user.id, order: order_params
end

it "returns the just user order record" do
order_response = json_response]|:order]
expect (order_response[:id]) .to be_present
end

https://stripe.com/
https://www.braintreepayments.com/

152 CHAPTER 8. PLACING ORDERS

it { should respond with 201 }
end

As you can see we are creating a order_params variable with the order
data, can you see the problem here?, if not, I’ll explain it later, let’s just add the
necessary code to make this test pass.

First we need to add the action to the resources on the routes file:

resources :orders, :only => [:index, :show, :create]

Then the implementation which is easy:

Listing 8.9: Orders controller create ac-
tion(spec/controllers/api/v1/orders_controlller.rb)

#line 12
def create
order = current_user.orders.build (order_params)

if order.save

render json: order, status: 201, location: [:api, current_user, order]
else
render json: { errors: order.errors }, status: 422
end
end
private

def order_params
params.require (:order) .permit (:total, :user_id, :product_ids => [])
end

And now our tests should all be green:

$ bundle exec rspec spec/controllers/api/vl/orders_controller_spec.rb

Finished in 0.23719 seconds

8.3. EXPOSING THE ORDER MODEL 153

6 examples, 0 failures

Randomized with seed 23197

Ok, so we have everything nice and green. We now should move on to
the next chapter right?, well let me stop you right there, we have some serious
errors on the app, and they are not related to the code itself but on the business
part.

Not because the tests are green, it means the app is filling the business part
of the app, and I wanted to bring this up, because in many cases is super easy
to just receive params, and build objects from those params, thinking that we
are always receiving the correct data. In this particular case we cannot rely on
that, and the simpliest way to see this, is that we are letting the client to set the
order total, yeah crazy!

We have to add some validations, or better said a callback to calculate the
order total an set it through the model. This way we don’t longer receive that
total attribute and have complete control on this attribute. So let’s do that.

We first need to add some specs for the order model:

Listing 8.10: Order set_total!(spec/models/order_spec.rb)

#line 17
describe '#set_total!' do
before(:each) do
product_1 = FactoryGirl.create :product, price: 100
product_2 = FactoryGirl.create :product, price: 85

Qorder = FactoryGirl.build :order, product_ids: [product_1.id, product_2.id]
end

it "returns the total amount to pay for the products" do
expect {@order.set_total!}.to change{@order.total}.from(0) .to(185)
end
end

We can now add the implementation:

154 CHAPTER 8. PLACING ORDERS

Listing 8.11: Order set_total!(app/models/order.rb)

#line 17
def set_total!

self.total = products.map (&:price) .sum
end

Just before you run your tests, we need to update the order factory, just to
make it more useful:

FactoryGirl.define do
factory :order do
user
total 0
end
end

We can now hook the set total! method to a before wvalidation
callback to make sure it has the correct total before is validated.

before_validation :set_total!

At this point, we are making sure the total is always present and bigger or
equal to zero, meaning we can remove those validations and remove the specs.
I’11 wait.

Our tests should be passing by now:

$ bundle exec rspec spec/models/order_spec.rb

Finished in 0.17454 seconds
7 examples, 0 failures

Randomized with seed 3392u

8.3. EXPOSING THE ORDER MODEL 155

This is now the moment to visit the orders_controller spec.rb file
and refactor some code:
Currently we have something like:

describe "POST #create" do
before (:each) do
current_user = FactoryGirl.create :user
api_authorization header current_user.auth_token

product_1 = FactoryGirl.create :product
product_2 = FactoryGirl.create :product

order_params = { total: 50, user_id: current_user.id, product_ids: [product |
post :create, user_id: current_user.id, order: order_params
end

it "returns the just user order record" do
order_response = json_response|:order]
expect (order_ response[:id]) .to be_present
end

it { should respond _with 201 }
end

We just need to remove the user_id and the total params as the user
id is not really necessary and the total is being calculated through the model.
After making the changes the code should look like:

describe "POST #create" do
before(:each) do
current_user = FactoryGirl.create :user
api_authorization_header current_user.auth_token

product_1 = FactoryGirl.create :product

product_2 = FactoryGirl.create :product

order params = { product_ids: [product_1.id, product_2.id] }

post :create, user_id: current_user.id, order: order_params
end

it "returns the just user order record" do

order_ response = json_response|:order]
expect (order_response[:id]) .to be_present
end

it { should respond_with 201 }
end

1.id, product

156 CHAPTER 8. PLACING ORDERS

If you run the tests now, they will pass, but first, let’s remove the total and
user_id from the permitted params and avoid the mass-assignment.
The order_params method should look like this:

def order_params
params.require (:order) .permit (:product_ids => [])
end

Your tests should still passing:

$ bundle exec rspec spec/controllers/api/vl/orders_controller_spec.rb

Finished in 0.24193 seconds
6 examples, 0 failures

Randomized with seed 48129

Let’s commit the changes:

$ gg commit -m "Adds the create method for the orders controller"
[chapter8 ca47c29] Adds the create method for the orders controller
6 files changed, 57 insertions(+), 8 deletions(-)

8.4 Customizing the Order json output

Now that we built the necessary endopoints for the orders, we can customize
the information we want to render on the json output for each order.

To do this we can just open the order serializer.rb file, which should
look like:

class OrderSerializer < ActiveModel: :Serializer
attributes :id
end

8.4. CUSTOMIZING THE ORDER JSON OUTPUT 157

We will add the products association and the total attribute to the order
output, and to make sure everything is running smooth, we will some specs.
In order to avoid duplication on tests, I’ll just add one spec for the show and
make sure the extra data is being rendered, this is because I’'m using the same
serializer everytime an order object is being parsed to json, so in this case I
would say it is just fine:

Listing 8.12: Order show action spec(spec/controllers/api/v1/orders_controlle

describe "GET #show" do
before (:each) do
current_user = FactoryGirl.create :user
api_authorization header current_user.auth_token

@product = FactoryGirl.create :product

Qorder = FactoryGirl.create :order, user: current_user, product_ids: [@product.

get :show, user_id: current_user.id, id: @order.id
end

it "includes the total for the order" do

order_ response = json_response]|:order]
expect (order_response[:total]) .to eql (@order.total.to_s
end

it "includes the products on the order" do
order_response = json_response]|:order]
expect (order_ response|:products]) .to have(l) .item
end

end

By now we should have failing tests. But they are easy to fix on the order
serializer

class OrderSerializer < ActiveModel: :Serializer
attributes :id, :total
has_many :products

end

And now all of our tests should be green:

r_spec.rb)

id]

158 CHAPTER 8. PLACING ORDERS

$ bundle exec rspec spec/controllers/api/vl/orders_controller_ spec.rb

Finished in 0.38289 seconds
8 examples, 0 failures

Randomized with seed 44243

If you recall Chapter 7 on Box 7.2 we embeded the user into the product,
in order to retrieve some information, but in this we always know the user,
because is actually the current_user so there is no point on adding it, it is
not efficient, so let’s fix that by adding a new serializer:

$ rails g serializer order_product

We want to keep the products information consistent with the one we cur-
rently have, so we can just inherit behavior from it like so:

class OrderProductSerializer < ProductSerializer
end

This will keep rendered data on sync, and now to remove the embebed user
we simply add the following method on the gem documentation. For more
information visit ActiveModelSerializer:

class OrderProductSerializer < ProductSerializer
def include_user?
false
end
end

After making this change we need to tell the order_serializer to use
the serializer we just created by just passing an option to the has_many asso-
ciation on the order serializer:

https://github.com/rails-api/active_model_serializers/tree/0-8-stable#associations

8.5. SEND ORDER CONFIRMATION EMAIL 159

class OrderSerializer < ActiveModel: :Serializer
attributes :id, :total
has_many :products, serializer: OrderProductSerializer
end

And our tests should still passing:

$ bundle exec rspec spec/controllers/api/vl/orders_controller_spec.rb

Finished in 0.34248 seconds
8 examples, 0 failures

Randomized with seed 54262

Let’s commit this and move onto the next section:

$ git commit -m "Adds a custom order product serializer to remove the user associgtion"
[chapter8 ecac23c] Adds a custom order product serializer to remove the user assodiation
3 files changed, 20 insertions(+), 2 deletions(-)

create mode 100644 app/serializers/order_product_serializer.rb

8.5 Send order confirmation email

The last section for this chapter will be to sent a confirmation email for the user
who just placed it. If you want to skip this and jump into the next Chapter 9,
go ahead, this section is more like a warmup.

You may be familiar with email manipulation with Rails so I'll try to make
this fast and simple:

we first create the order_mailer:

$ rails g mailer order_mailer

To make it easy to test the email, we will use a gem called email_spec, it
includes a bunch of useful matchers for mailers, which makes it easy and fun.
So first let’s add the gem to the Gemfile

https://github.com/bmabey/email-spec

160 CHAPTER 8. PLACING ORDERS

#line 37
group :test do
gem "rspec-rails", "~> 2.14"

gem "shoulda-matchers"
gem "email spec"
end

Now run the bundle install command to install all the dependencies.

I’'ll follow the documentation steps to setup the gem, you can do so on
https://github.com/bmabey/email-spec#rspec.

When you are done, your spec_helper. rb file should look like:

require "email spec"

RSpec.configure do |config]|

config.include (EmailSpec: :Helpers)
config.include (EmailSpec: :Matchers)

end

Now we can add some tests for the order mailer we created earlier:

Listing 8.13: Order mailer spec(spec/mailers/order_mailer_spec.rb)
require "spec_ helper"

describe OrderMailer do
include Rails.application.routes.url_helpers

describe ".send confirmation" do
before(:all) do
@order = FactoryGirl.create :order
@Quser = Qorder.user
@order mailer = OrderMailer.send confirmation (Qorder)

https://github.com/bmabey/email-spec#rspec

8.5. SEND ORDER CONFIRMATION EMAIL 161

end

it "should be set to be delivered to the user from the order passed in" do
@order mailer.should deliver_ to(Quser.email)
end

it "should be set to be send from no-reply@marketplace.com" do
Qorder_mailer.should deliver_ from('no-reply@marketplace.com')
end

it "should contain the user's message in the mail body" do
Qorder_mailer.should have_body_ text (/Order: ##{Q@order.id}/)
end

it "should have the correct subject" do
Qorder_mailer.should have_subject (/Order Confirmation/)
end

it "should have the products count" do
Qorder mailer.should have_body text (/You ordered #{Q@order.products.count} p1
end
end
end

I simply copied and pasted the one from the documentation and adapt it to
our needs. We now have to make sure this tests pass.
First we add the action on the order mailer:

Listing 8.14: Order mailer(app/mailers/order_mailer.rb)

class OrderMailer < ActionMailer: :Base
default from: "no-reply@marketplace.com"

def send_confirmation (order)
@order = order
@Quser = (@Qorder.user
mail to: @user.email, subject: "Order Confirmation"
end
end

After adding this code, we now have to add the corresponding views. It is
a good practice to include a text version along with the html one.

oducts:/)

162 CHAPTER 8. PLACING ORDERS

$ touch app/views/order mailer/send_confirmation.html.erb
$ touch app/views/order mailer/send_confirmation.txt.erb

The html version looks like this:

<hl>Order: #<%= Qorder.id %></hl>
<p>You ordered <%= @order.products.count %> products:</p>

<% @order.products.each do |product| %>
<1i><%= product.title %> — <%= number_to_currency product.price %></1li>
<% end %>

And the text version like:

Order: #<%= Qorder.id %>
You ordered <%= (@Qorder.products.count %> products:
<% @order.products.each do |product| %>

<%= product.title %> - <%= number_to_currency product.price %>
<% end %>

Now if we run the mailer specs, they should be all green:

$ bundle exec rspec spec/mailers/order_mailer_ spec.rb

Finished in 0.13474 seconds
5 examples, 0 failures

Randomized with seed 20538

We just need to call the send_confirmation method into the create ac-
tion on the orders controller:

8.6. CONCLUSION 163

def create
order = current_user.orders.build(order_params)

if order.save
OrderMailer.send_confirmation (order) .deliver

render json: order, status: 201, location: [:api, current_user, order]
else
render json: { errors: order.errors }, status: 422
end
end

To make sure we did not break anything on the orders, we can just run the
specs from the orders controller:

$ bundle exec rspec spec/controllers/api/vl/orders_controller_spec.rb

Finished in 0.40412 seconds
8 examples, 0 failures

Randomized with seed 19910

Let’s finish this section by commiting this:

$ git commit -am "Adds order confirmation mailer"

[chapter8 91063df] Adds order confirmation mailer

8 files changed, 73 insertions(+), 3 deletions(-)

create mode 100644 app/mailers/order_mailer.rb

create mode 100644 app/views/order_mailer/send_confirmation.html.erb
create mode 100644 app/views/order mailer/send confirmation.txt.erb
create mode 100644 spec/mailers/order _mailer_spec.rb

8.6 Conclusion

Hey you made it!, give yourself an applause, I know it’s been a long way now,
but you are almost done, believe me!.

On chapters to come we will keep working on the Order model to add
some validations when placing an order, some scenarios are:

164 CHAPTER 8. PLACING ORDERS

1. What happens when the products are not available?

2. Decrement the current product quantity when an order is placed

Next chapter will be short but is really important for the sanity of the app,
so don’t skip it.
Show me some love on twitter:
I just finished chapter 8 of Api on Rails tutorial by @kurenn!
After chapter 9, we will focus on optimization, pagination and some other
cool stuff that will definitely help you build a better app.

https://twitter.com/kurenn

Chapter 9

Improving orders

Back in Chapter 8 we extended our API to place orders and send a confirmation
email to the user (just to improve the user experience). This chapter will take
care of some validations on the order model, just to make sure it is placeable,
just like:

1. Decrement the current product quantity when an order is placed

2. What happens when the products are not available?

We’ll probably need to update a little bit the json output for the orders,
but let’s not spoil things up.

So now that we have everything clear, we can get our hands dirty. You can
clone the project up to this point with:

$ git clone https://github.com/kurenn/market_place_api.git -b chapter8

Let’s create a branch to start working:

$ git checkout -b chapter9
Switched to a new branch 'chapter9'

165

166 CHAPTER 9. IMPROVING ORDERS

9.1 Decrementing the product quantity

On this first stop we will work on update the product quantity to make sure ev-
ery order will deliver the actual product. Currently the product model doesn’t
have a quantity attribute, so let’s do that:

$ rails g migration add_quantity_to_products quantity:integer
invoke active_record
create db/migrate/20150105212608_add_quantity_ to_products.rb

Wait, don’t run the migrations just yet, we are making a small modification
to it. As a good practice I like to add default values for the database just to
make sure I don’t mess things up with null values. This is a perfect case!

Your migration file should look like this:

class AddQuantityToProducts < ActiveRecord::Migration
def change
add_column :products, :quantity, :integer, default: 0
end
end

Migrate the database and prepare the test one:

$ bundle exec rake db:migrate && bundle exec rake db:test:prepare

Now it is time to decrement the quantity for the product once an order
is placed. Probably the first thing that comes to your mind is to take this to
the Order model and this is a common mistake when working with Many-to-
Many associations, we totally forget about the joining model which in this case
is Placement.

The Placement is a better place to handle this as we have access to the
order and the product, so we can easily in this case decrement the product
stock.

Before we start implementing the code for the decrement, we have to change
the way we handle the order creation as we now have to accept a quantity for

9.1. DECREMENTING THE PRODUCT QUANTITY 167

each product. If you recall Listing 8.9 we are expecting an array of product
1ds. I’'m going to try keep things simple and will send a array of arrays where
the first position of each inner array will be the product id and the second the
quantity.

A quick example on this would be something like:

The first position for the inner arrays is the product id and
the second the gquantity to buy
product_ids_and quantities = [[1,4], [3,5]]

This is going to be tricky so stay with me, let’s first build some unit tests:

require 'spec_ helper'

describe Order do

describe '#set_total!' do

end

describe "#build placements_with product_ids_and quantities" do
before (:each) do

product_1 = FactoryGirl.create :product, price: 100, quantity: 5
product_2 = FactoryGirl.create :product, price: 85, quantity: 10

@product_ids_and _quantities = [[product_1.id, 2], [product_2.id, 3]]
end

it "builds 2 placements for the order" do

expect {order.build placements_with_ product_ids_and quantities (@product_ids_and_quantities
end

end

end

Then into the implementation:

class Order < ActiveRecord: :Base

168 CHAPTER 9. IMPROVING ORDERS

def set_total!
end

def build placements_with_product_ids_and quantities (product_ids_and quantities)
product_ids_and_quantities.each do |product_id_and_quantity|
id, quantity = product_id_and_quantity # [1,5]

self.placements.build(product_id: id)
end
end
end

And if we run our tests, they should be all nice and green:

$ bundle exec rspec spec/models/order_spec.rb

Finished in 0.21348 seconds
9 examples, 0 failures

Randomized with seed 45644

The build placements_with product_ids_and quantities will
build the placement objects and once we trigger the save method for the order
everything will be inserted into the database. One last step before commiting
this is to update the orders_controller spec along with its implementa-
tion.

First we update the orders_controller_spec file:

require 'spec_helper'

describe Api::V1l::OrdersController do

describe "POST i#create" do
before (:each) do
current_user = FactoryGirl.create :user
api_authorization_header current_user.auth_token

product_1 = FactoryGirl.create :product
product_2 = FactoryGirl.create :product

9.1. DECREMENTING THE PRODUCT QUANTITY 169

order_params = { product_ids_and_quantities: [[product_1.id, 2], [product_2.id, 3]] }
post :create, user_id: current_user.id, order: order_params
end

it "returns just user order record" do

order_response = json_response]|:order]
expect (order_response[:id]) .to be_present
end

it "embeds the two product objects related to the order" do

order_response = json_response]|:order]
expect (order_response|[:products] .size) .to eql 2
end

it { should respond with 201 }
end

end

Then we need to update the orders_controller:

class Api::V1l::OrdersController < ApplicationController

def create
order = current_user.orders.build
order .build placements_with product_ids_and quantities (params|[:order] [:product_ ids_and quan

if order.save

order.reload #we reload the object so the response displays the product objects
OrderMailer.send_confirmation (order) .deliver

render json: order, status: 201, location: [:api, current_user, order]
else
render json: { errors: order.errors }, status: 422
end
end
end

Notice we removed the order params method as we are handling the
creation for the placements.

And last but not least, we need to update the products factory file, to
assign a high quantity value, to at least have some products to play around
in stock.

170 CHAPTER 9. IMPROVING ORDERS

FactoryGirl.define do
factory :product do
title { FFaker::Product.product_name }
price { rand() = 100 }
published false
user
quantity 5 #this is the line we added
end
end

Let’s commit this changes and keep moving:

$ git add .
$ git commit -m "Allows the order to be placed along with product quantity"

Did you notice we are not saving the quantity for each product anywhere?,
there is no way to keep track of that. This can be fix really easy, by just adding
a quantity attribute to the Placement model, so this way for each product we
save its corresponding quantity. Let’s start by creating the migration:

$ rails g migration add_quantity to_placements quantity:integer
invoke active_ record

create db/migrate/20150105234750_add_quantity to_placements.rb

As with the product quantity attribute migration we should add a default
value equal to 0, remember this is optional but I do like this approach. The
migration file should look like:

class AddQuantityToPlacements < ActiveRecord::Migration
def change
add_column :placements, :quantity, :integer, default: 0
end
end

Run the migrations and prepare the test database:

9.1. DECREMENTING THE PRODUCT QUANTITY 171

$ bundle exec rake db:migrate && bundle exec rake db:test:prepare

= AddQuantityToPlacements: migrating ==
add_column (:placements, :quantity, :integer, {:default=>0})

-> 0.0092s

AddQuantityToPlacements: migrated (0.0093s)

Let’s document the quantity attribute through a unit test like so:

require 'spec_helper'

describe Placement do

it { should respond_to :product_id }
it { should respond_to :quantity }

end

Let’s make sure everything is green:

$ bundle exec rspec spec/models/placement_spec.rb

Finished in 0.02985 seconds
5 examples, 0 failures

Now we just need to update the build_placements_with_product_ids_and qua
to add the quantity for the placements:

Listing 9.1: Build placements with product ids and quanti-
ties(app/models/order.rb)

class Order < ActiveRecord: :Base

#line 15
def build placements_with_product_ids_and quantities (product_ids_and quantities)

172 CHAPTER 9. IMPROVING ORDERS

product_ids_and quantities.each do |product_id and quantity|
id, quantity = product_id_and_quantity # [1,5]

self .placements.build (product_id: id, quantity: quantity)
end
end
end

Our order_spec. rb should be still green:

$ bundle exec rspec spec/models/order_spec.rb

Finished in 0.18384 seconds
8 examples, 0 failures

Randomized with seed 2756

Let’s commit the changes:

$ git add .
$ git commit -m "Adds quantity to placements"

9.1.1 Extending the Placement model

It is time to update the product quantity once the order is saved, or more accu-
rate once the placement is created. In order to achieve this we are going to add
a method and then hook it up to an after_create callback.

Let’s first update our placement factory to make more sense:

Listing 9.2: Placements factory (spec/factories/placements.rb)

FactoryGirl.define do
factory :placement do
order
product
quantity 1
end

end

9.1. DECREMENTING THE PRODUCT QUANTITY 173

And then we can simply add some specs:

Listing 9.3: Decrease product quantity method
spec(spec/models/placementspec.rb)

require 'spec_helper'

describe Placement do
it { should respond_to :quantity }

describe "#decrement_product_quantity!" do
it "decreases the product quantity by the placement quantity" do

product = placement.product
expect {placement . decrement_product_quantity!}.to change{product.quantity} .by (-placement.q
end
end
end

The implementation is fairly easy as shown on Listing 9.4.

Listing 9.4: Decrease product quantity method (app/models/placement.rb)

class Placement < ActiveRecord: :Base

#line 5
def decrement_product_quantity!
self.product.decrement! (:quantity, quantity)
end
end

And now we just have to hook this method into an after_create callback
and we should be good to go:

class Placement < ActiveRecord: :Base

174 CHAPTER 9. IMPROVING ORDERS

after_ create :decrement_product_quantity!

def decrement_product_quantity!
self.product.decrement! (:quantity, quantity)
end
end

We just now need to make sure that there are enough products on stock
to create a placement record, but first it would be a good idea to commit the
changes:

$ git add .
$ git commit -m "Decrements the product quantity by the placement quantity"

9.2 Validation for product on stock

As you remember from the beginning of the chapter we added the quantity
attribute to the Product model, now it is time to validate that there are enough
products for the order to be placed.

In order to make things more interesting and spice things up we will do it
thorugh a custom validator, just to keep things cleaner and show you another
cool technique to achieve custom validations.

For custom validators you can head to the documentation. Let’s get our
hands dirty.

First we need to add a validators directory under the app directory
(Rails will pick it up for so we do not need to load it).

$ mkdir app/validators

Then we create a file for the validator:

http://guides.rubyonrails.org/active_record_validations.html#performing-custom-validations

9.2. VALIDATION FOR PRODUCT ON STOCK 175

$ touch app/validators/enough_products_validator.rb

Before we drop any line of code, we need to make sure to add a spec to the
order model to check if the order can be placed.

Listing 9.5: Order enough products in stock validation
(spec/models/order_spec.rb)

require 'spec_helper'

describe Order do

describe "#build_placements_with_product_ids_and_quantities" do
end

describe "#valid?" do
before do
product_1 = FactoryGirl.create :product, price: 100, quantity: 5
product_2 = FactoryGirl.create :product, price: 85, quantity: 10

placement_1 FactoryGirl.build :placement, product: product_1l, quantity: 3
placement_2 = FactoryGirl.build :placement, product: product_2, quantity: 1§

@order = FactoryGirl.build :order

Qorder.placements << placement_1
@order.placements << placement_2
end

it "becomes invalid due to insufficient products" do
expect (Qorder) .to_not be_valid
end
end
end

As you can see on the spec, we first make sure that placement_2 is trying
to request more products than are available, so in this case the order is not
supposed to be valid.

The test by now should be failing, let’s turn it into green by adding the code
for the validator:

176 CHAPTER 9. IMPROVING ORDERS

class EnoughProductsValidator < ActiveModel: :Validator
def validate (record)
record.placements.each do |placement|
product = placement.product
if placement.quantity > product.quantity
record.errors|["#{product.title}"] << "Is out of stock, just #{product.quan
end
end
end
end

I manage to add a message for each of the products that are out of stock, but
you can handle it differently if you want. Now we just need to add the validator
to the order model like so:

class Order < ActiveRecord: :Base
belongs_to :user

validates :user_id, presence: true

tity} left”

validates_with EnoughProductsValidator #this is the line we added for the custom validator

end

And now if you run your tests, everything should be nice and green:

$ bundle exec rspec spec/models/order_spec.rb

Finished in 0.23009 seconds
9 examples, 0 failures

Randomized with seed 454

Let’s commit the changes:

$ git add .

$ git commit -m "Adds validator for order with not enough products on stock"
[chapter9 7bd9db4] Adds validator for order with not enough products on stock
3 files changed, 31 insertions(+)

create mode 100644 app/validators/enough_products_validator.rb

9.3. UPDATING THE TOTAL 177

9.3 Updating the total

Did you realize that the total is being calculated incorrectly, because cur-
rently it is just adding the price for the products on the order regardless of the
quantity requested. Let me add the code to clarify the problem:

Currently in the order model we have this method to calculate the amount

to pay:

def set_total!
self .total = products.map (&:price) .sum
end

Now instead of calculating the total by just adding the product prices, we
need to multiply it by the quantity, so let’s update the spec first:

describe '#set total!' do
before(:each) do
product_1 = FactoryGirl.create :product, price: 100
product_2 = FactoryGirl.create :product, price: 85

placement_1 = FactoryGirl.build :placement, product: product_1, quantity: 3
placement_2 = FactoryGirl.build :placement, product: product_2, quantity: 15

@order = FactoryGirl.build :order

@Qorder.placements << placement_1
Qorder.placements << placement_2
end

it "returns the total amount to pay for the products" do
expect {@Qorder.set_total!}.to change{@Qorder.total.to_f}.from(0) .to(1575)
end
end

And the implementation is fairly easy:

def set_total!
self.total = 0
placements.each do |placement |
self.total += placement.product.price * placement.quantity
end
end

178 CHAPTER 9. IMPROVING ORDERS

And the specs should be green:

$ bundle exec rspec spec/models/order_spec.rb

Finished in 0.23888 seconds
9 examples, 0 failures

Randomized with seed 13568

Let’s commit the changes and wrap up.

$ git commit -am "Updates the total calculation for order"
[chapter9 1f4891a] Updates the total calculation for order
2 files changed, 7 insertions(+), 2 deletions(-)

9.4 Conclusion

Oh you are here!, let me congratulate you, it’s been a long way since chapter
1, but you are 1 step closer. Actually the next chapter would be the last one, so
try to take the most out of it.
The last chapter would be on how to optimize the API by using pagination,
caching and background jobs, so buckle up, itis going to be a bumpy ride.
Show me some love on twitter:

I just finished chapter 9 of Api on Rails tutorial by @kurenn!

https://twitter.com/kurenn

Chapter 10
Optimization

Welcome to the last chapter of the book, it’s been a long way and you are only
one step away from the end. Back in Chapter 9 we finish modeling the order
model and we could say that the project is done by now, but I want to cover
some important details about optimization. The topics I’'m going to cover in
here will be:

e Pagination
e Background Jobs

e Caching

I will try to go as deep as I can trying to cover some common scenarios on
this, and hopefully by the end of the chapter you’ll have enough knowledge to
apply into some other scenarios.

If you start reading at this point, you’ll probably want the code to work on,
you can clone it like so:

$ git clone https://github.com/kurenn/market_place_api.git -b chapter9

Let’s now create a branch to start working:

179

180 CHAPTER 10. OPTIMIZATION

$ cd market_place_api/
$ git checkout -b chapterlO
Switched to a new branch 'chapterlO'

10.1 Pagination

A very common strategy to optimize an array of records from the database, is
to load just a few by paginating them and if you are familiar with this tech-
nique you know that in Rails is really easy to achieve it wheter if you are using
will_paginate or kaminari.

Then only tricky part in here is how are we suppose to handle the json
output now, to give enough information to the client on how the array is pag-
inated. If you recall Chapter 1 I shared some resources on the practices I was
going to be following in here, one of them was http://jsonapi.org/ which is a
must-bookmark page.

If we read the format section we will reach a sub section called Top Level
and in very few words they mention something about pagination:

“meta’: meta-information about a resource, such as pagination.

It is not very descriptive but at least we have a hint on what to look next
about the pagination implementation, but don’t worry that is exactly what we
are going to do in here.

Let’s start with the products list.

10.1.1 Products

We are going to start nice and easy by paginating the products list as we don’t
have any kind of access restriction which leads to easier testing.
First we need to add the kaminari gem to our Gemfile:

gem 'kaminari'

And then run the bundle command to install it:

https://github.com/mislav/will_paginate
https://github.com/amatsuda/kaminari
http://jsonapi.org/
http://jsonapi.org/format/#document-structure-top-level
https://github.com/amatsuda/kaminari

10.1. PAGINATION 181

$ bundle install

Now we can go to the index action on the products_controller and
add the pagination methods as pointed on the documentation:

def index
respond_with Product.search (params) .page (params|[:page]) .per (params | :per_page])
end

So far the only thing that changed is the query on the database to just limit
the result by 25 per page which is the default, but we have not added any extra
information to the json output.

We need to provide the pagination information on the meta tag in the fol-
lowing form:

"meta"B {

"pagination": {
"per_page": 25,
"total_page": 6,
"total objects": 11

Now that we have the final structure for the meta tag we just need to output
it on the json response, let’s first add some specs:

Listing 10.1: Products paginated(spec/controllers/api/v1/products_controller| spec.rb)

require 'spec_helper'

describe Api::V1::ProductsController do
describe "GET #show" do

end

describe "GET #index" do

182 CHAPTER 10. OPTIMIZATION

before (:each) do
4.times { FactoryGirl.create :product }
end

context "when is not receiving any product_ids parameter" do
before (:each) do
get :index
end

it "returns 4 records from the database" do
products_response = json_response
expect (products_response|[:products]) .to have (4) .items
end

it "returns the user object into each product" do
products_response = json_response]|:products]
products_response.each do |product_response|
expect (product_response|[:user]) .to be_present
end
end

we added this lines for the pagination

it { expect (json_response) .to have_key(:meta) }

it { expect (json_response|:meta]) .to have_key(:pagination) }

it { expect (json_response[:meta] [:pagination]) .to have_key (:per_page) }

it { expect (json_response|:meta] [:pagination]) .to have_key(:total pages) }
it { expect (json_response|:meta] [:pagination]) .to have_key (:total_objects) }

it { should respond_with 200 }
end

context "when product_ids parameter is sent" do
before (:each) do
Quser = FactoryGirl.create :user
3.times { FactoryGirl.create :product, user: Quser }
get :index, product_ids: @Quser.product_ids
end

it "returns just the products that belong to the user" do
products_response = json_response| :products]
products_response.each do |product_response|

expect (product_response[:user][:email]) .to eql @user.email

end

end

end
end
end

We should have 6 failing tests by now, yes you read it right 6, although we
just added 5, which means we broke something else.

10.1. PAGINATION 183

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 0.71762 seconds
23 examples, 6 failures

If you are wondering which test I’m talking about here it is:

1) Api::V1::ProductsController GET #index when product_ids parameter is sent returyns just the p
Failure/Error: get :index, product_ids: @user.product_ids
NoMethodError:

undefined method ‘page' for #<Array:0x007fabb761a818>
./app/controllers/api/vl/products_controller.rb:8:in " index'
./spec/controllers/api/vl/products_controller spec.rb:59:in ‘block (4 levels) in <top (r

The error is actually on the search method of the Product model, be-
cause for some reason kaminari is expecting an active record relation instead
of an array. It is actually really easy to fix:

app/models/product.rb

def self.search(params = {})
— products = params|[:product_ids] .present? ? Product.find(params|[:product_ids]|) : Product.a
+ products = params|:product_ids] .present? ? Product.where (id: params]|:product_ids]) : Prod
end

Did you notice the change?, if not let me tell you what changed. Instead of
fetching the record using the £ind method with the product_ids params, I just
change it to a where clause which returns an ActiveRecord::Relation, exactly
what we need.

Now if we run the specs again, that spec should be green:

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 0.88109 seconds
23 examples, 5 failures

184 CHAPTER 10. OPTIMIZATION

Now that we fixed that, let’s add the pagination information, we need to do
it on the products_controller.rb file:

class Api::V1::ProductsController < ApplicationController
before_action :authenticate_with_token!, only: [:create, :update, :destroy]
respond_to :json

def index
products = Product.search (params) .page (params|:page]) .per (params | :per_page])
render json: products, meta: { pagination:
{ per_page: params]|:per_page],
total_pages: products.total_pages,
total_objects: products.total count } }
end

end

As you may already notice, I changed the respond_with for a render
call, just to make a custom json output, in this case the pagination information.
Now if we run the specs, they should be all passing:

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 1.28 seconds
23 examples, 0 failures

Now we have make a really amazing optimization for the products list
endpoint, now it is the client job to fetch the correct page with the correct
per_page param for the records.

Let’s commit this changes and proceed with the orders list.

$ git commit -m "Adds pagination for the products index action to optimize response"
[chapterl0 6716515] Adds pagination for the products index action to optimize response
5 files changed, 18 insertions(+), 4 deletions(-)

10.1. PAGINATION 185

10.1.2 Orders

Now it is time to do exactly the same for the orders list endpoint, which by
now should be really easy to implement. But first, let’s add some specs to the
orders_controller spec.rb file:

require 'spec_helper'
describe Api::V1l::OrdersController do

describe "GET #index" do
before (:each) do
current_user = FactoryGirl.create :user
api_authorization header current_user.auth_token
4 .times { FactoryGirl.create :order, user: current_user }
get :index, user_id: current_user.id
end

it "returns 4 order records from the user" do

orders_response = json_response|:orders]
expect (orders_response) .to have (4) .items
end

These lines are the ones added to test the pagination
it { expect (json_response) .to have_key(:meta) }

it { expect (json_response|[:meta]) .to have_key(:pagination) }

it { expect (json_response|:meta] [:pagination]) .to have_key (:per_page) }

it { expect (json_response|:meta] [:pagination]) .to have_key(:total pages) }
it { expect (json_response|:meta] [:pagination]) .to have_key (:total_objects) }

it { should respond _with 200 }
end

end

And as you may already wonder, we should have 5 tests failing:

$ bundle exec rspec spec/controllers/api/vl/orders_controller_spec.rb

Finished in 0.59358 seconds
14 examples, 5 failures

186 CHAPTER 10. OPTIMIZATION

Let’s turn the red into green:

class Api::V1l::0OrdersController < ApplicationController
before_action :authenticate_with_token!
respond_to :json

def index
orders = current_user.orders.page (params|[:page]) .per (params|[:per_page])
render json: orders, meta: { pagination:
{ per_page: params]|:per_page],
total_pages: orders.total_ pages,
total_objects: orders.total_count } }

end

end

Now all the tests should be nice and green:

$ bundle exec rspec spec/controllers/api/vl/orders_controller_spec.rb

Finished in 0.56828 seconds
14 examples, 0 failures

Randomized with seed 6870

Let’s place and commit, because a refactor is coming:

$ git commit -m "Adds pagination for orders index action"
[chapterl0 3f06£99] Adds pagination for orders index action
2 files changed, 11 insertions(+), 1 deletion(-)

10.1.3 Refactoring pagination

If you have been following this tutorial or if you are an experienced Rails devel-

oper, you probably love keep things DRY, and although the code we generated

for pagination is not to much, I think it would be a good practice to clean no

just the implementation but also the specs as bothof them have duplication.
We are going to first clean the specs, which in this case are:

10.1. PAGINATION 187

it { expect (json_response) .to have_key(:meta) }

it { expect (json_response[:meta]) .to have_key (:pagination) }

it { expect (json_response|:meta] [:pagination]) .to have_key (:per_page) }

it { expect (json_response|[:meta] [:pagination]) .to have_key(:total_pages) }
it { expect (json_response|:meta] [:pagination]) .to have_key (:total_objects) }

Let’s add a shared_examples folder under the spec/support/ direc-
tory:

$ mkdir spec/support/shared_examples

And then create a file for the pagination example:

$ touch spec/support/shared_examples/pagination.rb

And on the pagination. rb file you can just add the following lines:

shared_examples '"paginated list" do
it { expect (json_response) .to have_key(:meta) }

it { expect (json_response|:meta]) .to have_key(:pagination) }

it { expect (json_response[:meta] [:pagination]) .to have_key (:per_page) }

it { expect (json_response|:meta] [:pagination]) .to have_key(:total pages) }

it { expect (json_response[:meta] [:pagination]) .to have_key(:total_objects) }
end

This shared example can now be use as a substitude for the 5 tests on the
orders_controller spec.rbandproducts_controller_ spec.rbfiles
like so:

spec/controllers/api/vl/orders_controller_spec.rb

it_behaves_like "paginated list"

spec/controllers/api/vl/products_controller_spec.rb

188 CHAPTER 10. OPTIMIZATION

it_behaves_like "paginated list"

And both specs should be passing.

Now that we made this simple refactor, we can jump into the pagination
implementation for the controllers and clean things up. If you recall the index
action for both the products and orders controller, they both have the same
pagination format, so let’s move this logic into a method called pagination
under the application_controller. rb file, this way we can access it on
any controller which needs pagination in the future.

Listing 10.2: Application controller with pagination
method(app/controllers/application_controller.rb)

class ApplicationController < ActionController: :Base
Prevent CSRF attacks by raising an exception.
For APIs, you may want to use :null session instead.
protect_from forgery with: :null_session

include Authenticable
protected

def pagination (paginated_array, per_page)
{ pagination: { per_page: per_page.to_i,
total_pages: paginated_array.total_pages,
total_objects: paginated_array.total_count } }
end
end

And now we can substitude the pagination hash on both controllers for the

method, like so:
app/controllers/api/vl/orders_controller.rb

def index

orders = current_user.orders.page (params|[:page]) .per (params|[:per_page])
render json: orders, meta: pagination (orders, params]|:per_page])
end

app/controllers/api/vl/products_controller.rb

10.2. BACKGROUND JOBS 189

def index
products = Product.search (params) .page (params|:page]) .per (params | :per_page])
render json: products, meta: pagination (products, params]|:per_page])

end

If you run the specs for each file they should be all nice and green:

$ bundle exec rspec spec/controllers/api/vl/orders_controller_spec.rb

Finished in 0.56902 seconds
14 examples, 0 failures

Randomized with seed 61566

$ bundle exec rspec spec/controllers/api/vl/products_controller_spec.rb

Finished in 0.73919 seconds
23 examples, 0 failures

Randomized with seed 35453

This would be a good moment to commit the changes and move on to the
next Section 10.2 about background jobs.

$ git commit -m "Refactors the pagination behavior for index actions"
[chapterl0 64d4c5e] Refactors the pagination behavior for index actions
6 files changed, 19 insertions(+), 18 deletions(-)

create mode 100644 spec/support/shared_examples/pagination.rb

10.2 Background Jobs

When it comes to optimization strategies, you cannot miss adding a background
jobs gem for long processes which could lead to a bad experience or timeout
errors all over the place. Our application is fairly simple and actually the only

190 CHAPTER 10. OPTIMIZATION

thing that could steal some CPU time is sending mails, which in our case, we

are just sending a confirmation for the order.

Although it won’t take much I find this relevant for future long-time pro-
cesses and allow the server not to lock. There are so many options out there for
handling this, Sidekiq, Resque, or Delayed Job, we will be using the last one,

just to keep things simple.
We first add the gem to the Gemfile:

gem 'delayed job_active_ record'

And then run the bundle command to install it along with the delayed_job
generate method:

$ bundle install
$ rails generate delayed_job:active_record

$ rake db:migrate

This will generate a table for delayed jobs where are going to be enque for
later processing. For more information head to the documentation

And now that we have eveything setup, we just need to update the line
where we send the email after the order has been placed, like so:

app/controllers/api/vl/orders_controller.rb

def create
order = current_user.orders.build

order.build placements_with product_ids_and quantities (params|[:order] [:product_ids_and_ quan

if order.save
order.reload #we reload the object so the response displays the product objects

OrderMailer.delay.send_confirmation (order) #this is the line
render json: order, status: 201, location: [:api, current_user, order]

else

render json: { errors: order.errors }, status: 422

end
end

http://sidekiq.org/
https://github.com/resque/resque/tree/1-x-stable
https://github.com/collectiveidea/delayed_job
https://github.com/collectiveidea/delayed_job

10.3. API CACHING 191

As you can see we update the OrderMailer.send_confirmation (order) .delive

toOrderMailer.delay.send_confirmation (order) assuggested by the

documentation.
If you want to actually perform the delivery in your development environ-
ment, you just need to add a couple of lines to the development . rb file:

MarketPlaceApi: :Application.configure do

:smtp

config.action_mailer.delivery method =
= { :address => "localhost", :port => 1025 }

config.action_mailer.smtp_settings

config.action_mailer.default_url_options = { :host => "localhost",
only path: false }

end

Let’s commit and move onto the next Section 10.3:

$ git commit -m "adds delayed jobs for long task process"

[chapterl0 4be4964] adds delayed jobs for long task process

7 files changed, 58 insertions(+), 2 deletions(-)

create mode 100755 bin/delayed_job

create mode 100644 db/migrate/20150116223258_ create_delayed jobs.rb

10.3 API Caching

There is currently an implementation for this with the active_model_serializers
gem which is really easy to handle. Although in older versions of the gem, this
implementation may change, it gets the job done.

If we perform a request to the products list we will notice that the re-
sponse time takes about 0.14 miliseconds using sabisu, but if we add just a
few lines to the ProductSerializer class as shown on Listing 10.3, we will
see an improvement of about 90% of the response time, as you can see on
Figure 10.1 vs Figure 10.2

https://github.com/collectiveidea/delayed_job#rails-3-mailers
https://github.com/rails-api/active_model_serializers/tree/0-9-1#caching
http://icalialabs.github.io/sabisu-rails/

192 CHAPTER 10. OPTIMIZATION

STATUS: m TIME:

Figure 10.1: Response Time without caching

STATUS: m TIME:

Figure 10.2: Response Time with caching

Listing 10.3: Product serializer with caching
(app/serializers/productgerializer.rb)

class ProductSerializer < ActiveModel: :Serializer
cached

attributes :id, :title, :price, :published
has_one :user

def cache_key
[object, scopel]
end
end

As you can see the implementation is fairly easy and the benefits are huge,
but be aware for any further change on the caching implementation that gem
may implement. I’ll add the cached and cache_key methods on every seri-
alizer just for demonstration purposes.

On a real environment you probably want to handle this with care.

Let’s commit the changes and wrap up:

10.4. CONCLUSION 193

$ git commit -m "Adds caching for the serializers"
[chapterl0 c3378b8] Adds caching for the serializers
4 files changed, 24 insertions (+)

10.4 Conclusion

If you reach this point that means you are done with the book, good job!, you
just become a great API Rails developer that’s for sure.
Thanks for taking this great adventure all along with me, I hope you enjoyed
the travel as much as I did. We should take a beer sometime.
Show me some love on twitter:
I’'m a Rails API rockstar thanks to @kurenn!

https://twitter.com/kurenn

	About the author
	Copyright and license
	Introduction
	Conventions on this book
	Getting started
	Development environments

	Initializing the project
	Installing Pow or Prax
	Gemfile and Bundler

	Version Control
	Conclusion

	The API
	Planning the application
	Setting the API
	Routes, Constraints and Namespaces
	Api versioning
	Improving the versioning

	Conclusion

	Presenting the users
	User model
	First user tests
	Improving validation tests

	Building users endpoints
	Testing endpoints with CURL
	Creating users
	Updating users
	Destroying users

	Integrating Sabisu
	Conclusion

	Refactoring tests
	Refactoring the json response
	Refactoring the format param
	Refactor before actions
	Conclusion

	Authenticating users
	Stateless and sign in failure
	Authentication token
	Sessions controller

	Current User
	Authenticate with token
	Authorize actions
	Conclusion

	User products
	Product model
	Product bare bones
	Product validations
	Product/User association

	Products endpoints
	Show action for products
	Products list
	Exploring with Sabisu
	Creating products
	Updating products
	Destroying products

	Populating the database
	Conclusion

	JSON with Active Model Serializers
	Setting up the gem
	Serialise the user model
	Serialise the product model
	Sessions
	Serializing associations
	Embeding products on users

	Searching products
	By keyword
	By price
	Sort by creation
	Search engine

	Conclusion

	Placing Orders
	Modeling the order
	Orders and Products

	User orders
	Exposing the order model
	Render a single order
	Placing and order

	Customizing the Order json output
	Send order confirmation email
	Conclusion

	Improving orders
	Decrementing the product quantity
	Extending the Placement model

	Validation for product on stock
	Updating the total
	Conclusion

	Optimization
	Pagination
	Products
	Orders
	Refactoring pagination

	Background Jobs
	API Caching
	Conclusion

